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Introduction

» Focus of this talk: Spectral densities

» Spectral density == function that provides a global repre-
sentation of the spectrum of a Hermitian matrix

» Known in solid state physics as ‘Density of States’ (DOS)
» Very useful in physics

»  Almost unknown (as a tool) in numerical linear algebra

Outline: |

1. general introduction, 2. trace estimation, 3. the DOS,
4. how to computeit, 5. how to use it (applications)
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.
» Arises in cross validation methods [Stats]

» Motivation for the work [Golub & Meurant, “Matrices, Mo-
ments, and Quadrature”, 1993, Book with same title in 2009]

Problem 2: Compute Tr[f (A)], f a certain function

» Arises in many applications in Physics. Example:

» Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[H. Roder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B.
55, 15382 (1997)]. Will be covered in detail later
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

» Dynamic Mean Field Theory [DMFT, motivation for our work
on this topic]. Related approach: Non Equilibrium Green’s Func-
tion (NEGF) approach used to model nanoscale transistors.

» Uncertainty quantification: diagonal of the inverse of a co-
variance maitrix needed [Bekas, Curioni, Fedulova '09]

Problem 4: Compute diag[ f (A)] ; f = a certain function.

» Arises in density matrix approaches in quantum modeling

1 Here, f = Fermi-Dirac operator
= Note: whenT'" — O then f —
1+ ex ~
+exp(r a step function.

f(e) =

» Linear-Scaling methods

hpcsel7



Problem 5: Estimate the numerical rank.

»  Amounts to counting the number of singular values above a
certain threshold 7 == Trace (¢, (AT A))..

¢-(t) is a certain step function.

Problem 6: Estimate the log-determinant (common in statis-
tics)
log det(A) = Trace(log(A)) = > ., log(A;).

.... many others
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Important tool: Stochastic Estimator

» To estimate diagonal of B = f(A) (e.g., B = A1), let:
e d(B) = diag(B) [matlab notation]

Notation: | ° @ and @: Elementwise multiplication and divi-
sion of vectors

e {v,}: Sequence of s random vectors

Result: | d(B) =~ i v; © Bvj| © i (JHOR
J=1 -

j=1

C. Bekas , E. Kokiopoulou & YS ('05); C. Bekas, A. Curioni, .
Fedulova '09:; ...
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Trace of a matrix

» For the trace - take vectors of unit norm and

1 S

~/ T .

Trace(B) ~ . E 1fvj Bo;
J:

» Hutchinson’s estimator : take random vectors with compo-
nents of the form +1/4/n [Rademacher vectors]

» Extensively studied in literature. See e.g.: Hutchinson '89;
H. Avron and S. Toledo '11; G.H. Golub & U. Von Matt '97;
Roosta-Khorasani & U. Ascher ’15; ...
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Typical convergence curve for stochastic estimator

» Estimating the diagonal of inverse of two sample matrices
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Alternative: standard probing

» Several names for same method: “probing”; “CPR”, “Sparse
Jacobian estimators’,..

Basis of the method: Color columns of matrix so that no two
columns of the same color overlap.

Entries of same color can
be computed with 1 matvec

» Corresponds to color-
ing graph of AT A.

» For problem of diag(A)
need only color graph of A

1

3

S
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In summary:

» Probing much more powerful when f(A) is known to be
nearly sparse (e.g. banded)..

» Approximate pattern (graph) can be obtained inexpensively

» Generally just a handful of probing vectors needed — Can
be obtained by coloring graph

» However:

» Not as general: need f(A) to be ‘ € — sparse’
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References: I

e J. M. Tang and YS, A probing method for computing the
diagonal of a matrix inverse, Numer. Lin. Alg. Appl., 19 (2012),
pp. 485-501.

See also (improvements)

e Andreas Stathopoulos, Jesse Laeuchli, and Kostas Orginos
Hierarchical Probing for Estimating the Trace of the Matrix In-
verse on Toroidal Lattices SISC, 2012. [somewhat specific to
Lattice QCD ]

e E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Comput-
ing 2012] combine probing with stochastic estimation. Good
improvements reported.
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Density of States

» Formally, the Density Of States (DOS) of a matrix A is

where: e ¢ is the Dirac d-function or Dirac distribution
o N\ < X\ < ... < M\, are the eigenvalues of A

» DOS is also referred to as the spectral density

» Note: number of eigenvalues in an interval |a, b] is

b b
{ab] :/a Zé(t — ;) dt E/a no(t)dt .
J
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Issue: How to deal with distributions?

» Highly ‘discontinuous’, not easy to handle numerically

» Solution for practical and theoretical purposes: replace ¢ by
a regularized (‘blurred’) version ¢, :

Ba() = = 3" ho(t = Ay,

Where, for example: ) [\

— 1 —5 il
o) = (2mo2)12" 15 j \
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» Smoothed ¢(t) can be viewed as a distribution function ==
probability of finding eigenvalues of A in a given infinitesimal
interval near t.

» |n Solid-State physics, \;’'s represent single-particle energy
levels.

» So the DOS represents # of levels per unit energy.

» Many uses in physics
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» How to select smoothing parameter o? Example for S,

k=1.75,0 =0.35 k=1.30,0 = 0.52 k=1.150=0.71
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.05 ‘ ‘ ‘
0.05F
0.05r
0.0l 0,04} 0.04
003 _ 003 :o.os»
s s s
0.02} 0.02¢ 0.02¢
0.01r 0.01F 0.01F
0 0 0
k=1.08,0 =0.96
0.045}
: 0.041
» Higher o — smoother curve .
» But loss of detall .. o003
h %0.025»

» Compromise: o = , ,
PIOMIBE: 7= 2y /1ogl)
» h = resolution, kK = parameter > 1 oot

0.005¢

6 f() 26 3‘0 46
t
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Computing the DOS: The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials

» Use trace estimator [discovered independently] to get traces
needed in calculations

» Assume change of variable done so eigenvalues liein [—1, 1].

» Include the weight function in the expansion so expand:
- 1 &
P(t) = V1 —t2¢(t) = VI — 12 x — > (Lt — Aj).
n -
71=1
Then, (full) expansion is: ¢(t) = >.7° e Tk(t).
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Y Y VY VY'Y

Expansion coefficients u are formally defined by:
2 -—-(Sk()d/f 1 N
= T(t)p(t)dt
Pk \/th k() o(t)
2 — Oxo /
= T.(t)\/1 — t20(t)dt
S THOVT = P (1)
2 — 5
— = Z Tk()‘J)
niv j=1

Here 2 — 0,0 == 1 when k = 0 and == 2 otherwise.
Note: > Tr(\;) = Trace|Ti(A)]

Estimate this, e.g., via stochastic estimator
Generate random vectors vV, v, ... | p(Tve)

Assume normal distribution with zero mean
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» Each vector is normalized so that |[[v® ]| = 1,1 = 1,. .., Nyec.

» Estimate the trace of Ty (A) with stochastisc estimator:

nVEC

S (o) Ti(4)0

vecCc l:]_
» Wil lead to the desired estimate:

B = 2~ Ono g: (v(l))TTk(A)v(l).

NTNyec I—1

Trace(Tx(A)) =~

» To compute scalars of the form vIT,(A)v, exploit 3-term
recurrence of the Chebyshev polynomial:

Tk_|_1(A)’U — ZATk(A)U — Tk_l(A)’U
so if we let vy, = Ti(A)v, we have
Vi1 = 2Av; — V1
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» Jackson smoothing can be used —

18
ol - - - Exact |
o | w /o Jackson
14+ ——w/ Jackson |
12}

(1)
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An example: The Benzene matrix

>> TestKpmDos

Matrix Benzene n =8219 nnz = 242669
Degree = 40 # sample vectors = 10
Elapsed time 1s 0.235189 seconds.
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Use of the Lanczos Algorithm

» Background: The Lanczos algorithm generates an orthonor-
mal basis V,,, = [vy, v, -+ , ] for the Krylov subspace:

span{vy, Avy,--- , A" v}

(Ot1 B2 \
B2 oz O3
» ... such that: B3 ag By
VHAV,, = T,, - with T = o
\ Bm Cm )
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» Lanczos process builds orthogonal polynomials wrt to dot
product:

[ p®a)dt = (A1, a(4)0r)

In theory v;’s defined by 3-term recurrence are orthogonal.
LetO;, : = 1.-- ,m be the eigenvalues of T}, [Ritz values]
y;’S associated eigenvectors; Ritz vectors: {V,,yi}i=1.m

Ritz values approximate eigenvalues

YY VY VY

Could compute 0;’s then get approximate DOS from these

» Problem: 8; not good enough approximations — especially
iInside the spectrum.
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» Better idea: exploit relation of Lanczos with (discrete) or-
thogonal polynomials and related Gaussian quadrature:

/ p(t)dt = Zaip(é’i) a; = [eTy;]

» See, e.g., Golub & Meurant '93, and also Gautschi’81, Golub
and Welsch '69.

» Formula exact when p is a polynomial of degree < 2m + 1
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» Consider now | p(t)dt =< p,1 >= (Stieljes) integral =
(P(A)v,v) =3 Bip(Ni) =< o, p >

» Then (¢, p) = > a;p(0;) = > a; (dg,p) —
qbv ~ Z a’i59i

» To mimick the effect of 3; = 1, V1, use several vectors v
and average the result of the above formula over them..
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Other methods

» The Lanczos spectroscopic approach : A sort of signal
processing approach to detect peaks using Fourier analysis

» The Delta-Chebyshev approach: Smooth ¢ with Gaussians,
then expand Gaussians using Legendre polynomials

» Haydock’s method: interesting ‘classic’ approach in physics
- uses Lanczos to unravel ‘near-poles’ of (A — eil)~!

For details see:

e Approximating spectral densities of large matrices, Lin Lin,
YS, and Chao Yang - SIAM Review '16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]
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» (Goal: to compare errors for similar number of matrix-vector
products

» Example: Kohn-Sham Hamiltonian associated with a ben-
zene molecule generated from PARSEC. n = 8, 219

» In all cases, we use 10 sampling vectors
» General observation: DGL, Lanczos, and KPM are best,
» Spectroscopic method does OK

» Haydock’s method [another method based on the Lanczos
algorithm] not as good
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Method L' error | L?error | L™ error
KPM w/ Jackson, deg=80 |2.592e-02|5.032e-032.785e-03
KPM w/o Jackson, deg=80|2.634e-02|4.454e-03 | 2.002e-03
KPM Legendre, deg=80 |2.504e-02|3.788e-03|1.174e-03
Spectroscopic, deg=40 5.589e-02 8.652e-032.871e-03
Spectroscopic, deg=100 |4.624e-02 7.582e-03|2.447e-03
DGL, deg=80 1.998e-02 | 3.379e-03 | 1.149e-03
Lanczos, deg=80 2.755e-02 4.178e-03 | 1.599e-03
Haydock, deg=40 6.951e-01 1.302e-01 |6.176e-02
Haydock, deg=100 2.581e-01/4.653e-02|1.420e-02

L', L? and L error compared with the normalized “surro-
gate” DOS for benzene matrix

» Many more experiments in survey paper [L. Lin, YS, C.

Yang, SIAM Review, 2015].
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What about matrix pencils?

» DOS for generalized eigen- Axr — \Bx
value problems

» Assume: A is symmetric and B is SPD.

» In principle: can just apply methods to B~1Ax = Az, using
B - inner products.

» Requires factoring B. Too expensive [Think 3D Pbs]
* Observe: B is usually very *strongly* diagonally dominant.

» Especially true after Left+Right Diag. scaling :

~

B=S"'BS™! S =diag(B)Y?
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» General observation for FEM mass matrices. See Theorem
3.2 in L. Kamenski, W. Huang, and H. Xu, Math. Comp.’14.

Theorem Condition number of scaled Galerkin mass matrix
with a simplicial mesh has a mesh-independent bound:

k(ST'BS™) <d+ 2

Example: | Matrix pair Kuu, Muu from Suite Sparse collection.

» Matrices A and B have dimension n = 7,102. nnz(A) =
340,200 nnz(B) = 170, 134.

» After scaling by diagonals to have diag. entries equal to
one, all eigenvalues of B are in interval

(0.6254, 1.5899)]
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Approximation theory to the rescue.

* Idea: Compute the DOS for the standard problem
B 12AB 12y = \u

» Use a very low degree polynomial to approximate B~1/2.
» We use Chebyshev expansions.

» Degree k determined automatically by enforcing

[t7/2 — pi(t)l|oo < tol

» Theoretical results establish convergence that is exponential
with respect to degree.
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Example: | Results for Kuu-Muu example

» Using polynomials of degree 3 (!) to approximate B~1/2
» Krylov subspace of dim. 30 (== deg. of polynomial in KPM)

» 10 Sample vectors used

. Kuu-Muu test —— m=30 Pol. Deg for B=3,n_ =10 . Kuu-Muu pair -—— m=30 Pol. Deg for B=3,n =10 . Kuu-Muu pair -—— m=30 Pol. Deg for B=3,n =30
x10° vec X107 vec x10° vec

T T T T 1.8 T T T T T T T 1.8 T T T T T T T
—— DOS from Lanczos algorithm A ——DOS from KPM - —— DOS from KPM-Legendre,
- - - From histogram H o 1ef / \ - - - From histogram{{ 16} a - - - From histogram H

Lanczos KPM-Chebyshev KPM-Legendre
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Application 1: Eigenvalue counts

The problem: Given A (Hermitian) with eigenvalues \; <

A2+ < Ay, find an estimate of the number p, ) Of eigenval-
ues of A ininterval [a, b].

Standard method: Sylvester inertia theorem. Requires two
LDLY factorizations — expensive!

First alternative: integrate the Spectral Density in [a, b].
b _ m b Tk(t)

Wiap = N (/ qb(t)dt) =n E [k ( dt) = ...
@ k=0 a V1—1t

Second method: Estimate trace p_ Z T
of the related spectral projector P e o
(— u;’s = eigenvectors <+ \;’s) .
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» We know: p,p = Ir(P) . P is not available ... but can
be approximated. Note:

1 ift € [a b]
0 otherwise

P = h(A) where h(t) = {

) ApprOX|mate h(t) by polynom . _‘Mid—eassp(‘)lynorr‘].filter‘[—l.3‘.61];‘Degrefa=80‘
1 (t) using Chebyshev expansions | —sasor-cre. |
» Then pep =~ Tr((A)) approxi- « ﬂ

mated by a trace estimator:

Hia,b] Z U w(A)’Uk Au/

P - .

v k=1 Y
-0.2 1 1 L 1 L 1

» |t turns out that the 2 methods are identical.
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Application 2: “Spectrum Slicing”

» Situation: very large number of eigenvalues to be computed

» (Goal: compute spectrum by slices by applying filtering

Pol. of degree 32 approx§(.5) in [-1 1]

» Apply Lanczos or Sub-
space iteration to problem:

¢(A)u = pu o

¢(t) = a polynomial or . .
rational function that en- e i —
hances wanted eigenvalues
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Rationale. Eigenvectors on both ends of wanted spectrum

need not be orthogonalized against each other :
\

i i

» |dea: Get the spectrum by ‘slices’ or ‘'windows’ [e.g., a few
hundreds or thousands of pairs at a time]

» (Can use polynomial or rational filters
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Compute slices separately

A

AL

» Decelvingly simple looking idea.

» |ssues:

e Deal with interfaces : duplicate/missing eigenvalues

e Window size [need estimate of eigenvalues]

e How to compute each slice? [polynomial / rational

filters?, ..]
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A digression: the EVSL project

» Newly released EVSL uses polynomial and rational filters

» Each can be appealing in different situations.

Spectrum slicing: cut the overall interval containing the spec-
trum into small sub-intervals and compute eigenpairs in each
sub-interval independently.

For each subinterval: select a filter
polynomial of a certain degree so its
high part captures the wanted eigen- =~
values. In illustration, the polynomials ~ "
are of degree 20 (left), 30 (middle),
and 32 (right).
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9/29/2016

ITS

Yousef Saad -- SOFTWARE

SOFTWARE

NV
EVSL Eﬁw\é a library of (sequential) eigensolvers based on spectrum slicing. Version 1.0
released on [09/11/2016]
EVSL provides routines for computing eigenvalues located in a given interval, and their
associated eigenvectors, of real symmetric matrices. It also provides tools for spectrum
slicing, i.e., the technique of subdividing a given interval into p smaller subintervals and
computing the eigenvalues in each subinterval independently. EVSL implements a
polynomial filtered Lanczos algorithm (thick restart, no restart) a rational filtered Lanczos
algorithm (thick restart, no restart), and a polynomial filtered subspace iteration.

ITSOL a library of (sequential) iterative solvers. Version 2 released. [11/16/2010]

ITSOL can be viewed as an extension of the ITSOL module in the SPARSKIT package. It
is written in C and aims at providing additional preconditioners for solving general sparse
linear systems of equations. Preconditioners so far in this package include (1) ILUK (ILU
preconditioner with level of fill) (2) ILUT (ILU preconditioner with threshold) (3) ILUC
(Crout version of ILUT) (4) VBILUK (variable block preconditioner with level of fill - with
automatic block detection) (5) VBILUT (variable block preconditioner with threshold -
with automatic block detection) (6) ARMS (Algebraic Recursive Multilevel Solvers --
includes actually several methods - In particular the standard ARMS and the ddPQ version
which uses nonsymmetric permutations).

ZITSOL a complex version of some of the methods in ITSOL is also available.

http://www-users.cs.umn.edu/~saad/software/
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Levels of parallelism |

Slice 1

JU

Macro-task 1

Domain 1

Slice 2

JL

Domain 2

Slice 3

JU

Domain 3

Domain 4

The two main levels of parallelism in EVSL
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How do I slice a spectrum?

Analogue question:

How would | slice an onion if |
want each slice to have about
the same mass?

Answer: Use the DOS.
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Slice spectrum into 8 with the DOS

0.025

0.02 -

0.015

0.01F

0.005 -

—-0.005

1 b
_ / b (t)dt
Nglices Ja
hpcsel7
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Application 3: Estimating the rank

e Joint work with S. Ubaru

» Very important problem in signal processing applications,
machine learning, etc.

» QOften: a certain rank is selected ad-hoc. Dimension reduc-
tion is application with this “guessed” rank.

» (Can be viewed as a particular case of the eigenvalue count
problem - but need a cutoff value..
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Approximate rank, Numerical rank

» Notion defined in various ways. A common one:

re = min{rank(B) : B € R™*",||A — B||2 < €},

r. = Number of sing. values > €

» Two distinct problems:
1. Get a good € 2. Estimate number of sing. values > €
» We will need a cut-off value (‘threshold’) €.

» (Could use ‘noise level’ for €, but not always available
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Threshold selection

» How to select a good threshold?

» Answer: Obtain it from the DOS function

Exact DOS by KPM, deg = 30 Exact DOS by KPM, deg = 30 Exact DOS by KPM, deg = 30
' ' ' ' | 18 ‘ ‘ ‘ ‘ ‘ ‘ ‘ he) | N ' ' ' ' ' ' ;(PM Chleb shevl |
1.6 1 :
| 14 | 3
2 1 25
‘3 g i 1 g 2
< =2 <
i | 15
1 061 1
114
1 0.4 1
0.2M
1 1?5 é 0‘.5 1‘ 1.‘5 é 215 é 3.5 A‘t 111111111
A A A

Exact DOS plots for three different types of matrices.
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» To find: point immediatly following the initial sharp drop
observed.

» Simple idea: use derivative of DOS function ¢

» For an n X n matrix with eigenvalues A, < A1 < - -
)\1:

IA

e =min{t: A\, <t < A, ¢'(t) = 0}.

» In practice replace by

e =min{t: \, <t < Ay, |¢/'(t)| > tol}
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DOS with KPM, deg = 50 Lanczos Approximation (matrix size=1961)

3 S 1400 ,
9
25 £
C o o
2 ‘0 o °% ° °
o 1350
~—~~ 15 2
= g
s 5
o ! >
@ 1300f — Cumuldtive Avg |°
0.5H E=3
- o (re)g
i £ ---Exact °
= . .
oS s e e e e W 120 10 20 30
A Number of vectors (1 —> 30)
(A) (B)

(A) The DOS found by KPM.
(B) Approximate rank estimation by The Lanczos method for
the example netz4504.
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Tests with Matern covariance matrices for grids

» Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix | # \;’s Te

Size n > € KPM Lanczos
1D regular Grid (2048 X 1) 2048 | 16 16.75 15.80
1D no structure Grid (2048 x 1) 2048 | 20 20.10| 20.46
2D reqgular Grid (64 X 64) 4096 | 72 72.71 72.90
2D no structure Grid (64 x 64) | 4096 70 69.20 71.23
2D deformed Grid (64 X 64) 4096 | 69 68.11 69.45

» For all test M (deg) = 50, n,=30
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Application 4: The LogDeterminant

Evaluate the Log-determinant of A:

log det(A) = Trace(log(A)) = > ., log(A;).

A is SPD.

» Estimating the log-determinant of a matrix equivalent to
estimating the trace of the matrix function f(A) = log(A).

» (Can invoke Stochastic Lanczos Quadrature (SLQ) to esti-
mate this trace.
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Numerical example: A graph Laplacian california of size
9664 X 9664, nz ~ 10° from the Univ. of Florida collection.

Comparison nv=100

Rel. error vs degree

e 3 methods: Taylor Series,
Chebyshev expansion, SLQ

Relative error
=

Taylor
10 | |—=—Chebyshev
e # starting vectors nv = 100 ——Lanczos

in all three cases.

10 20 30 40 50
Degree (5 —> 50)
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4 Runtime comparison

10
Runtime comparisons -
0 .2
f”i 10 |
0]
E
5 100 : —v—Cholesky |
- Talyor
—e— Chebyshev
) —e—Lanczos
10 ' '
0 2 4 6
Matrix Size « 10"

hpcsel7



Application 6: Log-likelihood.

Comes from parameter estimation for Gaussian processes

» QObjective is to maximize the log-likelihood function with
respect to a ‘hyperparameter’ vector &

logp(z | &) = —35 [275(&) 'z + log det S(£) + cst]

where z = data vector and S (&) == covariance matrix parame-
terized by &

» Can use the same Lanczos runs to estimate z'S(&) 1z
and logDet term simultaneously.
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Application 7: calculating nuclear norm

> | Xl =2 0i(X) = 3 VA(XTX)

» Generalization: Schatten p-norms

1X [[p = [ @a(X)PIP

» See:

J. Chen, S. Ubaru, YS, “Fast estimation of log-determinant and
Schatten norms via stochastic Lanczos quadrature”, (Submit-
ted).
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Conclusion

» Estimating traces is a key ingredient in many algorithms

» Physics, machine learning, matrix algorithms, ..

» .. many new problems related to ‘data analysis’ and 'statis-
tics’, and in signal processing,

Can we do better than standard random sampling?
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