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Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful
iInformation or patterns from data. Very broad area — includes:

data analysis, machine learning, pattern recognition, information
retrieval, ...

» Main tools used: linear algebra; graph theory; approximation
theory; optimization; ...

» In this talk: emphasis on dimension reduction techniques and the
interrelations between technigques
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The problem

» Given d < m find a mapping
P:x2 €cR™ — y € RY ,L
»  Mapping may be explicit (e.g.,
y =V'iz)

» Or implicit (nonlinear)

A

-
i

: Given X € R™*" we want to find a low-dim-
Practically: \ _ _
ensional representation Y € R*" of X
» Two classes of methods: (1) projection techniques and (2) non-
linear implicit methods.
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Example 1

Original Data in 3-D

Zeuthen, 06-06-2008



2-D ‘reductions’: |
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Example 2: Digit images (a sample of 20)
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2-D ’reductions’:

PCA - digits: 0 — 4

LLE - digits: 0 — 4
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Projection-based Dimensionality Reduction

Given: adataset X = [z, xs,...,x,], and d the dimension of the
desired reduced space Y.
Want: a linear transformation from X to Y

X X E Ran

. V c Rde

dI v?T Y Id Y:VTX
n N Y = Ran

» m-dimens. objects (x;) ‘flattened’ to d-dimens. space (y;)
Constraint: The y;'s must satisfy certain properties
»  QOptimization problem
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Linear Dimensionality Reduction: PCA

» |n PCA projected data must have maximum variance, i.e., we
need to maximize over all orthogonal m x d matrices V':

> i llyi — %Zg ?JJHS = =1r [VTXXTV]

Where: X = X (I — %11T) == origin-recentered version of X

» Solution V. = { dominant eigenvectors } of the covariance matrix
== Set of left singular vectors of X

» Solution V' also minimizes ‘reconstruction error’ ..

D Mz = Vviaz|? =3 |lei — Vil

> .. and it also maximizes [Korel and Carmel 04] ", . |ly; — y;l|?
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Laplacean Eigenmaps (Belkin-Niyogi-02)

» Not a linear (projection) method but a Nonlinear method

» Starts with k-nearest-neighors graph

» Defines the graph Laplacean L = D —
W. Simplest:

1if j € N;

D = diag(deg(i)); wi; =
0 else

with IV; = neighborhood of i (excl. i); deg (i) = |IN]
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A few properties of graph Laplacean matrices

» Let L = any matrix s.t. L = D — W, with D = diag(d;) and
w;; > 0, d; = Zwij
j#i
Property 1: forany € R"™ :
1
' Lx = 5 Zwiﬂa)i — x;|?
irj
Property 2: (generalization) for any Y € R4x" :

1
Tr[YLY '] = Ezwij”yi — ylI*

2,J
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Property 3: For the particular L =1 — 111"

n

XLX'" = XX'" == n x Covariance matrix
[Proof: 1) L is a projector: L'L = L? = L,and 2) XL = X]
» Consequence-1: PCA equivalent to maximizing >, [ly: — y;lI?

» (Consequence-2: what about replacing trivial L with something
else? [viewpoint in Koren-Carmel’04]
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Property 4: (Graph partitioning) If « is a vector of signs (£1) then
x' Lx = 4 x (‘number of edge cuts’)

edge-cut = pair (¢, 5) with x; # «;
» (Consequence: Can be used for partitioning graphs, or ‘clustering’
[take p = sign(uz), where u, = 2nd smallest eigenvecior..]
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Return to Laplacean eigenmaps approach

Laplacean Eigenmaps "minimizes*
n

Fem(Y) = Z wij||ly: — yj||2 subjectto YDY' =1.

i,j=1
Notes: I

1. Motivation: if ||x; — ;|| is small (orig. data), we want ||y; — y,|| tO

be also small (low-D data)
2. Note Min instead of Max as in PCA [counter-intuitive]
3. Above problem uses original data indirectly through its graph
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» Problem translates to:

min Tr [Y(D-W)Y'] .
Y ¢ Ran
YDYT =1

» Solution (sort eigenvalues increasingly):
(D — W)u; = X\jDu; ; yz:u;ra 1=1,---,d
» Note: an n x n sparse eigenvalue problem [In ‘sample’ space]

» Note: can assume D = I. Amounts to rescaling data. Problem
becomes

(I — W)u; = A, ; yz:u;ra 1=1,---,d
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Why smallest eigenvalues vs largest for PCA?

Intuition:
Graph Laplacean and ‘unit’ Laplacean are very different: one in-

volves a sparse graph (More like a discr. differential operator). The
other involves a dense graph. (More like a discr. integral operator).
They should be treated as the inverses of each other.

» Viewpoint confirmed by what we learn from Kernel approach
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Locally Linear Embedding (Roweis-Saul-00)

» LLE is very similar to Eigenmaps. Main differences:
1) Graph Laplacean matrix is replaced by an ‘affinity’ graph
2) Objective function is changed: want to preserve graph

1. Graph: Each x; is written as a convex
combination of its k nearest neighbors:
T & Xw;;T;, ZjeNi w;; =1
»  Optimal weights computed ('local cal-
culation’) by minimizing

||33z — Ewmw]H for 1=1,.--,n
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2. Mapping:
The y;’s should obey the same "affinity’ as x;'s ~~

Minimize:

S llyi = wijy;|  subjectto: Y1=0, YYT =1I
j

)

Solution:

(I — WT)(I — VV)’UJz = )\zuz, Y; — u,LT .

» (I — WT)(I — W) replaces the graph Laplacean of eigenmaps

Zeuthen, 06-06-2008



Locally Preserving Projections (He-Niyogi-03)

» LPP is a linear dimensionality reduction technique

» Recall the setting: M X

WantV e R™*x4: Yy =V 'IX m
al| vT Y d

» Starts with the same neighborhood graph as Eignenmaps: L =
D — W = graph ‘Laplacean’; with D = diag({Z;w;;}).
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»  Optimization problem is to solve

i anss s — 2112 T
L emin o Sw v -l Y = VX

» Difference with eigenmaps: Y is a projection of X data
» Solution (sort eigenvalues increasingly)

XLXT’UZ' = )\ZXDXT’UZ Yi,: = ’U;FX

» Note: essentially same method in [Koren-Carmel’04] called ‘weighted
PCA'’ [viewed from the angle of improving PCA]

Zeuthen, 06-06-2008



ONPP (Kokiopoulou and YS ’05)

» Orthogonal Neighborhood Preserving Projections
» (Can be viewed as a linear version of LLE
» Uses the same graph as LLE. Objective: preserve the affinity

graph (as in LEE) *but* by means of an orthogonal projection
» Objective function

B(Y) =3, |lys — S;wizy;)|?> Constraint: Y = VIX, VTV = I
» Notice that

V) =Y - YW |Z=--.=TT [V XT-WHIT -W)X'V]
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Resulting problem:

min  Tr [ VI XT-WHIT-W)X'V

V € Rmxd;

viv=r M

Solution: Columns of V' = eigenvectors of M associated with small-
est d eigenvalues
» (Can be computed as d lowest left singular vectors of

X(I—-wT)
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Method Object. (min) Constraint
PCA/MDS Tr[V'X(—I+ee")X V] VvV =1
LLE TrY(I —-W")(I—-W)Y'] YY' =1
Eigenmaps Tr[Y(I —W)YT] YY' =1
LPP Tr[VI'X(I —-—W)X'V] VIXX'V=1I
ONPP TTV'XIT-WHI-W)X'V]| VVv=I
LDA TTV'X(I—-H)X"TV] VIXXTV =1
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» Let M =T — W =a Laplacean matrix (—I +ee' for PCA/MDS);

or the LLE matrix (I — W)(I — W), or geodesic distance matrix
(ISOMAP).
» All techniques lead to one of two types of problems

min  Tr [YMY']
» First type is: Y € Réxn

YY' =1

» Y obtained from solving an eigenvalue problem
» LLE, Eigenmaps (normalized), ..
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» And the second min Tr [V XMX'V]
t . V E Rde

eis:
yP VIGV =1

» G is either the identity matrixor XDX " or XX .
» Low-Dim.data: Y =V'X

Important observation: 2nd is just a projected version of the 1st,
l.e., approximate eigenvectors are sought in Span {X} [Rayleigh-
Ritz procedure]
» Problem is of dim. m (dim. of data) not n (# of samples).
» This difference can be mitigated by resorting to Kernels..
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A brief tour of Kernels

» Kernels emply an implicit nonlinear map of original data into a
higher dimensional feature space H.

® : R™ — H
» Mapping ® only known through its Kernel on data:
< @(x:), d(x;) >= K(wi, ;)

» (Can do PCA, eigenmaps, ..., on this data without using ®
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Kernel PCA (Ham et. al. 2004)

» Classical PCA on the set {®}
minTr[V'®®'V] subjectto V'V =1

» Projecteddatay =V '®
» Problem to solve ®® "u; = A\u;
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» Right singular vector approach. Multiply both sides by ¢':

[(T)T(i)] @Tui = )\ﬁ;uz

K

» Note 1.9"® = (I —ee')K(I — ee') Denoted by K
2. ®'u; =y (recall Y = V'®)

» Result: columns of Y are largest eigenvectors of K
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» Compare with Eigenmaps: the columns of Y ' (n-vectors) are
smallest eigenvectorsof L =1 — W

» Interpretation [see Ham, Mika, and Scolkopf, 2004]: Eigenmaps
can be interpreted as Kernel PCA with Kernel K = L.
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Kernel LPP & ONPP

» Proceed similarly to PCA.
» Assumption & notation: ® = ®(X), K = &' ® is invertible
LPP: Problem in feature space:

minTr [VT@®(X)L®(X)TV] Subj.to VDSV =1

» Leads to the eigenvalue problem:

SPLP "u; = \;PDP " u,

» Left multiply by &', then by K1, + recall that y,) = & "w;:

Ly = \iDy;

» Note: K disappeared from picture; What's the catch??.
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Kernel-ONPP
miny ¢ grxa yry—; 1 [VIS(X)MP(X)TV]

» Leads to the eigenvalue problem:

<I>M<I>Tuz- = )\Zuz

» Multiply by @' and note as before K = ®'®, y.! = & "u;:

KMyZT = )\iyiT or My;r = K_ly;'_

» Solution is set of eigenvectors of Matrix M — but constraint: K1
- orthogonality
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Conclusion

» So how is this related to intitial title of “efficient algorithms in data
mining”?
» Answer: All these eigenvalue problems are not cheap to solve..

» .. and cost issue does not seem to bother practitioners too much
for now..

» Ingredients that will become mandatory:

1 Avoid the SVD

2 Fast algorithms that do not sacrifice quality.
3 In particullar: Multilevel approaches

4 Muliilinear algebra [tensors]
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Multilevel techniques in brief

» Divide and conquer paradigms as well as multilevel methods in
the sense of ‘domain decomposition’

» Main principle: very costly to do an SVD [or Lanczos] on the
whole set. Why not find a smaller set on which to do the analysis —
without too much loss?

» Tools used: graph coarsening, divide and conquer —

» For information retrieval we use hypergraphs
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Multilevel Dimension Reduction

Main ldea: | coarsen for a

few levels. Use the result-

[ v J}e
A

ing data set X to find a
projector P from R™ to R<.
P can be used to project

Project

—— td

<>

Ny

original data or new data

» @Gain: Dimension reduction is done with a much smaller set.
Hope: not much loss compared to using whole data
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Application to Information Retrieval

» Recall common approach:

1. Scale data [e.g. TF-IDF scaling:

2. Perform a (partial) SVD on resulting matrix X =~ UgX,V}

3. Process query by same scaling (e.g. TF-IDF)

4. Compute similarities in d-dimensional space: s; = (g, ;) /||q||||&:]|
where [#1, £2,..., %8, = VI € R¥>*";  §=37'UTq € R?

» Multilevel approach: replace SVD (or any other dim. reduction)
by dimension reduction on coarse set. Only difference: TF-IDF done
on the coarse set not original set.
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Three public data sets used for experiments: Medline, Cran and
NPL (cs.cornell.edu)

» (Coarsening to a max. of 4 levels.

Data set Medline Cran NPL
# documents 1033 1398 11429

# terms 7014 3763 7491
sparsity (%) 0.74% 1.41% 0.27%
# queries 30 225 93

avg. #rel./query  23.2 8.2 224
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Results with NPL
Statistics I
coarsen. #  optimal optimal avg.

Level

time doc. #dim. precision
#1 N/A 11429 736 23.5%
#2 3.68 5717 592 23.8%
#3 219 2861 516 23.9%
HL 1.50 1434 538 23.3%
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CPU times Ifor preprocessing (Dim. reduction part)
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