
 1

Finding Spatio-Temporal Patterns in Earth Science Data * 
 
 

Pang-Ning Tan+    Michael Steinbach+  Vipin Kumar+ 
Christopher Potter++  Steven Klooster+++  Alicia Torregrosa+++ 

 
+ Department of Computer Science and Engineering, Army HPC Research Center 

University of Minnesota 
{ptan, steinbac, kumar@cs.umn.edu} 

 
                   ++ NASA Ames Research Center                     +++ California State University, Monterey Bay 
            {cpotter@mail.arc.nasa.gov}      {klooster,atorregrosa@gaia.arc.nasa.gov} 

 
Abstract    
This paper presents preliminary work in using data mining techniques to find interesting spatio-temporal patterns 
from Earth Science data. The data consists of time series measurements for various Earth science and climate 
variables (e.g. soil moisture, temperature, and precipitation), along with additional data from existing ecosystem 
models (e.g. Net Primary Production). The ecological patterns of interest include associations, clusters, predictive 
models, and trends. In this paper, we discuss some of the challenges involved in preprocessing and analyzing the 
data, and also consider techniques for handling some of the spatio-temporal issues. Earth Science data has strong 
seasonal components that need to be removed prior to pattern analysis, as Earth scientists are primarily interested in 
patterns that represent deviations from normal seasonal variation such as anomalous climate events (e.g., El Nino) or 
trends (e.g., global warming). We compare several alternatives (including singular value decomposition (SVD), 
discrete Fourier transform (DFT), “monthly” Z score, and moving average) with respect to their effectiveness in 
removing seasonality. We describe the different kinds of association analysis that can be performed on such data. 
Our current technique for finding associations transforms the time series into transactions and then applies existing 
algorithms traditionally used for market-basket data.  Some of the transformations lead to dense columns in the 
transaction matrices, causing an exponential growth in the computing requirements. Furthermore, no single 
interestingness measure accurately reflects the quality of the derived patterns.  Indeed, we argue that existing 
approaches for mining association rules and sequential patterns may not be able to capture all the interesting patterns 
due to the spatio-temporal nature of this data.  
 

1. Introduction 
NASA’s Earth observation satellites are generating increasingly larger amounts of data. This remotely 

sensed data, combined with additional data from ecosystem models, offers an unprecedented opportunity for 
predicting and understanding the behavior of the Earth’s ecosystem.  However, due to the large amount of data that 
is available, data mining techniques are needed to facilitate the automatic extraction and analysis of interesting 
patterns from the Earth Science data.  This data consists of a sequence of global snapshots of the Earth (as shown in 
Figure 1), typically available at monthly intervals, and includes various atmospheric, land and ocean variables such 
as sea surface temperature (SST), pressure, precipitation and Net Primary Production (NPP). NPP is the net 
photosynthetic accumulation of carbon by plants. Keeping track of NPP is important because it includes the food 
source of humans and all other organisms and thus, sudden changes in the NPP of a region can have a direct impact 
on the regional ecology. An ecosystem model for predicting NPP, called CASA (the Carnegie Ames Stanford 
Approach [PKB99]), has been used for over a decade to produce a detailed view of terrestrial productivity. Our goal 
is to find interesting patterns involving events derived from the multi-year output of CASA, and other climate 
variables.   

Mining patterns from Earth Science data is a difficult task due to the spatio-temporal nature of the data. In 
this paper, we discuss some of the challenges involved in preprocessing and analyzing the data, and also consider 
techniques for handling some of the spatio-temporal issues.  First, we examine the problem of removing seasonal 
variation from the time series data. This is necessary because patterns derived from these variables are often 
dominated by the seasonal cycles present in the data. Earth Scientists are often interested in relating ecological 
events in a specific location to anomalous climate conditions that are occurring in a different part of the world. For 
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example, during El-Nino years (i.e. the warming of the ocean surface for specific regions of the Pacific), it has been 
observed that the eastern part of Australia experiences severe drought conditions. Such anomalous events can 
become apparent only if the seasonal components of the time series are removed. Another reason for removing 
seasonal variations is to make the time series stationary, a typical assumption of many statistical time series analysis 
techniques (e.g., ARIMA). We also investigate the problem of detecting temporal auto-correlation and determining 
the statistical significance of various descriptive statistics, such as correlation, derived from the data.  

Discovering spatio-temporal relationships among ecological events observed at various parts of the earth is 
critical for understanding how the different elements of the ecosystem interact with each other.  A standard approach 
for finding such patterns is to compute the pair-wise correlation between time series of different geographical 
locations and then, finding regions that have high correlations (i.e., “similar” time series). This approach is described 
in more details in a related paper [Ste+01]. An alternative approach is to convert the time series into sequence of 
events and then apply existing data mining techniques to discover interesting associations in the event sequences. 
This approach has been studied by the data mining community in the context of association rules and sequential 
pattern discovery for market basket analysis [AS94, SA96, JKK99]. For the Earth Science data, we describe various 
ways to transform the original data into market-basket type transactions, so that existing algorithms can be applied.   

The rest of the paper is organized as follows: Section 2 provides a description of the ecology data, while 
sections 3 and 4 present some of the temporal issues related to mining this kind of data, such as seasonality and 
temporal autocorrelation. Section 5 shows the results of association pattern discovery, while section 6 concludes 
with a discussion of future directions.  

 

2. Ecology Data 
The data for our analysis contains monthly measurements of various Earth science and climate variables over a 
period of twelve years, starting in January 1982.  These variable values are either observations from different 
sensors, e.g. precipitation and sea surface temperature (SST), or the result of model predictions, e.g. NPP from the 
CASA model. In addition, Earth Scientists have developed standard indices (time series) that capture the behavior of 
various climate variables at a regional and global scale. For example, various El Nino related indices, such as 
ANOM1+2 and ANOM3.4, have been established to measure sea surface temperature anomalies across different 
regions of the ocean. Some of the well-known climate indices are shown in Table 1. 

 
 

Climate Index Description 
SOI  measures the sea level pressure (SLP) anomalies between Darwin and Tahiti 

NAO normalized SLP differences between Ponta Delgada, Azores and Stykkisholmur, Iceland 
ANOM3 sea surface temperature anomalies in the region bounded by 90°W-150°W and 5°S- 5°N 

ANOM3.4 sea surface temperature anomalies in the region bounded by 120°W-170°W and 5°S-5°N 
NP area-weighted sea level pressure over the region 30N-65N, 160E-140W 

 

Table 1: Description of several well-known climate indices. 
 

3. Dealing with the Seasonality of Data 
Yearly patterns such as spring, summer, fall, and winter or rainy season / dry season are important, but well known. 
Thus, Earth scientists are primarily interested in patterns that represent deviations from the normal seasonal 
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Figure 1: A simplified view of the problem domain.
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variation.   Examples of such patterns are special events (e.g., El Nino), long-term cycles (e.g., decadal oscillations), 
or trends (e.g., global warming).  Given this focus on deviations from the norm, and the strength of the seasonal 
patterns in the data, it is necessary to remove them so that other, more interesting patterns can be detected.  In the 
following we consider several transformations for removing seasonal variation: the discrete Fourier transform 
(DFT), the “monthly” Z score, singular value decomposition (SVD), and the moving average.   

We illustrate some of the different possibilities and issues via an example centered around a typical SST 
(Sea Surface Temperature) time series shown in Figure 2. (This time series was derived from data corresponding to 
a ½° by ½° region of the ocean at 71.5° W, 23° S, just off the Eastern coast of South America.)  In what follows, we 
shall often “standardize” a time series by subtracting its mean and dividing by its standard deviation.  We do this to 
display multiple time series on a single plot without the distorting effects of scale.  Also, because our measure of 
similarity in this domain is Pearson’s correlation coefficient, this sort of normalization seems very appropriate.  
Figure 3 shows the standardized version of our sample SST time series, which, not surprisingly, looks very similar 
to the original series in Figure 2. 

  
     Figure 2: Sample SST time series                  Figure 3: Standardized sample SST time series 
 
Filtering based on the DFT (Discrete Fourier Transform).  This approach is based on standard signal 

processing approaches. By taking the discrete Fourier transform, we can transform the original time series from the 
time domain to the frequency domain, where it is more readily apparent which frequencies make up the signal.  In 

particular, the power spectrum of a time series can be 
readily calculated from the transformed series, as 
shown in Figure 4. (The constant component has 
been eliminated since otherwise it dominates the 
plot.)  The peaks at 12 and 132 indicate that there is a 
strong yearly component. (The DFT and hence, the 
power spectrum, is symmetrical around N/2, where N 
is the length of the time series, and thus, there is just 
one strong frequency component, not two.) 
Removing this yearly component and then 
performing the inverse Fourier transform yields a 
new time series which should not have any seasonal 
component.  (We also remove the constant 
component, since we are only interested in variations, 
not absolute levels.)   

 
Monthly Z score.  This transformation takes the set of values for a given month, e.g., all Januarys, 

calculates the mean and standard deviation for that set of monthly values, and then standardizes each value by 
calculating its Z score, i.e., by subtracting off the mean and dividing by the standard deviation.  While this approach 
seems similar to the first approach, it is actually quite different since it uses the monthly mean and standard 
deviation instead of the overall mean and standard deviation.  Put another way, we express each data value in the 
time series in terms of its deviation from the mean value for its corresponding month, scaled by the volatility factor 
for that month. The month-by-month rescaling used in this transformation causes seasonal fluctuations to disappear.  
Furthermore, scaling by the monthly standard deviation makes the changes more pronounced for those months in 
which the volatility is low (an issue that will be addressed at the end of this section). 

Figure 4: Power Spectrum of sample SST time 
series (constant component removed).
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Figure 5 shows the result of applying the monthly Z score and DFT filtering to the sample SST time series.  
These transforms produce almost identical results, and in fact, the correlation of the two transformed series is 0.98.  
While there are points in our data set for which the correlation between the monthly Z score and DFT filtered series 
is only 0.5, for most of our data this equivalence holds.   

 
   Singular value decomposition (SVD).  Another approach used in Earth Science study for feature extraction is 
singular value decomposition [WSB92]. Here we investigate the use of this approach for removing seasonality. We 
first compute the singular value decomposition of the matrix, M, whose rows consist of the collection of time series 
that are of interest, i.e., in this case, the matrix rows consist of the sea surface temperature time series for a large 
number of points on the ocean (~150,000 points).  A singular value decomposition expresses an m by n matrix, M, 
as the sum of simpler rank 1 matrices as follows:  
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, where is , a scalar, is the ith singular value of M, iu� is the ith  left singular vector, and iv� is the ith  

right singular vector.  All singular values beyond the first r, where r = rank(M) are 0 and all left (right) singular 
vectors are orthogonal to each other and are of unit length. 
 Thus, a matrix can be approximated by omitting some of the terms of the series that correspond to non-zero 
singular values.  In particular, if a characteristic of the data corresponds to a particular term (singular value), then 
this characteristic can be removed by eliminating the corresponding term.   For example, removing the first term, 

which corresponds to the largest singular 
value, removes a constant component from the 
data, i.e., after removing the first term the 
maximum mean value of any times series from 
is 0.02.  (Before there was a wide distribution 
of mean values, e.g., many time series in the 
tropics had means in 20’s.) Thus, in this case, 
removing the first term is roughly equivalent 
to normalizing each time series to have a mean 
value of 0.  
 The nature of each term can be 
analyzed by looking at the associated right 
singular vector, which, in this case, can be 
interpreted as a time series. Figure 6 shows the 
first five right singular vectors for the SST 
matrix. (Singular values are non-negative and 
ordered by decreasing magnitude.  Since the 
magnitudes of these singular values often 
decrease rapidly, it is often sufficient to 
consider only the first few.) From the first plot 
we see that the 1st and 2nd right singular 

Figure 6: First five right singular values of SST data. (In top
left plot, second right singular vector is green.) 

Figure 5: Results of applying monthly Z score and DFT filtering.
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vectors, correspond, respectively, to a constant and a 12-month seasonal component.  Right singular vector 4 also 
corresponds to a 12-month seasonal component, although it is not as regular as that of vector 2.  Finally, right 
singular vectors 3 and 5 seem to correspond to 6-month seasonal cycles.   

Figure 7 shows the sample SST time series after the first five singular value components have been 
removed.  For reference it is plotted with the series obtained by using the monthly Z score transformation.  The two 
different approaches produce time series that are relatively close (a correlation of 0.84).  However, the SVD 
approach for removing seasonality is more computationally intensive than the other approaches.  Also, the other 
approaches seem more “direct,” i.e., they can remove seasonality from a single vector, while the SVD approach 
works on a data set as a whole and only works because seasonality is such a strong characteristic of the entire data 
set that it manifests itself in the first few terms of the singular value decomposition.  However, we plan to 
investigate the use of SVD to see if it can tell us anything interesting about the underlying Earth science phenomena. 

Moving average. A 12-month moving average is effective at removing seasonality and it also smoothes the 
data. To see why a moving average removes certain frequencies, consider that the average of a sine or cosine over 
the extent of its period is 0.  However, it tends to flatten any deviation from the average values by spreading the 
effects of the deviations to its neighboring points in time. For comparison, Figure 8 shows the monthly Z score and 
the 12-month moving average transformation of the original SST time series.  (The 12-month moving average is 11 
months shorter; so for plotting purposes, this missing portion was set to 0.)  Figure 8 suggests that if the high 
frequency fluctuations in the original time series are factored out, then the 12-month moving average of the original 
time series should be quite similar to the monthly Z score time series.   

To illustrate this last point further, we apply a 12-month moving average to the monthly Z score series.  
This resulting series, along with the 12-month moving average series from Figure 8, are shown in Figure 9.  The 
correlation between the two time series is 0.99.  Thus, for our sample times series, using a 12-month moving average 

to smooth the time series obtained by first applying a monthly Z score results in almost exactly the same time series 
as obtained by just applying a 12-month moving average to the sample time series.  We have noticed for other time 
series that the correlation between the two approaches is not always quite so high, but this phenomenon seems to 
hold, in many cases.  
 

Figure 8: Monthly Z score and 12-month moving average.

Figure 7: Results of applying monthly Z score and SVD filtering.
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Figure 9: Monthly Z score smoothed by 12-month average and 12-month moving average. 

 
 To fully understand this phenomenon, consider a time series x = { x1, x2, …, x144}. Let p = { p1, p2, …,p132} 
be the 12-month moving average time series for x and  q = { q1, q2, …,q132} be the 12-month moving average on the 
Z-score for x. Note that  
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where both x13 and x1 are standardized by the same monthly mean (µ1) and monthly standard deviation (σ1). The 
above analysis suggests that differences between consecutive points in the smoothed Z-score are proportional to the 
12-month moving average, scaled by the monthly standard deviation. Thus, the correlation between p and q should 
be high if the volatility of the monthly standard deviations is low. The behavior of the correlation in other cases is 
still under investigation.  
 

4. Dealing with the Temporal Autocorrelation of Data 
 

Temporal autocorrelation has a direct impact on the significance of statistical correlation computed between two 
time series. For example, the number of degrees of freedom in a time series is reduced by a factor of k whenever a k-
month moving average is applied. One way to evaluate the degree of autocorrelation in a time series data is by 
computing the autocorrelation coefficient. Given N time-series observations, x = { x1, x2, …, xN}: 

Autocorrelation coefficient at lag k, 
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 The distribution of c(k) for a completely random time series with large N (> 30) is N(0,1/N). Furthermore, 
a rough estimate of the effective degrees of freedom in a time-series data is given by – N log c(1). For example, the 
effective degrees of freedom would be close to N if c(1) is less than 1/e = 0.3679. A plot of c(k) at various lags k, 
also known as a correlogram, can be used to aid the interpretation of autocorrelation coefficients. Figure 10 
illustrates the effect of applying the monthly Z-score transformation on an NPP time series that resembles Figure 2. 
The correlogram for the raw NPP exhibits strong periodic oscillations at 12-month intervals. Monthly Z-score 
reduces significantly the long-term autocorrelation present in the data. Nevertheless, short-term autocorrelations due 
to temporal locality between adjacent months are still persistent. 
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 One way to reduce the short-term 
auto-correlation is by aggregating the time 
series into bins of 3-month intervals. For 
example, instead of having 12 values for each 
year, we can create bins by taking the average 
value of every 3 months (Jan-Feb-Mar, May-
Apr-Jun, Jul-Aug-Sep and Oct-Nov-Dec) to 
obtain 4 bins per year. The effect of binning on 
temporal autocorrelation is illustrated in 
Figure 11. The top two figures show the 
histogram of c(1) for all the NPP time series 
data with and without binning. These figures 
suggest that binning can help to reduce the 
amount of short-term autocorrelation. The 
bottom two figures illustrate the c(1) 
histograms when the monthly Z-score 
transformation is applied. The results indicate 
that Z-score with binning works very well to 
reduce the amount of short-term 
autocorrelation in the time series data. 
 

5. Association Analysis  
The definition and formation of events for our data mining approach are initially based on the domain knowledge of 
our Earth Science co-investigators. The input data from which the events are formed include NPP, the climate 
variables and climate indices.  For land and ocean variables, we define anomalous events by transforming the 
variables into their monthly Z scores (to deseasonalize the time series) and then imposing upper and lower 
thresholds (e.g. ±2 standard deviations) for these values.  For climate indices, we define events based on the 5th and 
95th percentiles of their 43-year time series data (from 1958 to 2000).   

Figure 11: Distribution of autocorrelation coefficients at lag 1, c(1), for raw NPP versus 
Z-scores (with and without 3-month binning). 

Figure 10: Effect of various transformations on the autocorrelation of 
an NPP time series data. 
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Ecologists are interested in a variety of spatio-temporal association patterns involving sequences of events 
abstracted from the measurement values of ecological variables at various spatial locations as shown in Figure 12. 
The spatio-temporal nature of the Earth science data sets gives rise to four types of patterns:  
• Intra-zone non-sequential patterns – relationships among events in the same grid cell or zone, ignoring the 

temporal aspects of the data.  
• Inter-zone non-sequential pattern – relationships among events happening in different grid cells or zones, 

ignoring temporal aspects of the data.  
• Intra-zone sequential pattern – temporal relationships among events occurring within the same grid cell or 

zone.  
• Inter-zone sequential pattern  – temporal relationships among events occurring at different spatial locations.  
 

Grid Cell (x,y) t1 t2 t3
(1,1) ∅ ∅ ∅
(1,2) {A, B, D} {D, L, J} ∅
(1,3) ∅ {A, B, E, G} {B, C, D}
(1,4) {A, K, M} ∅ ∅
(2,1) {B, C, E} {E, G, M} {C, F, M}
(2,2) ∅ {C, E, F} {A, B, G, L}
(2,3) ∅ ∅ ∅
(2,4) {A, B} {D, F} {A, B, D}
(3,1) ∅ ∅ ∅
(3,2) {A, B, G} ∅ {A, B, E}
(3,3) {C, M} ∅ ∅
(3,4) ∅ ∅ ∅
(4,1) ∅ ∅ ∅
(4,2) ∅ {D, K, L} ∅
(4,3) ∅ ∅ {E, G, K}
(4,4) ∅ {A, B} {D, E, F}
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One way to generate association patterns from the Earth Science data is to transform the spatio-temporal 

dataset into a set of market-basket type transactions. The main advantage of doing this is that we can use many of 
the existing algorithms to discover the association patterns that exist in the data. We will show how the different 
kinds of association patterns can be derived and discuss some of their limitations.  
 

(Grid cell, time) NPP-Lo NPP-Hi FPAR-Lo FPAR-Hi Temp-Lo Temp-Hi Prec-Lo Prec-Hi … 
((1,1), t1) 1 0 0 0 0 0 0 0 … 
((1,2), t1) 0 0 0 1 1 0 1 0 … 

… … … … … … … … … … 
((1,1), t2) 0 1 1 0 0 0 1 0 … 
((1,2), t2) 1 0 1 0 0 0 0 0 … 

  

Table 2: Transforming the spatio-temporal data into market-basket type transactions. 
 

Intra-zone Non-sequential Association Patterns 
In the simplest case, we can look for intra-zone non-sequential associations among events occurring at the same 
spatial location, irrespective of the time of occurrence. The abstracted event matrix of Figure 12 can be transformed 
into a transaction format as shown in Table 2. This representation allows us to apply existing association rule mining 
algorithms, such as Apriori [AS94] and FP-tree [HPY00], to extract the intra-zone non-sequential patterns described 
in Section 3. The interestingness of an association rule A � B can be evaluated according to various objective 
interestingness measures: 

1. Confidence 
)(
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3. Maximum Entropy 
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Figure 12: Events associated with various grid 
cells at different times are recorded in 
the event matrix. 



 9

where H(A) = –P(A)log P(A) – P(¬A) log P(¬A), H(B) = –P(B)log P(B) – P(¬B) log P(¬B), and  
          H(A,B) = – P(A,B) log P(A,B) – P(¬A,B) log P(A, ¬B)  

    – P(A, ¬B) log P(A, ¬B) – P(¬A, ¬B) log P(¬A, ¬B)  

4. lift  
)(

)|(
BP

ABP=  

5. Interest-support, IS  
)()(

),(
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6. Interest 
)()...()()()...()(

),...,,,,..,,(

2121

2121

jk

jk

BPBPBPAPAPAP
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Table 3 illustrates four of the highest ranked rules ordered according to the different objective interest measures. 

Some of the measures behave very similarly to each other in terms of the rankings they produce (e.g. correlation and 
IS; entropy and lift). We also found that most of the high-confidence rules have very low correlations, and that most 
of the high-correlation rules have very low confidence. For example, the highest confidence rule in Table 3 (PET-Hi 
Prec-Hi FPAR-Hi Temp-Hi � NPP-Hi) has a correlation of 0.0216 whereas the most highly correlated rule (NPP-
Lo � FPAR-Lo) has a confidence of 58.7%. This is because the confidence measure does not take into account the 
support of the items in the rule consequent, a fact that was pointed out by Brin, et al. in [BSM97]. On the other hand, 
interest measures such as correlation, lift, interest factor and IS are symmetric (e.g. correlation of the rules A � B 
and B � A are the same). Thus, they are more appropriate to rank frequent itemsets instead of association rules.  

 

Table 3: Intra-zone Non-sequential Association Patterns.  
 
Our overall results show that using a single interest measure may not be sufficient to capture all the interesting 

patterns.  Furthermore, we need the help of domain experts to interpret many of the discovered patterns. We found 
that visualization is an important tool to assist the domain experts in evaluating the interestingness of these patterns. 
Figure 13 shows the regions that are covered by one of the highly correlated pattern, FPAR-Hi � NPP-Hi.  FPAR 
(Fractional Intercepted Photosynthetically Active Radiation) is an attribute derived from NDVI (the Normalized 
Difference Vegetation Index), a greenness index based on satellite measurements. Anomalously high FPAR means 
that the vegetation has generated more “light-harvesting” photosynthetic capability than average, which allows for 
higher than normal NPP. Regions that show this pattern correspond mainly to semi-arid annual grasslands, a type of 
vegetation, which is able to more quickly take advantage of periodically high precipitation (and possibly solar 
radiation) than forests. The FPAR-Hi events could be related to unusual precipitation conditions, but more study is 
needed to verify this hypothesis.  Another interesting pattern relates NPP-Lo events to PET-Lo and FPAR-Lo (as 
shown in Figure 14). PET (Potential EvapoTranspiration) measures the potential loss of water to the atmosphere by 
evaporation, and by the transpiration of water through plants. This pattern occurs frequently in the regions of 
evergreen forests. Our tentative hypothesis is that these regions represent forests that have temporarily lost their 

Rules ordered by Confidence Rules ordered by Correlation Rules ordered by Entropy 
1. PET-Hi Prec-Hi FPAR-Hi Temp-Hi 
    � NPP-Hi (Conf = 100%) 
2. PET-Hi Temp-Lo � Solar-Hi 
                       (Conf = 99.4%) 
3. PET-Hi Prec-Hi FPAR-Hi  
    � NPP-Hi (Conf = 98.6%) 
4. NPP-Lo PET-Lo Temp-Hi 
    � Solar-Lo (Conf =98.0%) 

1. FPAR-Lo � NPP-Lo  
(Corr = 0.4327) 

2. FPAR-Hi � NPP-Hi 
(Corr = 0.4013) 

3. Solar-Lo � PET-Lo 
(Corr = 0.2752) 

4. PET-Lo FPAR-Lo � NPP-Lo 
(Corr = 0.1966) 

1. Prec-Hi FPAR-Hi Solar-Lo Temp-Lo 
    � NPP-Hi PET-Lo (ent = 0.4320) 
2. PET-Hi Prec-Lo FPAR-Lo 
    � NPP-Lo Temp-Hi (ent =0.3207) 
3. NPP-Hi Solar-Lo Temp-Lo 
    � PET-Lo FPAR-Hi (ent = 0.2899) 
4. FPAR-Hi Solar-Hi Temp-Hi 
    � NPP-Hi PET-Hi (ent = 0.2870) 

Rules ordered by Lift Rules ordered by IS Rules ordered by Interest factor 
1. Prec-Hi FPAR-Hi Solar-Lo  
    Temp-Lo�NPP-Hi (Lift = 366.2) 
2. NPP-Hi Solar-Lo Temp-Lo 
    � PET-Lo FPAR-Hi (Lift = 308.7) 
3. NPP-Hi Prec-Hi Solar-Lo Temp-Lo 
    �PET-Lo  FPAR-Hi  (Lift=293.4) 
4. PET-Hi Prec-Lo FPAR-Lo � NPP-Lo  
    Temp-Hi (Lift = 284.6) 

1. NPP-Lo � FPAR-Lo   
(IS = 0.4667) 

2. FPAR-Hi � NPP-Hi 
(IS = 0.4611) 

3. PET-Lo � Solar-Lo 
(IS = 0.3674) 

4. PET-Lo FPAR-Lo � NPP-Lo 
(IS = 0.2060) 

1. FPAR-Hi � NPP-Hi 
(I = 0.0362) 

2. PET-Lo � Solar-Lo 
(I = 0.0309) 

3. NPP-Lo � FPAR-Lo  
(I = 0.2899) 

4. PET-Lo Prec-Hi � Solar-Lo  
(I = 0. 0073) 
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photosynthetic capability (FPAR-Lo) due to a large fire or other disruptive events, but this needs to be verified by 
consulting historical records, which are not easily obtained through conventional sources. 

Intra-zone Sequential Association Patterns 
If temporal information is incorporated, we can derive intra-zone sequential associations among these events using 
existing sequential pattern discovery algorithms such as [SA96] and [MTV97]. The input data for these algorithms 
are the event sequences shown in Figure 12. We have used the GSP algorithm, which was initially proposed by 
Agrawal et al. [SA96], for finding frequent sequential patterns in market-basket data. In the GSP approach, a 
sequence is represented as an ordered list of itemsets, s = <s1, s2, …, sn>. Each element si of the sequence is 
subjected to three timing constraints: window-size (i.e. maximum time interval among all items in the element), 
min-gap (i.e. minimum time difference between successive elements) and max-gap (maximum time difference 
between successive elements).  In our experiments, we have chosen the window-size to be 0 (i.e. all events in the 
same element must occur in the same month), min-gap to be 0 and max-gap to be 3 months. We have generated 
sequential patterns for two separate regions, Peru and Australia. We have chosen these two regions primarily 
because they are located close to the regions in the Pacific where the El-Nino related events occur. Table 4 shows 
the intra-zone sequential patterns for both regions (note that we only consider patterns with NPP events as one of 
items in the last element of the sequence). We observe that the sequential patterns for Australia often contain the 
NPP-Hi event whereas the sequential patterns for Peru often contain the NPP-Lo events. Furthermore, the 
confidence of the patterns for Australia is higher than those for Peru.  
  

Intra-zone sequential pattern (for Australia) Confidence Rank Correlation 
(Solar-Lo) � (NPP-Hi) � (Temp-Hi) � (NPP-Hi) 80.0% 1 -0.1834 
(Prec-Hi) � (NPP-Hi) � (NPP-Hi) � (NPP-Hi Prec-Hi) � (NPP-Hi) 78.8% 2 -0.1958 
(PET-Lo ) � ( NPP-Hi ) � ( Temp-Hi ) � ( NPP-Hi ) 69.2% 3 -0.2941 
(Prec-Hi ) � ( NPP-Hi )  67.6% 7 -0.3088 
 

Intra-zone sequential pattern (for Peru) Confidence Rank Correlation 
(PET-Hi) � ( PET-Hi ) � ( NPP-Lo ) � ( NPP-Lo ) 61.7% 1 -0.3324 
(NPP-Lo) � (NPP-Lo) 49.4% 2 -0.4628 
(Prec-Lo) � (NPP-Lo) 37.3% 3 -0.5956 
(Temp-Hi) � (Prec-Hi) � (Prec-Hi) � (NPP-Lo) 34.0% 6 -0.6025 
 

Table 4: Intra-zone sequential patterns for two regions: Australia and Peru.  These patterns are obtained using 
the GSP algorithm with mingap=0, maxgap=3 and window size=0. 

 

Figure 13: Regions that show the intra-zone non-
sequential association rule {FPAR-Hi} 
�{NPP-Hi}.  The dark region 
corresponds to areas that have high 
support for the rule. 

Figure 14: Regions that show the intra-zone non-
sequential association rule {FPAR-Lo, 
PET-Lo} �{NPP-Lo}.   
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In the GSP approach, each data sequence contributes at most once to the support count of a pattern. As a result, the 
support and confidence measures depend only on the number of spatial locations for which the pattern is observed. 
This type of counting strategy may not be appropriate because it does not take into account the number of times the 
pattern occurs at each spatial location. We are currently investigating the possibility of using other support counting 
schemes as suggested in [JKK99]. Another problem is that statistical correlation may no longer be an appropriate 
measure because the support of the last element (NPP-Hi or NPP-Lo) is often significantly larger than the support of 
the entire sequence. As a result, long sequences often have correlation values that are either negative or close to 
zero. 

Inter-zone Sequential and Non-Sequential Association Patterns 
There are various ways to incorporate the spatial components of the data into the association pattern discovery 
problem. Koperski, et al. [KH95] have extracted spatial association rules by using geographical landmarks to 
represent interesting spatial locations and spatial predicates to represent relationships between the spatial objects. 
Shekhar, et al. [SH01] have derived spatial co-location rules based on the frequent co-occurrences of events within 
the same spatial window. In this paper, we use an approach that is similar to [Kh95] except we replace the 
geographical landmarks with events abstracted from climate indices. Each climate index represents the behavior of a 
particular climate variable over certain regions of interest (e.g. regions associated with the El-Nino phenomena). 
Thus, instead of finding spatial association patterns that may exist among any spatial locations, we have restricted 
the analysis to a few regions of interest. This reduces the number of spatial features dramatically. Furthermore, since 
we are dealing with regions instead of individual grid cells, we no longer have the problem of insufficient support. 
In the following work, we have used events derived from the climate indices given in Table 1.  Our goal is to find 
interesting associations between NPP and other climate events defined at a particular land point to interesting ocean 
events abstracted from the climate indices. Table 5 shows the input data to for the inter-zone non-sequential pattern 
algorithms. Tables 6 and 7 illustrate some of the highly ranked inter-zone non-sequential and sequential patterns 
derived from this data.  Some of the patterns we found suggest teleconnections between ocean basins, as seen with 
the sequential associations between ocean indices in the Pacific basin (e.g., NINO12-Hi) and Atlantic basin (e.g., 
NAO-Hi). This parallels the recent climatological research results that have identified the tropical oceans as drivers 
for the atmospheric heating which is altering the spatial structure of the NAO [HHX01]. 
 

(Grid cell, time) NPP-Lo NPP-Hi FPAR-Lo FPAR-Hi … SOI-Hi SOI-Lo AO-Hi … 
((1,1), t1) 1 0 0 0 … 0 1 0 … 
((1,2), t1) 0 0 0 1 … 0 1 0 … 

… … … … … … … … … … 
((1,1), t2) 0 1 1 0 … 0 1 1 … 
((1,2), t2) 1 0 1 0 … 0 1 1 …   

Table 5: Transaction data for mining inter-zone non-sequential association patterns. 
 

Rules ordered by Confidence Rules ordered by Correlation 
1. PET-Hi Prec-Lo FPAR-Lo Temp-Hi AO-Hi NINO12-Hi NINO3-Hi  
    NINO4-Hi NINO34-Hi SOI-Lo WP-Hi � NPP-Lo  (Conf = 100%) 
2. FPAR-Hi Solar-Hi Temp-Hi AO-Lo NAO-Lo NINO3-Hi  
    NINO34-Hi PDO-Hi QBO-Hi � NPP-Hi (Conf = 100%) 
3. Prec-Lo FPAR-Lo Temp-Lo NAO-Hi SOI-Lo � NPP-Lo  
                                                                         (Conf = 100%) 

1. FPAR-Hi � NPP-Hi 
(Corr = 0.4013) 

2. FPAR-Hi Solar-Lo � NPP-Lo 
(Corr = 0.1992) 

3. FPAR-Hi PDO-Hi � NPP-Hi 
(Corr = 0.1975) 

 

Table 6: Inter-zone Non-sequential Association Patterns.  
 

Inter-zone sequential pattern (for Australia) Confidence Correlation 
(Temp-Lo)�(NINO12-Hi)�(NAO-Hi)�(NPP-Hi)�(NPP-Hi)�(NPP-Hi) 95.7% -0.0213 
(AO-Hi) � (Solar-Lo) � (SOI-Lo) � (QBO-Hi) � (Prec-Hi) � (NPP-Hi) 95.1% -0.0278 
(SOI-Lo) �(NAO-Hi ) �(Solar-Lo) �(Prec-Hi) �(NAO-Hi) �(NPP-Hi) 95.0% -0.0290 
 

Inter-zone sequential pattern (for Peru) Confidence Correlation 
(WP-Hi) �(Solar-Hi) �(NINO34-Lo) �(Temp-Hi) �(NPP-Lo) 89.7% -0.0225 
(Solar-Hi)�(NINO34-Lo)�(NINO34-Lo) �(Temp-Hi) �(NPP-Lo) 89.7% -0.0225 
(NAO-Lo) � (NPP-Lo) � (NINO34-Lo) � (NPP-Lo) 87.1% -0.0519 
 

Table 7: Inter-zone sequential patterns for two regions: Australia and Peru.  These patterns are obtained using 
the GSP algorithm with mingap=0, maxgap=3 months and window size=0. 
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One potential problem with this approach is that one may end up generating too many associations among 

events abstracted from the climate indices. For example, suppose events SOI-Lo and AO-Hi co-occur together only 
once at time tk. However, the support of these two events will be as high as the total number of grid cells in the data 
set because the values of SOI-Hi and AO-Hi are both equal to 1 for all grid cells at time tk. This increases the 
execution time of the standard association pattern discovery algorithms dramatically and reduces the significance of 
the support and confidence measures. Techniques for handling these problems are currently under investigation. 
 
6. Conclusion 
 
Our initial approach for finding association patterns transformed the data so that standard techniques could be 
applied. These techniques have uncovered some interesting ecosystem patterns for Earth scientists to investigate.  
However, some of these approaches lead to dense transaction matrices, and consequently, require significant 
computational time. Also, the standard measures of interestingness do not consistently identify interesting 
associations in this domain.  For future work, we will investigate other methods for counting support, such as the 
ones suggested in [JKK99].  
 
We have explored several techniques for deseasonalizing Earth Science time-series data, and our results show that 
several of these techniques are effective. However, there are still issues related to autocorrelation and its effect on 
the significance of the correlation between two time series.  Although binning and removing seasonality reduce the 
level of autocorrelation significantly, additional investigation is needed to explore different binning techniques and 
to quantify the effects of any remaining autocorrelation on the significance of observed correlations.  Finally, trends 
(the long-term change in the mean value of the time series) are another important source of variation in time series 
data and we plan to include trend detection in our future work. 
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