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Abstract

In this paper we describe an Incomplete LU factorization technique based
on a strategy which combines two heuristics. This ILUT factorization ex-
tends the usual ILU(0) factorization without using the concept of level of
fill-in. There are two traditional ways of developing incomplete factorization
preconditioners. The first uses a symbolic factorization approach in which a
level of fill is attributed to each fill-in element using only the graph of the
matrix. Then each fill-in that is introduced is dropped whenever its level
of fill exceeds a certain threshold. The second class of methods consists of
techniques derived from modifications of a given direct solver by including a
drop-off rule, based on the numerical size of the fill-ins introduced. tradition-
ally referred to as threshold preconditioners. The first type of approach may
not be reliable for indefinite problems, since it does not consider numerical
values. The second is often far more expensive than the standard ILU(0). The
strategy we propose is a compromise between these two extremes.
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1 Introduction

A widely recognized weakness of iterative solvers is their lack of robustness. This
difficulty is currently causing serious impediments to the acceptance of iterative
solvers in industrial applications is spite of their intrinsic appeal for very large lin-
ear systems. Incomplete LU factorizations, combined with a good Krylov subspace
projection process, are often regarded as the best ‘general purpose’ iterative solvers.
In general, the reliability of such methods for solving problems from various origins
depends much more on the quality of the preconditioner than on the iterative accel-
erator. An interesting observation is that recent research has been devoted in great
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part to developing ‘robust’ iterative accelerators while ‘robust’ preconditioners have
by and large been neglected mainly because of the inherent lack of theory to support
these techniques. Yet these techniques are vital to the success of iterative methods
is real applications.

The simplest way to define a preconditioner is in the form of an incomplete
factorization A = LU + E where L and U have the same nonzero structure as
the lower and upper parts of A respectively. This so-called ILU(0) incomplete
factorization is rather easy and inexpensive to compute. On the other hand, it leads
to an approximation that is often too crude and as a result the Krylov subspace
accelerator may require too many iterations to converge or may even diverge. To
remedy this, alternative incomplete factorizations which allow more fill-in in L
and U have been defined in several different ways. In general, the more accurate
ILU factorizations require fewer iterations to converge. On the other hand the
preprocessing cost to compute the incomplete factorization increases. However, if
only because of the improved robustness, these trade-offs are generally in favor of
the more accurate factorizations. This is especially true when several systems with
the same matrix must be solved since one can amortize the preprocessing cost over
several systems.

There has been two distinct ways of developing incomplete factorization precon-
ditioners with improved accuracy. The first approach is based on a symbolic factor-
ization view, i.e., it only requires the nonzero structure of the matrix to determine
which fill-ins to drop. A level of fill is recursively attributed to each fill-in element,
from the levels of fill-in of its parents, in the Gaussian elimination process. Then
each fill-in that is introduced and whose level exceeds a certain threshold is dropped.
The second common approach is to modify a given direct solver by including a drop-
off rule, based on the numerical size of the fill-ins introduced [8, 10, 5, 4, 15, 14].
The level-of-fill approach may not be reliable for some indefinite problems, since
the strategy ignores the numerical values. Although the relation between the size of
the dropped elements and the number of iterations required to achieve convergence
is far from being understood, on the average dropping small elements is more likely
to produce a better quality preconditioner than dropping large elements. However,
experience reveals that this is not always true. The location of the Another draw-
back of the level-of-fill approach is that it is difficult to predict the amount of fill-in
that will be generated. This is also a problem with the second approach. However,
a more serious problem with the second approach is cost. By their nature these
techniques are usually far more expensive than those of the first approach.

In this paper we derive a class of incomplete LU factorization preconditioners
that lie somewhere in between these two approaches. Unlike the level-of-fill strategy,
the new algorithm relies on numerical values for dropping elements. In addition,
it can limit the fill-in arbitrarily. Moreover, the data structure required for the
implementation is much simpler and the overhead related to the preprocessing is
far smaller than those derived from direct solvers.

The emphasis of this paper is on implementation and experimentation rather
than on theory. We will show how to implement a specific class of preconditioners
for general sparse linear systems. We will then test these preconditioners on a few
sample problems.



2 Standard Incomplete LU (ILU) factorizations

Consider a general sparse matrix A whose elements are a;;,¢,5 = 1,...,N. The
incomplete LU factorization process computes a lower triangular matrix L and an
upper triangular matrix U such that A = LU 4+ E, where E is some error matrix.
For the sake of completeness and in order to introduce the basic implementations
of incomplete factorizations we first give a description of the ILU(0) factorization.

The incomplete factorization technique with no fill-in consists of performing the
t,j, k version of Gaussian elimination, and dropping any element in L and U that
falls outside the pattern of A. In the following we will denote by b; . the i-th row
of a given matrix B. We will denote by NZ(B), the set of pairs (¢,5),1 <i,j < N
such that b; ; # 0.

ALGORITHM 2.1 ILU(0)
Fori=2,...,N Do:

Define u; « = a; «

Fork=1,...,i—1andif (i,k) € NZ(A) Do:
Compute the pivot iy = uik/ugk
Forj=k+1,...,n and if (i,j) € NZ(A), Do:

compute u;; = u;; — lipug;j.
endfor

endfor

endfor

The existence of the above ILU(0) factorization is guaranteed under a few simple
and restrictive assumptions on the coefficient matrix [9]. In some cases, one can
put the factorization in the form

A=(D—-E)D™Y(D - F),

in which F and F are the strict lower and strict upper triangular parts of A, and
D is some diagonal matrix. This means that it suffices in these cases to find a
recursive formula for the elements in D and that only an extra diagonal of storage
is required. The equivalence between the two incomplete factorizations is valid
when the product of the strict lower part and the strict upper part of A consists
only of diagonal elements and fill-ins. This is true for example for standard 5-point
difference approximations to second order partial differential operators.

By definition, the L and U matrices in ILU(0) have together the same number
of nonzero elements as the original matrix A. The accuracy of this incomplete
factorization may be insufficient to yield an adequate rate of convergence. The idea
of high accuracy ILU factorization has been proposed by Meijerink and Van Der
Vorst [9] at least for structured matrices arising from 5-point and 7-point matrices.
Thus, ILU(1) allows the “first order fill-ins’ which are located in specific diagonals,
to be kept. One problem with this is that the definition does not extend to general
sparse matrices. Later, Watts [13] generalized this definition by introducing the
concept of level of fill-in. The idea is quite simple. Any nonzero element in A is
initially given a level of fill-in equal to 0. When a fill-in element f;; is created in



position (¢,7) by a formula such as
fij = —lir X ug;
its level of fill-in is defined by
level(fi;) = level(lir) + level(ug;) + 1. (1)

This systematic definition allows one to derive a strategy for discarding elements.
Typically, for diagonal dominant matrices, the higher the level of fill-in of an element
the smaller its magnitude and this suggests dropping any fill-in element whose level
is higher than a certain integer p. However, for more general matrices the size of
an element is not necessarily related to its level of fill-in. We will describe a variant
of ILU(p) which performs the symbolic and the numeric factorization at the same
time.

ALGORITHM 2.2 ILU(p)
For all nonzero elements a;; define u;; = a;5, lev(u;;) = 0.
Fori=2,...,N Do
Foreachk=1,...,i—1 and ifu;, # 0 do
Compute b, = u;p/ukr and set lev(liy) = lev(u;p).
Compute u; » = U; « — lipug «.
Update the levels of u; . using (1)
Replace any element in row i with lev(u;;) > p by zero.
EndFor
EndFor

There are a number of drawbacks to the above algorithm. First, the amount of fill-in
and computational work for obtaining the ILU(p) factorization is not predictable for
p>0. Second, the cost of updating the levels can be quite high. Most importantly,
for indefinite matrices the level of fill-in may not be a good indicator of the size of
the elements that are being dropped. Thus, we may drop large elements and obtain
an inaccurate incomplete factorization, in the sense that £ = A — LU will be larger.
Our experience reveals that on the average this will lead to a larger number of
iterations to achieve convergence, although there are certainly instances, including
a few shown in Section 6, where this is not the case. The technique which will be
described in the next section has been developed to remedy the above mentioned
three difficulties, by focussing on producing incomplete factorizations will small
error F.

3 Strategies using numerical thresholds and ILUT

As was seen in the previous sections, the standard implementations of ILU factor-
izations are based on what is commonly referred to as the i, k, j version of Gaussian
elimination, which for dense matrices takes the following form.



ALGORITHM 3.1 Gaussian Elimination — IKJ variant

do i=2, n
do k=1,i-1
lik = a(i,k) / a(k,k)
do j=k+1i,n
a(i,j) = a(i,j) - 1lik * a(k,j)
enddo
a(i,k)=1lik
enddo
enddo

The above algorithm is in place in that the :-th row of A is overwritten by the
t-th rows of the L and U matrices of the factorization. Each step ¢ of the algorithm
generates the #-th row of L and the #-th row of U at the same time. The previous
rows 1,2,...,2— 1 of L and U are accessed at step ¢ but they are not modified.

In the context of sparse matrices the advantage of this version for incomplete
factorizations is that the data structure required is quite simple since the rows of L
and U are generated in succession. The modification of the above algorithm that
leads to an incomplete factorization requires only (1) to account for sparsity and
(2) to include a dropping strategy for getting rid of some fill-ins. In what follows
applying a dropping rule to an element will only mean ‘to replace the element by
zero if it satisfies certain criteria of smallness’. Clearly, the zeroed element will then
not be stored. A dropping rule can be applied to a whole row by applying the same
rule to all the elements of the row.

ALGORITHM 3.2 Generic Incomplete LU Factorization with threshold

0 row(i:n) =0

1 do i=2, n

2 row(1i:n) = a(i,1:n) | sparse copy

3 for (k=1,i-1 and where row(k) is nonzero) do
4 row(k) := row(k) / a(k,k)

5 apply a dropping rule to row(k)

6 if (row(k) .ne. 0) then

7 row(k+1:n)=row(k+1:n)-row(k)*u(k,k+1:n) ! sparse update
8 endif

9 enddo

10 apply a dropping rule to row(1:n)

11 1(i,1:i-1) = row(1:i-1) ! sparse copy

12 u(i,i:n) = row(i:n) | sparse copy

13 row(1l:n) = 0 ! sparse set-to-zero operation
14 enddo

15 enddo

A possible implementation would be to use a full vector for row and an companion
pointer, which points to the positions of its nonzero elements. This enables efficient
sparse vector updates in line 7 [6]. The vector row fills with nonzero elements after



the completion of each outer loop ¢ so that it is necessary to zero-out the elements
that were just filled in during the course of this loop, as is done in line 13.

We can view ILU(0) as a particular case of the above algorithm. The dropping
rule for ILU(0) is simply to drop elements that are in positions not belonging to the
original structure of the matrix.

In the factorization ILUT(p, 7) we use the following rule.

1. Inline 5, an element row(k) is dropped (i.e., replaced by zero) if it is less than
the relative tolerance 7; obtained by multiplying 7 by the original of the i-th
row (e.g. the 2-norm).

2. In line 10, a dropping rule of a different type is applied. First, we drop again
any element in the row with a magnitude that is below the relative tolerance
T;. Then we keep only the p largest elements in the L part of the row and
the p largest elements in the U part of the row in addition to the diagonal
element which is always kept.

The result of the second step is that the number of elements per row is controlled.
In fact, roughly speaking, we can view p as a parameter that helps control memory
usage, while 7 allows to reduce computational cost. There are several possible
variations on the implementation of step 2. For example we can simply keep a
number of elements equal to nu(?) + p in the upper part and n{(¢) + p in the lower
part of the row, where nl(7) and nu(%) are the number of nonzero elements in the L
part and the U part of the i-th row of A respectively. Note that no pivoting is ever
performed. Partial pivoting may be incorporated at the expense of substantially
complicating the code. In [11] we implemented and tested a version of ILUT which
performs column pivoting, allowing to use essentially the same simple data structure
as with the non-pivoting code. An additional permutation array is required to record
the corresponding permutation of the variables. We found from recent experience
with pivoting, that the rewards gained from pivoting are variable. If a matrix is
not close to being diagonally dominant, it may be preferable to use an incomplete
factorization that is derived from a direct solver, or a different iterative technique
altogether [11], such as one based on preconditioning the normal equations.

Another issue that is not addressed here is that of using various standard per-
mutations employed in the context of direct solvers to reduce fill-in. The two most
popular of these are the minimal degree ordering and the nested dissection ordering.
We found that reordering in the context of incomplete factorizations can also be
beneficial provided enough accuracy is used. For example, when a red-black ordering
is used, ILU(0) can lead to poor performance compared with that obtained from
ILU(0) using the natural ordering. On the other hand if we use ILUT with slightly
more fill-in, then the performance starts improving again. In fact an interesting
observation we made in [12] is that the performance of ILUT for the Red-Black
ordering eventually outperforms that of ILUT for the natural ordering using the
same parameters p and 7.



4 Analysis

Existence theorems for the ILUT factorization are similar to those of other incom-
plete factorizations. If the diagonal elements of the original matrix are positive
while the off-diagonal elements are negative, then under certain conditions of diag-
onal dominance the matrices generated during the elimination will have the same
property. If the original matrix is diagonal dominant then the transformed matrices
will also have the property of being diagonally dominant under certain conditions.
These properties will be analyzed in detail in this section.

We will denote the row vector row resulting from line 4 of Algorithm 3.2 by
ufi’l Note that uf}'l = 0 for j < k. Lines 3 to 10 in the algorithm, involve a

sequence of operations of the form

lik = ufk/ukk (2)

if l;x  small enough set [ =0

else:

uf}'l = ufyj —likukyj—rfj j=k+1,...N (3)
for £k = 1,...,7 — 1, in which initially uily* ‘= a;» and where rf. is an element

subtracted from a fill-in element which is being dropped. It should be equal either
to zero (no dropping) or to ufy* — l;pug « when the element ufﬂ is being dropped.
At the end of the i-th step of Gaussian elimination (outer 10015 in Algorithm 3.2 we
obtain the -th row of U,

Ui, % = u§—1 * (4)

)

and the following relation is satisfied.

i
k
@i« = E Uk jug o+ 7ix
k=1

where 7; . is the sum of all the fill-in rows.

The existence result which we will prove will only be valid for certain modifica-
tions of the basic ILUT(p,7) described earlier. We will consider an ILUT strategy
which uses one of the two following modifications,

Modification 1 Elements generated in the original nonzero pattern of A are not
subject to the dropping rule, regardless of their size. Elements in other locations
are subject to the same dropping rule as before.

Modification 2 For any ¢ < N let a; j, be the element of largest modulus among
the elements a; ;, j = ¢+ 1,...N. Then elements generated in position (¢, j;)
during the ILUT procedure are not subject to the dropping rule.

The first modification clearly implies that the condition required by the second
is satisfied. In other words the second modification is the weaker of the two and
we can restrict ourselves to proving the main result with this modification as the



underlying assumption. Note that these modifications aim at preventing elements
generated in position (¢, j;) from ever being dropped and that there may be many
alternative strategies that can lead to the same property.

Following Axelsson and Barker [3], we will call an M matrix a matrix H whose
entries h;; satisfy the following three conditions:

hii>0 for 1<i<N and hyy >0 (5)

hi; <0 for ¢j=1,...,N and ¢#j; (6)
N

> hy <0, for 1<i<N. (7)

Jj=i+l

The third condition is simply a requirement that there be at least one nonzero
element to the right of the diagonal element, in each row except the last. The
row-sum for the i-th row is defined by
N
rs(hi) = Y i

j=1

A given row of an M matrix H is diagonally dominant if its row-sum is nonnegative.
An M matrix H is said to be diagonally dominant if all its rows are diagonally
dominant.

In the following we establish an existence result for ILUT that is similar to
Theorem 1.14 in Axelsson and Barker [3] for ILU(0). The underlying assumption
is that an ILUT strategy is used with modification 2.

Theorem 4.1 If the matriz A is a diagonally dominant M matriz, then the rows
uf  k=0,1,2,...,1 defined by (3) starting with u) , =0 and uj , = a; .« satisfy the

7%

following relations for k=0,1,...,:—1:

E+1 C
wT <0 jA£d (8)
rs(ufTh) > rs(uf,) > 0, 9)
uft'>0 when i< N and ukty >0 (10)
Proof. The result can be proved by induction on k. It is trivially true for

k = 0. To prove that the relation (8) is satisfied we start from the relation,

k+1

ok k
e = U — lipUg . — T

in which l;; < 0,u;; < 0. Either rfj is zero which yields ufj’"l < ufj <0, or rfj
E+1 - . .

i 18 being dropped, i.e., replaced by zero, and
therefore again ufjﬂ < 0. This establishes (8). Note that by this argument rfj =0
except when the j-th element in the row is dropped in which case ufj'"l = 0 and

Z’-“]» = ufj — lizug,; < 0. Therefore, we always have T'Z’-“j < 0. Moreover, when an

element in position (%, j) is not dropped we have uf}'l = Uf,j —lLipup; < 'uﬁj

particular by our rule in modification 2, for ¢ < N, we will always have for j = j;,

uFtl < o (11)

Gji = g

1s nonzero which means that u

r

and in



in which j; is defined in the statement of the modification.
Consider the row-sum of u*F*. We have

i%

rs(uitt) = rs(uf,) = Lixrs(ug,.) —rs(rf,)
> rs(ufy*) — Ligrs(ug «) (12)
> rs(ufy*) (13)

which establishes (9).
It remains to prove (10). From (9) we have, for i < N,

witt > Y —uift= ) il (14)
j=k+1,N j=k+1,N

> > iy ] > (15)

> ugy | = lai g, (16)

Note that the inequalities in (15) are true because “?,j, is never dropped by assump-
tion and as a result (11) applies. By the condition (7) defining M matrices, la; j,| is
positive for i < N. Clearly when i = N we have by (14) uyn > 0. This completes

the proof. a

We would like to point out that the result given above does not mean that the
factorization will only be efficient when the conditions of the theorem are satisfied.
In practice the preconditioner can be efficient under far more general conditions.

5 Implementation details

Implementation details of the ILUT preconditioning can be quite important, be-
cause a poor implementation may lead to a higher complexity in terms of number
of arithmetic operations. The following is a list of the potential difficulties that can
lead to inefficiencies in the implementations of ILUT.

1. Generation of the linear combination of rows of A (Line 7 in Algorithm 3.2);
2. Selection of the p largest elements in L and U;

3. Need to access the elements of L in increasing order of columns (in Line 3 of

Algorithm 3.2).

For (1) the usual technique is to generate a full row and accumulate the linear
combination of the previous rows in it. The row is zeroed again after the whole
loop is finished using a sparse set-to-zero operation. A variation on this technique
which we adopted is to use only a full integer array jr(l : n) the values of which
are zero except where there is a nonzero element. With this full row we need to
maintain a short real vector u(1 : maazu) which contains the real values of the row,
as well as a corresponding short integer array ju(l : mazu) which points to the
column position of the real values in the row. When a nonzero element resides in
position j of the row, then jr(j) is set to the address k in u, ju where the nonzero
element is stored. Thus, ju(k) points to jr(j) and jr(j) points to ju(k) and u(k).
This is illustrated in Figure 5.1.



| 4 - = - = - | jr: nonzero
7 . .
/ s = = indicator

ju : pointer to nonzero elements

| | u : real values

Figure 5.1 lllustration of data structure used for working row in ILUT.

Note that jr holds the information on the row consisting of both the L part
and the U part of the LU factorization. When the linear combinations of the rows
are performed, we first determine the pivot. Then, unless it is small enough to be
dropped according to the dropping rule being used, we proceed with the elimination.
If a new element in the linear combination is not a fill-in, i.e., if jr(j) = k& # 0,
then we update the real value u(k). If it is a fill in (jr(j) = 0) then we append an
element to the arrays u, ju and update jr accordingly.

For (2), we have tried several alternatives. The simplest alternative is to use
a bubble sort technique, modified to account for the fact that we do not need
to sort all the elements but only to obtain the p largest elements in front of the
array. This essentially requires exiting after p steps of the main loop of the bubble
sort algorithm. If we need to extract the p largest elements from an array of m
numbers then the cost of this technique is about p x m in the worst case. There
are better alternatives. The first is to use a heap-sort strategy, again modified so
as to stop when the p largest elements have been extracted. The cost of this is
O(m + p x logy m), i.e., O(m) for the heap construction and O(log, m) for each
extraction. Finally, the next technique based on a quick-sort strategy is based
on the fact that we need not actually sort the array but only extract the largest
p elements. We call this a quick-split technique as opposed to the full quicksort
strategy. The method consists of chosing an element, e.g., # = u(1), in the array
u(1 : m), then permuting the data so that |u(k)| < |z| if k& < mid and |u(k)| > || if
k > mad, where mid is some split point. If mid = p then we exit. Otherwise we plit
one of the left or right subarrays recursively, depending on whether mid is smaller of
larger than p. The cost of this strategy on the average is O(m). The savings relative
to the bubble sort scheme are small for small values of p but they become rather
significant for large p and m. For example, on the CRAY-2, when p exceeds 10 and
for a three-dimensional Laplace operator matrix it is not too uncommon to save over
30% in time in the ILUT factorization when using quick-split versus a bubble sort.
Thus, the sorting does constitute an important part of the computation for large
enough p. For small p its impact on the overall ILUT time is rather minimal. Most
of the time consumed by the ILUT factorization is spent in the linear combination
of sparse rows.

The next implementation difficulty is that the elements in the L part of the row
being built are not in increasing order of columns. Since we need to access these
elements from left to right in the elimination process, we must scan all elements in
the row after the ones already eliminated, and pick the one with smallest column
number. This operation can be efficiently organized as a binary search tree which



allows easy insertions and searches. However, our current code does not incorporate
these improvements which are rather complex to implement and may yield relatively
small rewards.

6 Numerical Experiments

We tested our ILUT code on many examples. The purpose of this section is to
report on just a few results and to comment on our experience with the code. None
of the matrices involved in these experiments is symmetric, and none of them 1is
diagonally dominant.

As a first example we consider the Partial Differential Equation:

—AU—I—’)/ (69396_'”_1_6—“!6_”

Ox 3y> Feu=t (a7)

with Dirichlet Boundary Conditions and 4 = 10, &« = —60; discretized with centered
differences on a 27 x 27 x 27 grid. This leads to a linear system with N = 253 =
15,625 unknowns. The experiments have been performed on a CRAY 2. In order
to make the experiments realistic, we implemented the level-scheduling technique
for backward and forward solution using the jagged diagonal data structure. For
details, see [2, 1]. We have tested the preconditioned on the matrix obtained from a
natural ordering as well as from permuting the matrix into the red-black ordering.

6.1 Natural ordering

We experimented with two ways of varying the parameters 7 and p. The first way
was to simply fix 7 to a certain threshold value, in the current test 7 = 0.0005,
and vary p, the maximum number of nonzero elements per row allowed in L and
U. The execution times are plotted in Figure 6.1. Notice how the execution time
for performing the ILUT factorization increases with p while at the same time the
execution time for the GMRES acceleration decreases. The number of direction
vectors used in GMRES is fixed to 10. An optimal value of p is reached at p = 8.
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Figure 6.2 CPU time as a function of the numerical threshold. Dashed line =
ILUT time, dotted line = GMRES time, solid line = total.
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Figure 6.3 CPU time as a function of the numerical threshold for the red-black
ordering. Dashed line = ILUT time, dotted line = GMRES time, solid line = total.
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solid line = total.



The second way is to fix p to a maximum value (p = 15 in the current experiment)
and let 7 vary. Specifically, 7 is of the form 7 = 70/2%, with 79 = 0.1 and the x-axis
shows the power k. The motivation for this is that we may wish to select a given
accuracy but would like at the same time to limit the amount of memory required.
Figure 6.2 shows the corresponding results. We found that generally speaking, this
is a slightly more economical approach in terms of overall execution speeds, when
compared with the previous approach of relying on the p parameter to limit the
total number of operations.

6.2 Tests with red-black orderings

We took the same matrix as in the previous example and reordered it using the
red-black ordering. This usually makes the problems more difficult to solve by the
simple ILU(0) preconditioner. One of the the purposes of this experiment is to
show the importance of higher accuracy in such cases. For the reordered problem
both ILU(0) and MILU(0) failed to converge with GMRES(m) using m = 10 and
m = 20. The plot in Figure 6.3 is the analogue of the one in Figure 6.2 for this case.
The parameters and their meanings are identical. We do not plot the analogue of
Figure 6.1 because of the similarity of the results and the conclusions. We observe
that the better performance is reached for the more accurate factorizations.

6.3 Tests with Harwell-Boeing matrices

Some of the matrices in the Harwell-Boeing collection [7] can cause serious challenges
to iterative methods. We have performed a number of tests of ILUT on some of
these matrices and made the following observation:

1. In general low accuracy ILU factorizations, e.g., ILU(0) or ILUT with small
p and large 7 do not constitute a reliable approach;

2. By increasing the accuracy far enough there always comes a point where con-
vergence is reached;

3. Often this point is reached suddenly rather than progressively.

4. There is always a level beyond which it pays very little to increase the accuracy
of the preconditioner.

As aresult of (3) it is difficult to imagine a practical technique for determining in
advance what the best values for the parameters p and 7 should be. It suggests that
the best strategy is probably to recompute the preconditioner whenever convergence
is not satisfactory. Unfortunately, the work in computing the previous ILU cannot
be exploited. In addition, the cost will ultimately become close to that of a direct
solver, and a rather poor one since pre-ordering is not used to minimize fill-in.
Nevertheless, this opens up the possibility of developing simple ‘black-box’ solvers
which will exploit iterative solvers and shift more towards direct solvers when the
problem is difficult to solve by a combination such as ILUT-GMRES. The solver
can start by performing a reordering of the equations as is usually done for direct
solvers. This can be a symbolic reordering only such as nested dissection. Then



an outer loop will compute an ILUT factorization and then call the preconditioned
GMRES. Here, an ILUT variant that incorporates column pivoting may be a more
sensible choice. If convergence is deemed satisfactory, then no further ILU’s are
computed and the GMRES is run until convergence. Otherwise a more accurate
factorization is computed and GMRES is called again. Clearly, the details of this
heuristic regarding in particular the selection of the new parameters p, 7 each time
ILUT is called, are likely to be quite important. For difficult problems, the technique
will gracefully degenerate into a technique that has the complexity of a direct solver.

In what follows we make a few observations on some additional experiments with
Harwell-Boeing matrices. All right hand sides are generated as before i.e., b = Ae
where e is the vector consisting of all ones. The initial vectors are always generated
randomly and the convergence test is to stop the iteration when the 2-norm of the
residual vector has been reduced by a factor of 107.

Sherman3. Sherman3 is a matrix of size N = 5,005 which has a total of N7 =
20,033 nonzero elements. This is in fact a 7-point matrix on a three-dimensional
grid of size 35 x 11 x 13 which arises from a reservoir simulation problem [7]. In
Figure 6.4 we show the execution times as a function of the numerical threshold.
Again, 7 is of the form 7 = 75/2%, with 79 = 0.1 and the x-axis shows the power k.
The ILU(0) factorization is computable but ILU(0)-GMRES(10) does not converge
for this problem.

Pores_2. Pores_2 is a matrix of size N = 1224 which has N7 = 9,613 nonzero
elements. It originates from reservoir simulation. For this matrix the incomplete
factorizations it is not even possible to compute the ILU(0) and MILU(0) factor-
izations. The incomplete factorization ILUT with p = 7 and 7 = 0.0001 required
38 iterations to reduce the initial residual by 107 with GMRES(10). The number
of iterations decreases to 20 if we increase p to 10 and leave 7 unchanged.

Sherman2. Sherman? is a difficult test matrix for iterative methods. The matrix
size is only N = 1,080 but the number of nonzero elements is NZ = 23,094. It
is far from diagonally dominant. More precisely, only 6.8% of the rows and 58.7%
of the columns are diagonally dominant. The matrix has very large elements (the
largest element is approximately 1.34E49). ILU(0) and MILU(0) were also not
computable and terminated with an overflow condition. Similarly, ILUT/GMRES
had difficulties to converge when the accuracy required is too low. We tested with
increments of the accuracy in the following way. First p was set to a maximum of p
= 30. Then a starting value of 7 = 0.0001 was selected and ILUT was computed and
tested with GMRES(20) for this value. The test was repeated with smaller values
of 7 obtained by dividing 7 by 10 several times. The last test was with 7 = 0. The
results are summarized in Table 1 which shows the behavior of the combination
ILUT(30,7)-GMRES(20) as 7 varies. The last column in the table shows the actual
storage required for the two factors L and U.

The maximum number of iterations allowed here is 120 so the first line indicates
a non-converging or a slowly converging process. We should point out that the
errors obtained in this example are large compared with previous examples but this



T ILUT time | GMRES time | Total Time | Iter Storage
0.1E-04 | 0.361E400 0.230E401 | 0.266E4-01 | 120 | 0.268E405
0.1E-05 | 0.417E+00 0.967E+400 | 0.138E4-01 | 36 | 0.307TE405
0.1E-06 | 0.806E+400 0.111E401 | 0.192E401 | 31 | 0.407E+405
0.1E-07 | 0.123E+01 0.772E400 | 0.200E+01 19 | 0.468E405

0.0E400 | 0.637E+01 0.389E400 | 0.676E+01 7 | 0.580E+05

Table 1: Performance for the matrix Sherman2 of GMRES(20)-ILUT(30,7), as 7

varies.

is expected because the matrix is quite ill-conditioned. The initial residual is around
2 x 10° and the algorithm is stopped as soon as the residual is reduced by a factor
of 107,

There are a few interesting observations that can be made from the above table.
First, note that even for very small values of 7 there are differences in performance.
For example, unexpectedly, there is a big difference between 7= 0.1E-07 and 7 = 0.0.
In other words, the upper limit of p=30 is probably not reached most of the time
for 7 # 0. A second observation is that setting a very small value for 7 can be quite
expensive.

Observe that roughly speaking, the more memory we use the better the per-
formance of the iterative solver. The storage requirement is far from reaching the
maximum allowed by p which would give us room for roughly N x30x2+N = 65, 880
locations. In addition, the storage that would be required by a skyline code on this
example would be approximately 342,585 which is about 8.4 times as large as that
obtained with 7=0.1E-06. However, if we were to compare with more efficient direct
solvers, the advantage of the iterative solvers may simply be lost in this particular
example unless efficient reordering techniques similar to the ones used for direct
solvers are also used before ILUT is attempted.

Saylr3. Saylr3 is a 7-point matrix associated with a 10 x 10 x 10 grid. Its size
is N = 1,000 and the number of its nonzero elements is NZ = 3,750. The reason
why this matrix causes difficulties for iterative solvers is that it is exactly singular
since it contains 2 rows that linearly dependent. ILU(0) and MILU(0) both ended
with an error because of a zero pivot in row 989. Our initial version of ILUT also
failed to compute the incomplete factorization, ending with a similar error message.
However, the current version replaces a zero diagonal element by a small element.
Specifically, it inserts the value (0.001+tol)*norm(row). This new version is able
to compute the ILUT factorization and to make GMRES(10) converge quite well
for this problem. Note that when the right hand side is consistent, i.e., if it is in
the range of the columns of A then GMRES is insensitive to the singularity of the
(preconditioned) matrix, since it attempts to compute a least squares solution. If
the right-hand side is consistent, as is the case in this example then GMRES, when
it converges, will find a zero-residual solution whenever the initial guess is not taken
to be a zero-vector.



7 Conclusion

When incomplete factorization preconditioners are used in combination with an
iterative process such as the conjugate gradient method, they tend to dictate the
convergence behavior more than the iterative process itself. The standard ILU(0)
and SSOR preconditioners rely more on the accelerator, i.e., the conjugate gradient
method to achieve convergence. As is shown in the numerical experiments this may
not be reliable for hard problems. Incomplete factorization preconditioners which
rely on threshold dropping can be expensive. However, with a good implementa-
tion the additional cost can often be offset by the gain in the acceleration part
of the process. In addition, the gains for the common situation where there are
many linear systems to solve with the same matrix can be quite substantial. The
only disadvantage of ILUT is that it is difficult to optimize on high performance
computers. In spite of this difficulty, the contribution of CPU time incurred in the
preprocessing phase can be kept to a reasonable level compared with the rest of
the computation which can be highly optimized. Nevertheless, a parallel version of
ILUT would certainly be quite useful and work in this direction is currently under
way.
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