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Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful

information or patterns from data. Very broad area – includes:

data analysis, machine learning, pattern recognition, information

retrieval, ...

ä Main tools used: linear algebra; graph theory; approximation

theory; optimization; ...

ä In this talk: emphasis on dimension reduction techniques and the

interrelations between techniques
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The problem

ä Given d � m find a mapping

Φ : x ∈ Rm −→ y ∈ Rd

ä Mapping may be explicit (e.g.,

y = V Tx)

ä Or implicit (nonlinear)

Practically:
Given X ∈ Rm×n, we want to find a low-dim-

ensional representation Y ∈ Rd×n of X

ä Two classes of methods: (1) projection techniques and (2) non-

linear implicit methods.
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Example 1: The ‘Swill-Roll’ (2000 points in 3-D)
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2-D ‘reductions’:
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Example 2: Digit images (a sample of 20)
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2-D ’reductions’:
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Projection-based Dimensionality Reduction

Given: a data set X = [x1, x2, . . . , xn], and d the dimension of the

desired reduced space Y .

Want: a linear transformation from X to Y

v T
d

m

m

d

n

X

Y

n

X ∈ Rm×n

V ∈ Rm×d

Y = V >X

→ Y ∈ Rd×n

ä m-dimens. objects (xi) ‘flattened’ to d-dimens. space (yi)

Constraint: The yi’s must satisfy certain properties

ä Optimization problem
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Linear Dimensionality Reduction: PCA

ä In PCA projected data must have maximum variance, i.e., we

need to maximize over all orthogonal m × d matrices V :∑
i ‖yi − 1

n

∑
j yj‖2

2 = · · · = Tr
[
V >X̄X̄>V

]
Where: X̄ = X(I − 1

n
11T ) == origin-recentered version of X

ä Solution V = { dominant eigenvectors } of the covariance matrix

== Set of left singular vectors of X̄

ä Solution V also minimizes ‘reconstruction error’ ..

∑
i

‖xi − V V Txi‖2 =
∑

i

‖xi − V yi‖2

ä .. and it also maximizes [Korel and Carmel 04]
∑

i,j ‖yi − yj‖2
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Laplacean Eigenmaps (Belkin-Niyogi-02)

ä Not a linear (projection) method but a Nonlinear method

ä Starts with k-nearest-neighors graph

ä Defines the graph Laplacean L = D −

W . Simplest:

D = diag(deg(i)); wij =

 1 if j ∈ Ni

0 else

x

x
j

i

with Ni = neighborhood of i (excl. i); deg(i) = |Ni|
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A few properties of graph Laplacean matrices

ä Let L = any matrix s.t. L = D − W , with D = diag(di) and

wij ≥ 0, di =
∑
j 6=i

wij

Property 1: for any x ∈ Rn :

x>Lx =
1

2

∑
i,j

wij|xi − xj|2

Property 2: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
1

2

∑
i,j

wij‖yi − yj‖2

Zeuthen, 06-06-2008 p. 12



Property 3: For the particular L = I − 1
n
11>

XLX> = X̄X̄> == n × Covariance matrix

[Proof: 1) L is a projector: L>L = L2 = L, and 2) XL = X̄]

ä Consequence-1: PCA equivalent to maximizing
∑

ij ‖yi − yj‖2

ä Consequence-2: what about replacing trivial L with something

else? [viewpoint in Koren-Carmel’04]
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Property 4: (Graph partitioning) If x is a vector of signs (±1) then

x>Lx = 4 × (’number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used for partitioning graphs, or ‘clustering’

[take p = sign(u2), where u2 = 2nd smallest eigenvector..]
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Return to Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

FEM(Y ) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I .

Notes:

1. Motivation: if ‖xi − xj‖ is small (orig. data), we want ‖yi − yj‖ to

be also small (low-D data)

2. Note Min instead of Max as in PCA [counter-intuitive]

3. Above problem uses original data indirectly through its graph
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ä Problem translates to:

min
Y ∈ Rd×n

Y D Y > = I

Tr
[
Y (D − W )Y >]

.

ä Solution (sort eigenvalues increasingly):

(D − W )ui = λiDui ; yi = u>
i ; i = 1, · · · , d

ä Note: an n × n sparse eigenvalue problem [In ‘sample’ space]

ä Note: can assume D = I. Amounts to rescaling data. Problem

becomes

(I − W )ui = λiui ; yi = u>
i ; i = 1, · · · , d
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Why smallest eigenvalues vs largest for PCA?

Intuition:

Graph Laplacean and ‘unit’ Laplacean are very different: one in-

volves a sparse graph (More like a discr. differential operator). The

other involves a dense graph. (More like a discr. integral operator).

They should be treated as the inverses of each other.

ä Viewpoint confirmed by what we learn from Kernel approach
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Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed: want to preserve graph

1. Graph: Each xi is written as a convex

combination of its k nearest neighbors:

xi ≈ Σwijxj,
∑

j∈Ni
wij = 1

ä Optimal weights computed (’local cal-

culation’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i
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2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s 

Minimize:∑
i

∥∥∥∥∥∥yi −
∑

j

wijyj

∥∥∥∥∥∥
2

subject to: Y 1 = 0, Y Y > = I

Solution:

(I − W >)(I − W )ui = λiui; yi = u>
i .

ä (I − W >)(I − W ) replaces the graph Laplacean of eigenmaps

Zeuthen, 06-06-2008 p. 19



Locally Preserving Projections (He-Niyogi-03)

ä LPP is a linear dimensionality reduction technique

ä Recall the setting:

Want V ∈ Rm×d; Y = V >X
v T

d

m

m

d

n

X

Y

n

ä Starts with the same neighborhood graph as Eigenmaps: L ≡

D − W = graph ‘Laplacean’; with D ≡ diag({Σiwij}).
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ä Optimization problem is to solve

min
Y ∈Rd×n, Y DY >=I

Σi,jwij ‖yi − yj‖2 , Y = V >X.

ä Difference with eigenmaps: Y is a projection of X data

ä Solution (sort eigenvalues increasingly)

XLX>vi = λiXDX>vi yi,: = v>
i X

ä Note: essentially same method in [Koren-Carmel’04] called ‘weighted

PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä Can be viewed as a linear version of LLE

ä Uses the same graph as LLE. Objective: preserve the affinity

graph (as in LEE) *but* by means of an orthogonal projection

ä Objective function

Φ(Y ) = Σi ‖yi − Σjwijyj‖2 Constraint: Y = V >X, V >V = I

ä Notice that

Φ(Y ) = ‖Y − Y W >‖2
F = · · · = Tr

[
V >X(I − W >)(I − W )X>V

]
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Resulting problem:

min
V ∈ Rm×d;

V >V =I

Tr

 V > X(I − W >)(I − W )X>︸ ︷︷ ︸
M

V



Solution: Columns of V = eigenvectors of M associated with small-

est d eigenvalues

ä Can be computed as d lowest left singular vectors of

X(I − W >)
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A unified view

Method Object. (min) Constraint

PCA/MDS Tr [V >X(−I + ee>)X>V ] V >V = I

LLE Tr [Y (I − W >)(I − W )Y >] Y Y > = I

Eigenmaps Tr [Y (I − W )Y >] Y Y > = I

LPP Tr [V >X(I − W )X>V ] V >XX>V = I

ONPP Tr [V >X(I − W >)(I − W )X>V ] V >V = I

LDA Tr [V >X(I − H)X>V ] V >XX>V = I
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ä Let M = I − W = a Laplacean matrix (−I + ee> for PCA/MDS);

or the LLE matrix (I − W )(I − W >), or geodesic distance matrix

(ISOMAP).

ä All techniques lead to one of two types of problems

ä First type is:
min

Y ∈ Rd×n

Y Y > = I

Tr
[
Y MY >]

ä Y obtained from solving an eigenvalue problem

ä LLE, Eigenmaps (normalized), ..
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ä And the second

type is:

min
V ∈ Rm×d

V > G V = I

Tr
[
V >XMX>V

]
.

ä G is either the identity matrix or XDX> or XX>.

ä Low-Dim. data : Y = V >X

Important observation: 2nd is just a projected version of the 1st,

i.e., approximate eigenvectors are sought in Span {X} [Rayleigh-

Ritz procedure]

ä Problem is of dim. m (dim. of data) not n (# of samples).

ä This difference can be mitigated by resorting to Kernels..
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TIME FOR A MATLAB DEMO



A brief tour of Kernels

ä Kernels emply an implicit nonlinear map of original data into a

higher dimensional feature space H.

Φ : Rm −→ H

ä Mapping Φ only known through its Kernel on data:

< φ(xi), φ(xj) >≡ K(xi, xj)

ä Can do PCA, eigenmaps, ..., on this data without using Φ
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Kernel PCA (Ham et. al. 2004)

ä Classical PCA on the set {Φ}

min Tr [V >Φ̄Φ̄>V ] subject to V >V = I

ä Projected data Y = V >Φ̄

ä Problem to solve Φ̄Φ̄>ui = λui
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ä Right singular vector approach. Multiply both sides by φ>:

[Φ̄>Φ̄]︸ ︷︷ ︸
K̄

Φ̄>ui = λiΦ̄
>ui

ä Note 1. Φ̄>Φ̄ = (I − ee>)K(I − ee>) Denoted by K̄

2. Φ̄>ui = y>
i (recall Y = V >Φ̄)

ä Result: columns of Y > are largest eigenvectors of K̄

K̄y>
i = λiy

>
i or yiK̄ = λiyi
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ä Compare with Eigenmaps: the columns of Y > (n-vectors) are

smallest eigenvectors of L = I − W

ä Interpretation [see Ham, Mika, and Scölkopf, 2004]: Eigenmaps

can be interpreted as Kernel PCA with Kernel K = L†.
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Kernel LPP & ONPP

ä Proceed similarly to PCA.

ä Assumption & notation: Φ ≡ Φ(X), K ≡ Φ>Φ is invertible

LPP: Problem in feature space:

min Tr
[
V >Φ(X)LΦ(X)>V

]
Subj. to V >ΦDΦ>V = I

ä Leads to the eigenvalue problem:

ΦLΦ>ui = λiΦDΦ>ui

ä Left multiply by Φ>, then by K−1, + recall that y>
i = Φ>ui:

Ly>
i = λiDy>

i

ä Note: K disappeared from picture; What’s the catch??.
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Kernel-ONPP

minV ∈ RL×d V >V =I Tr
[
V >Φ(X)MΦ(X)>V

]
ä Leads to the eigenvalue problem:

ΦMΦ>ui = λiui

ä Multiply by Φ> and note as before K = Φ>Φ, y>
i = Φ>ui:

KMy>
i = λiy

>
i or My>

i = K−1y>
i

ä Solution is set of eigenvectors of Matrix M – but constraint: K−1

- orthogonality
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Conclusion

ä So how is this related to intitial title of “efficient algorithms in data

mining”?

ä Answer: All these eigenvalue problems are not cheap to solve..

ä .. and cost issue does not seem to bother practitioners too much

for now..

ä Ingredients that will become mandatory:

1 Avoid the SVD

2 Fast algorithms that do not sacrifice quality.

3 In particullar: Multilevel approaches

4 Multilinear algebra [tensors]
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Multilevel techniques in brief

ä Divide and conquer paradigms as well as multilevel methods in

the sense of ‘domain decomposition’

ä Main principle: very costly to do an SVD [or Lanczos] on the

whole set. Why not find a smaller set on which to do the analysis –

without too much loss?

ä Tools used: graph coarsening, divide and conquer –

ä For information retrieval we use hypergraphs
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Multilevel Dimension Reduction

Main Idea: coarsen for a

few levels. Use the result-

ing data set X̂ to find a

projector P from Rm to Rd.

P can be used to project

original data or new data
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ä Gain: Dimension reduction is done with a much smaller set.

Hope: not much loss compared to using whole data
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Application to Information Retrieval

ä Recall common approach:

1. Scale data [e.g. TF-IDF scaling:

2. Perform a (partial) SVD on resulting matrix X ≈ UdΣdV
T

d

3. Process query by same scaling (e.g. TF-IDF)

4. Compute similarities in d-dimensional space: si = 〈q̂, x̂i〉/‖q̂‖‖x̂i‖

where [x̂1, x̂2, . . . , x̂n] = V T
d ∈ Rd×n ; q̂ = Σ−1

d UT
d q̄ ∈ Rd

ä Multilevel approach: replace SVD (or any other dim. reduction)

by dimension reduction on coarse set. Only difference: TF-IDF done

on the coarse set not original set.
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Tests

Three public data sets used for experiments: Medline, Cran and

NPL (cs.cornell.edu)

ä Coarsening to a max. of 4 levels.

Data set Medline Cran NPL

# documents 1033 1398 11429

# terms 7014 3763 7491

sparsity (%) 0.74% 1.41% 0.27%

# queries 30 225 93

avg. # rel./query 23.2 8.2 22.4
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Results with NPL

Statistics

Level
coarsen. # optimal optimal avg.

time doc. # dim. precision

#1 N/A 11429 736 23.5%

#2 3.68 5717 592 23.8%

#3 2.19 2861 516 23.9%

#4 1.50 1434 533 23.3%
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Precision-Recall curves
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CPU times for preprocessing (Dim. reduction part)
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