Today

= Memory Layout
Machine-Level Programming V: m Buffer Overflow

Memory Layout and Buffer Overflows " unerbiy

" Protection

CSci 2021: Machine Architecture and Organization

Lecture #14, February 20th, 2015
Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron, Antonia Zhai

not drawn to scale not drawn to scale
1A32 Linux Memory Layout T — Memory Allocation Example —
ac acl
8vB

m Stack l char big_array[1<<24]; /* 16 MB */ l

= Runtime stack (Ubuntu sets 8MB soft limit) char huge_array[1<<28]; /* 256 MB */

= E.g., local variables int beyond;
m Heap char *pl, *p2, *p3, *p4;

= Dynamically allocated storage
= When call malloc(), calloc(), new()

int useless() { return 0; }

m Data int main()
{
= Statically allocated data pl = malloc(l <<28); /* 256 MB */
= E.g., arrays & strings declared in code p2 = malloc(l << 8); /* 256 B */
p3 = malloc(l <<28); /* 256 MB */
m Text 1 p4 = malloc(l << 8); /* 256 B */ t
= Executable machine instructions Heap /* Some print statements ... */ Heap
Data } Data
- GEErely V] 2 hex d Text Text
er 2 hex digits N
=§pbits of addrgess gg Where does everything go? gg
3
not drawn to scale
IA32 Example Addresses PR — IA32 Layout Variations
Stacl
address range ~232 l
Reserved
Reserved G
Sesp 0x££££bcd0 for 3GB/1GB split: 05 kernel
p3 0x65586008 0s kernel :
common with co
pl 0x55585008 co i e o
p4 0x1904a110 BF| Stack 32-bit kernel | T
p2 0x1904a008 = -
&p2 0x18049760 Shared library
&beyond 0x08049744 4 Other things
big_array 0x18049780 80 Other heap obj.|
huge_array 0x08049760 placed between
main () 0x080483c6 stack and heap start N
useless () 008049744 GIEED \
Heap
Heap
Data Data
malloc () isdynamically linked Text Data | Text
address determined at runtime o8 |Text | 08
o i

not drawn to scale

x86-64 Example Addresses oooo7r

Stack
address range~2%7 , rest reserved 1
$rsp 0x00007££££££8d1£8
p3 0x00002aaabaadd010
pl 0x00002aaaaaadc010
p4 0x0000000011501120
P2 0x0000000011501010
&p2 0x0000000010500a60
&beyond 0x0000000000500a44
big_array 0x0000000010500a80 000030 4
huge array 0x0000000000500a50
main () 0x0000000000400510
useless () 0x0000000000400500 Heap
Data
malloc() is dynamically linked Text
address determined at runtime 000000

Internet Worm and IM War

= November, 1988
= Internet Worm attacks thousands of Internet hosts.
= How did it happen?

Internet Worm and IM War (cont.)

m August 1999
= Mysteriously, Messenger clients can no longer access AIM servers.
® Microsoft and AOL begin the IM war:
= AOL changes server to disallow Messenger clients
= Microsoft makes changes to clients to defeat AOL changes.
= At least 13 such skirmishes.
= What was the final round in the war?

= The Internet Worm and AOL/Microsoft War were both based
on stack buffer overflow exploits!
= many library functions do not check argument sizes.
= allows target buffers to overflow.

Today

m Memory Layout
m Buffer Overflow

= Vulnerability
" Protection

Internet Worm and IM War

= November, 1988
® Internet Worm attacks thousands of Internet hosts.
= How did it happen?
u July, 1999
= Microsoft launches MSN Messenger (instant messaging system).

= Messenger clients can access popular AOL Instant Messaging Service
(AIM) servers

String Library Code

= Implementation of Unix function gets ()

/* Get string from stdin */
char *gets(char *dest)
{
int ¢ = getchar();
char *p = dest;
while (c != EOF && c '= '\n') {
*p++ = c;
c = getchar();
}
*p = '\0';
return dest;

}

= No way to specify limit on number of characters to read
= Similar problems with other library functions
* strcpy, strcat: Copy strings of arbitrary length
= scanf, fscanf, sscanf, when given %s conversion specification

Vulnerable Buffer Code

/* Echo Line */
void echo()

{

char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;

}

void call_echo() {
echo() ;

}

unix>. /bufdemo
Type a string:1234567
1234567

unix>. /bufdemo
Type a string:12345678
Segmentation Fault

unix>./bufdemo
Type a string:123456789ABC
Segmentation Fault

Buffer Overflow Stack

Before call to gets

Stack Frame
formain
/* Echo Line */
void echo ()
Return Address {
Saved $ebp _[+— %ebp char buf[4]; /* Way too small! */
Saved $ebx gets (buf) ;
puts (buf) ;
31 r21r21]101f ue)
Stack Frame
for echo CQelioe
pushl %ebp # Save %ebp on stack
movl S%esp, %ebp
pushl %ebx # Save %ebx
subl $20, %esp # Allocate stack space
leal -8(%ebp),%ebx # Compute buf as %ebp-8
movl %ebx, (%esp) # Push buf on stack
call gets # call gets
15
Buffer Overflow Example #1
Before call to gets Input 1234567
Stack Frame | OXE£££d688 Stack Frame ~ |OX££f££d688
formain formain
0s8Jo4a]85]£0 os8Jo4]85]f0
£f|££[d6[88|ox££££d678 £f| ££[d6[88|oxf£££d678
Saved $ebx 00|37]36]|35
xx | xx [xx [xx | bug 34|33|32|31|buf
Stack Frame Stack Frame
for echo for echo

Overflow buf, and corrupt %ebx,
but no crash

Buffer Overflow Disassembly

echo:
80485c5: 55 push %ebp
80485c6: 89 e5 mov %esp, $ebp
80485c8: 53 push %ebx
80485c9: 83 ec 14 sub $0x14, %esp
80485cc: 8d 5d £8 lea Oxfffffff8 (%ebp) , %ebx
80485cf: 89 1lc 24 mov %ebx, (%esp)
80485d2: e8 9e ff ff ff call 8048575 <gets>
80485d7: 89 1lc 24 mov %ebx, (%esp)
80485da: e8 05 fe ff ff call 80483e4 <puts@plt>
80485df: 83 c4 14 add $0x14, %esp
80485e2: 5b pop %ebx
80485e3: 5d Pop %ebp
80485e4: c3 ret
call_echo:
80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485£0: c9 leave
80485f1: c3 ret
14
unix> gdb bufdemo
(gdb) break echo
kpoi 1 0x80485c9
Buffer Overflow o o O
Breakpoint 1, 0x80485c9 in echo ()
(gab) /x Seby
Stack Example o e
(gdb) print /x *(unsigned *)$ebp
$2 = OxEff£d688
(gdb) print /x *((unsigned *)$ebp + 1)
$3 = 0x80485£0
Before call to gets Before call to gets
Stack Frame Stack Frame | OX££££d688
formain formain
Return Address o8] o4]85] f0
Saved $ebp f£|££]d6[88|oxf£e£d678
Saved $ebx Saved $ebx
31]r21] 111101 bus xx[xx[xx [xx] pue
Stack Frame Stack Frame
for echo for echo

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485£0: c9 leave

Buffer Overflow Example #2

Before call to gets Input 12345678
Stack Frame | OXE£££d688 Stack Frame | OXE£££d688
formain formain
0s8Jo4]85]£0 (HAER
£f|££]d6]88|oxf£E£d678 ££| ££][d6[00 |oxf£££d678
Saved $ebx 38|37]36|35
xxlxxlxxlxx buf 34]33]32]|31 | buf
Stack Frame Stack Frame
for echo for echo

Frame pointer corrupted

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485£0: c9 leave # Set %ebp to corrupted value
80485f1: c3 ret

Buffer Overflow Example #3

Before call to gets Input 123456789ABC
Stack Frame | OXE£££d688 Stack Frame ~ |OX££££d688
formain formain

0s8Jo4a]85]f0 08Jo4]85]00

££[££]d6]88|oxsee£d678 43[42]41]39]|0ox££££d678
Saved $ebx 38|37|36]|35

xxlxxlxxlxx buf 34|33|32|31]|buf

Stack Frame Stack Frame

for echo for echo

Return address corrupted

80485eb: e8 d5 ff ff ff call 80485c5 <echo>
80485£0: c9 leave # Desired return point

Discussion Break: Unknown Addresses?

m Basic attack requires attacker to know address B of buffer
m Is an attack still possible if B is variable?
m E.g. what if attacker only knows B +/- 30?

m Some possible attack strategies:
= Try attack repeatedly
= “NOP sled”: (0x90 is one-byte no-operation in IA32)

NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP Exploit Code

Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

= IM War

AOL exploited existing buffer overflow bug in AIM clients

exploit code: returned 4-byte signature (the bytes at some location in
the AIM client) to server.

When Microsoft changed code to match signature, AOL changed
signature location.

Malicious Use of Buffer Overflow

Stack after call to gets ()

void foo(){ foo stack frame
bar() ; return
coo <+—— address

} A B

int bar() { data written pad
char buf[64]; by gets ()
gets (buf) ;
. exploit bar stack frame
return ...; B codg

}

= Input string contains byte repr of ble code

= Overwrite return address A with address of buffer B
m When bar () executes ret, will jump to exploit code

Exploits Based on Buffer Overflows

m Buffer overflow bugs allow remote machines to execute
arbitrary code on victim machines

= Internet worm
= Early versions of the finger server (fingerd) used gets () to read the
argument sent by the client:
= finger droh@cs.cmu.edu
= Worm attacked fingerd server by sending phony argument:
= finger “exploit-code padding new-return-
address”

= exploit code: executed a root shell on the victim machine with a
direct TCP connection to the attacker.

Date: Wed, 11 Aug 1999 11:30:57 -0700 (PDT)
From: Phil Bucking <philbucking@yahoo.com>

Subject: AOL exploiting buffer overrun bug in their own software!
To: rms@pharlap.com

Mr. Smith,

I am writing you because I have discovered something that I think you
might find interesting because you are an Internet security expert with
experience in this area. I have also tried to contact AOL but received
no response.

I am a developer who has been working on a revolutionary new instant
messaging client that should be released later this year.

It appears that the AIM client has a buffer overrun bug. By itself
this might not be the end of the world, as MS surely has had its share.
But AOL is now *exploiting their own buffer overrun bug* to help in
its efforts to block MS Instant Messenger.

Since you have significant credibility with the press I hope that you
can use this information to help inform people that behind AOL's
friendly exterior they are nefariously compromising peoples' security.

Sincerely,

Phil Bucking

Founder, Bucking Consulting
philbucking@yahoo. com

This email originated from within
Microsoft; the employee was
“disciplined”

Avoiding Overflow Vulnerability

/* Echo Line */

void echo()

{
char buf[4]; /* Way too small! */
fgets (buf, 4, stdin);
puts (buf) ;

}

m Use library routines that limit string lengths

= fgets instead of gets
® strncpyinstead of strcpy

= Don’t use scanf with plain %s conversion specification

= Use £gets to read the string

= Oruse $ns where nis a suitable integer

Stack Canaries

m Idea

= Place special value (“canary”) on stack just beyond buffer

= Check for corruption before exiting function
m GCC Implementation

= -fstack-protector

= -fstack-protector-all

unix>./bufdemo-protected
Type a string:1234
1234

unix>./bufdemo-protected
Type a string:12345
*** stack smashing detected ***

Setting Up Canary

Before call to gets /* Echo Line */
Stack Frame TS g
) {
formain char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;
Return Address }
Saved $ebp _[+— %ebp
Saved $ebx
Canary
31[121]r11t01] pue
Stack Frame -
for echo echo:
movl %gs:20, %eax # Get canary
movl %eax, -8(%ebp) # Put on stack
xorl %eax, %eax # Erase canary

System-Level Protections

m Randomized stack offsets
= At start of program, allocate random amount

of space on stack

= Makes it difficult for hacker to predict

beginning of inserted code

= Modern version: address space layout

randomization “ASLR”

= Nonexecutable data segments

= |n traditional x86, can mark region of memory

as either “read-only” or “writeable”
= Can execute anything readable

= More recent processors added explicit way to
disable “execute” permission, e.g. for stack

unix> gdb bufdemo
(gdb) break echo

(gdb) run
(gdb) print /x $ebp
$1 = Oxffffc638

(gdb) run
(gdb) print /x $ebp
$2 = Oxf£££bb08

(gdb) run
(gdb) print /x $ebp
$3 = Oxffffc6as

Protected Buffer Disassembly echo:
804864d: 85 push %ebp
804864e: 89 e5 mov %esp, $ebp
8048650: 53 push %ebx
8048651: 83 ec 14 sub $0x14, %esp
8048654: 65 al 14 00 00 00 mov %gs:0x14,%eax
804865a: 89 45 f8 mov %eax, OxfE£££f££8 (Yebp)
804865d: 31 c0 xor %eax, %eax
804865f: 8d 5d f4 lea Oxf£££££f4 (Yebp) , $ebx
8048662: 89 1lc 24 mov %ebx, (%$esp)
8048665: e8 77 ff ff ff call 80485el <gets>
804866a: 89 1lc 24 mov %ebx, (%$esp)
804866d: e8 ca fd ff ff call 804843c <puts@plt>
8048672: 8b 45 f£8 mov Oxf££££££8 (%ebp) , $eax
8048675: 65 33 05 14 00 00 00 xor %gs:0x14,%eax
804867c: 74 05 je 8048683 <echo+0x36>
804867e: e8 a9 fd ff ff call 804842c <FAIL>
8048683: 83 c4 14 add $0x14, %esp
8048686: 5b pop %ebx
8048687: 5d Pop %ebp
8048688: c3 ret

Checking Canary

Before call to gets /* Echo Line */
Stack Frame TG I
) {
formain char buf[4]; /* Way too small! */
gets (buf) ;
puts (buf) ;
Return Address }
Saved $ebp _[+— %ebp
Saved $ebx
Canary
31[121]111[101] pue
Stack Frame T~
for echo echo:
movl -8 (%ebp), %eax # Retrieve from stack
xorl %gs:20, %eax # Compare with Canary
je .L24 # Same: skip ahead
call __stack_chk_fail # ERROR
.L24:

Canary Example

Before call to gets

Stack Frame
formain

Return Address
Saved $ebp |«— %ebp
Saved $ebx

03]e3[7d]o0
31 r21]r21fr01f bue

Stack Frame
for echo

Input 12345

Stack Frame
formain

Return Address

Saved $ebp

[+— %ebp

Saved $ebx

03]e3]o0[3s

34]33[32[31|pus

Stack Frame
for echo

(gdb) break echo
(gdb) run
(gdb) stepi 3

(gdb) print /x *((unsigned *) $ebp - 2)

$1 = 0x3e30035

idea?)

(The canary always ends with a
zero byte. Why is this a good

Today

= Memory Layout
m Buffer Overflow
= Vulnerability
= Protection

