Solution of Large Eigenvalue Problems in Electronic
Structure Calculations*

Y. Saad, A. Stathopoulos, J. Chelikowsky, K. Wu, and S. Ogut
December 1995

Abstract

Predicting the structural and electronic properties of complex systems is one of
the outstanding problems in condensed matter physics. Central to most methods
used in molecular dynamics is the repeated solution of large eigenvalue problems.
This paper reviews the source of these eigenvalue problems, describes some tech-
niques for solving them, and addresses the difficulties and challenges which are faced.
Parallel implementations are also discussed.

1 Introduction

One of the fundamental problems encountered today in chemistry and physics is to un-
derstand the dynamics of microscopic particles. It is possible to explain or predict certain
material properties at a microscopic scale from knowledge of their initial state and given
external perturbations. For example, it may be desirable in certain cases to follow the
dynamics of atoms/electrons until a ‘steady state’ corresponding to minimum total energy
is reached.

The numerical problems to be solved in these calculations are among the most challeng-
ing in computational sciences today. The central computation in this minimization is the
repeated solution of a large, symmetric eigenvalue problem. Traditional approaches use a
plane-wave basis to expand the required wave-functions (eigenvectors). This approach is
comparable to spectral techniques used in solving other types of partial differential equa-
tions. A projection process on the finite plane-wave basis gives rise to a discrete matrix
eigenvalue problem which is dense. The matrix is not formed explicitly, but matrix-vector
product operations are performed with the help of FFT transforms. An alternative to
this approach based on high-order finite difference schemes has recently been advocated.
For localized systems, it has proved to be as accurate and more efficient than plane-wave
techniques[5, 6, 14, 13, 6]. The matrices resulting from both finite difference methods and
plane-wave techniques are large, and the number of eigenvalues and eigenvectors required
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is proportional to the number of atoms in the system. Herein lies the challenge. For
complex systems involving hundreds or thousands of atoms, more accuracy is required,
which means larger matrices, but also more eigenvalues are needed, due to the physics.

The size of the eigenvalue problem, the large number of required eigenpairs, as well as
its repeated solution for each molecular dynamics step, pose huge computational demands
on high performance computers and eigenvalue solvers. In this paper, some of the efforts
for meeting these demands are described. We present an eigenvalue solver based on
the preconditioned Lanczos (generalized Davidson) method [8, 9, 20] which can tackle
hundreds of eigenpairs. We also address several issues such as efficient preconditioning,
matrix-vector multiplication, orthogonalization, as well as robustness.

Parallel processing can help make substantial improvements in solution times and
thus play a crucial role in meeting some of the challenges posed by electronic structure
calculations. A parallel implementation of the application on a cluster of workstations
is outlined. In particular, we discuss an efficient design of the partitioning scheme and
other preprocessing techniques needed to reduce the impact of frequent communication
required during the iteration process.

2 The Problem

The electronic structure of a condensed matter system, e.g., cluster, liquid or solid is
described by a wave function ¥ which can be obtained by solving the Schrodinger equation:

HU = £, (1)

where H is the Hamiltonian operator for the system and £ the total energy. In quantum
mechanics, |¥(r)|? represents the charge density at a location 7 in space. In its original
form the operator H is very complex, involving sums over all electrons and nuclei, Lapla-
cian related to each nucleus, etc. However, most theories of condensed matter systems
make two fundamental approximations which make the problem more tractable. These
are the Born-Oppenheimer approximation and the one-electron approximation [17].

With these approximations the following simplified form of the Schrédinger equation
is obtained:
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where the Laplacian is the kinetic operator, i is Planck’s constant, m is the electron
mass, and V,,; is the total potential at some point r in the system. The potential depends
on a specific charge density p(r). The charge density function in turn depends on the
wavefunctions of the above equation via,

pr)=" > ()l (3)

occupied states

The dependence of the potential Vi, on p(r) is a complicated nonlinear function. The
above problem can be viewed as a nonlinear eigenvalue problem because of the nonlinear
dependence of the operator on the left-hand side on the eigenfunctions.
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With the local density approzimation theory [17], and the use of Pseudo-potentials,
the potential V,,; is simplified to a summation of three distinct terms, specifically,

V;tot = V;on + VH + Vmc (4)

where V;,, is the ionic potential, Vy is the Hartree potential, and V. is the exchange-
correlation potential. The exchange-correlation potential V. is easily approximated by a
potential from the local density expression. Once the charge density p(r) is known, the
Hartree potential is obtained by solving the Poisson equation:

V2Vy = —4mp(r). (5)

This can be solved either by the Conjugate Gradient method, or by a fast Poisson solver.
Both potentials Vy and V. have a local character and are represented by diagonal matrices
in the discrete form of the problem.

The ionic potential is more complex, consisting of both a local and a non-local term[6]:
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where < AV® > is the normalization factor,
Ilm
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Here, the superscript a denotes an atom in position R,, 7, = r — R,, and the functions
Uy, are the atomic pseudopotential wave functions of angular momentum associated with
quantum number [, m, from which the ! dependent ionic pseudopotential V(r) are gen-
erated. AVj(r) = Vi(r) — Viee(r) is the difference between the [ component of the ionic
pseudopotential and the local ionic potential. What is of interest to matrix computations
specialists is the nature of the non-local term in (6). If we set Uy m(rs) = AVi(74) Ui (74)
and we consider the discretization of the equation, the non-local term becomes a sum of
rank-one updates:

zon ZWOC"[) + Z CtalmUalm almwa (8)
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where ct,, ,, are normalization coefficients and all other variables are the discretized ma-
trix and vector forms of the operators and functions.

From (3), p can be computed from the wavefunctions 1; for all occupied states.
However, 1); are the solution of the eigenvalue problem in (2) whose coefficients depend
on the potential. In turn, the Vy potential depends on p. The above constitute a set
of non-linear equations, which are solved by the so-called Self Consistent Field (SCF)
iteration. This algorithm can be viewed as an inexact Newton method for accelerating
the fixed-point iteration V;2¢¥ = M (V) in which M(V},;) represents the new potential
obtained from solving (2) and using (4) with the resulting wavefunctions and values. The
term ‘Mix’ used in line 4, refers to any quasi-Newton approach for this acceleration.



ALGORITHM 2.1 Self Consistent Iteration

0. Obtain initial p(r) by superposing atomic charge densities.
Obtain V., Vi, and initial V.

Solve for eigenvalues/eigenvectors of the Hamiltonian.

Set p(r) = 2 ¥i(r).

Compute new Vg from (5), and V.

‘Mix’ potentials with a Broyden-type quasi-Newton approach.
If self-consistent stop, else repeat from 1.

SN

In matrix form, the Hamiltonian is the sum of a Laplacian matrix, three diagonal
matrices and a matrix representing the nonlocal contributions. Two of three diagonal
matrices arise from discretizing V. and Vg. The third is due to the local part of the ionic
potential. The nonlocal matrix is the sum of simple rank-one updates over all atoms and
quantum numbers. Typically, a small number of steps is required for the SCF iteration
to converge.

3 Solving the Eigenvalue Problem

3.1 Problem Setup

In the SCF iteration the solution of the eigenvalue problem is the dominant computation,
comprising more than 80% of the total time. Traditionally, a plane-wave basis has been
used to expand the wavefunctions and obtain a matrix eigenvalue problem. The problem
is solved in Fourier space and the solution is transferred back to real space through fast
Fourier transforms (FFT). This method is very similar to spectral methods used in solving

I

certain types of Partial Differential Equations. The basis used is of the form: {eik'r}k

where k is the wave number, a vector with three components (k;, &y, k,) and r is the
variable, a vector of three components (ry,r,,7,) representing an arbitrary location in
three-dimensional space. When representing the Hamiltonian H = A + V| with respect
to this basis, the Laplacian term A gives rise to a diagonal matrix while the potential
term V' gives rise to a dense matrix. These matrices are never formed explicitly however.

There are two main advantages of this approach. First, the pseudo-wavefunctions
for isolated atoms are smooth and plane-waves are a reasonable basis, providing rapid
convergence in Fourier space. Second, it is easy to precondition the resulting matrix in
Fourier space by exploiting the fact that a smaller subset of planewaves gives a good
approximation to the large matrix. One technique that has been used with success [28]
is to approximate the desired eigenvalues by using a smaller planewave basis, and the
larger ones by using the eigenvalues of the Laplacian ignoring the potential terms. An
approximation to (H — oI)~! can be easily built this way.

However, there are several disadvantages to this approach. In case of non-periodic
systems such as clusters, liquids or glasses, the plane-wave basis can only be applied if



a supercell method [3] is employed. This is very similar to the situation with spectral
methods. Spectral methods are excellent at solving problems with rectangular geometries
which have periodic boundary conditions. The supercell technique artificially repeats the
localized configuration to impose periodicity on the system. Difficulties arise when this
basis fails to replicate the localized system and vacuum regions at the same time, and
when cells interact with each other. Besides these physical problems, the eigenvalue prob-
lem can be expensive to solve mainly because the matrix is dense. Although this dense
matrix is not explicitly formed, two FFTs must be carried out at each step of the itera-
tion procedure. This can be costly, especially in high performance environments [2]. In
recent years, finite difference techniques have started to challenge planewave techniques.
Surprisingly, these methods have only appeared sparingly in the area the last half cen-
tury [15, 10]. Our approach combines finite differences with a high-order expansion of
the derivatives [2, 11, 4]. Since the pseudo-wavefunctions for isolated atoms are smooth,
the wave-functions can be expanded locally in Taylor series and a good approximation
is expected as with plane-waves. In addition, the supercell problems are overcome, the
eigenvalue calculations can be performed efficiently in real space using sparse matrices,
and the codes are much easier to parallelize. There are two disadvantages with finite dif-
ferences: larger matrices may be required to reach the same accuracy as with plane-waves,
and these are more difficult to precondition. Nevertheless, in spite of these disadvantages
the method is quite fast. In fact, the new method can be an order of magnitude faster
than a traditional one based on planewaves (Figure 1).

The basic grid is a uniform three dimensional cube. However, it is often the case
that many points in the cube are far from any atoms in the system and have a negligible
charge. Their charge can be replaced by zero and computations with the associated points
can be avoided. Special data structures may be used to optionally select points only from
spheres surrounding the atoms, and cylinders connecting such spheres. In some cases,
the size of the Hamiltonian is decreased by a factor of two to three. Further, since the
Laplacian can be represented by a simple stencil, and since all local potentials sum up
to a simple diagonal, the Hamiltonian need not be stored. The non-local potential is
computed implicitly as the sum of several rank one matrices for each atom (8).

3.2 The Preconditioned Lanczos Algorithm

Iterative methods which require the matrix only in the form of matrix-by-vector products
are the most common means of solving large eigenvalue problems such as the ones con-
sidered here. In addition to their sheer size, the eigenvalue problems in this application
present other difficulties. First, the number of required eigenvectors is proportional to the
atoms in the system, and can grow up to several hundreds or even thousands. Maintain-
ing the orthogonality of these vectors is an additional problem. Second, the separation
of the eigenvalues which determines the rate of convergence of iterative solvers becomes
increasingly poor as the matrix size increases. Preconditioning techniques attempt to
alleviate this problem.

The Davidson method is a popular preconditioning variant of the Lanczos iteration
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Figure 1: The time comparison of FD (filled bars) and plane-waves on Cray C90.

[8, 21]. In its original form it used only diagonal (Jacobi) preconditioning, and some
general purpose Davidson codes are available [24]. In this application, a code based on
the preconditioned Lanczos (generalized Davidson [20]) has been developed. This code
addresses also the problems mentioned above. The algorithm is sketched below for the
case where the smallest eigenvalue is being computed.

ALGORITHM 3.1 Preconditioned Lanczos

0. Choose an initial unit vector vy.
1. Until convergence Do:

2. Set Vi = [v1].

3. Forj=1,...,m Do:

4. Compute w := Av;.

5. Compute Vw, the last column of Hy;) := Vi, AV(;).
6. Compute the smallest eigenpair A,y of H;.
7. Compute u := Vijyy and r := Au — \u.

8. Test ||r|| for convergence. If satisfied Return.
9. If 5 < m compute t := M(;)lr

10. If j < m compute V(1) := MGS([V{;),1]).
11.  Enddo

12.  Set vy := u and restart.

13. Enddo



To compute the residual r in line 7, without an additional matrix-vector product
operation, the vectors w; = Av; are saved in W(;) along with the basis vectors V(;. It is
then possible to compute r as r := Wy — AV(;y.

As the number of required eigenvectors increases, the number of basis vectors m should
also increase. The targeted applications of the method involve about a thousand eigen-
pairs. For these applications, the storage demands of both V and W arrays are very
large. Disk storage is a rather expensive alternative since the basis vectors are needed in
several steps of the algorithm. Another problem with large basis sizes is the solution of
the Rayleigh-Ritz problem in step 6. We need to solve dense matrix eigenvalue problems
of size, say, 1000, at every step.

The solution provided in the current program is implicit deflation. Every time an
eigenvector converges, it is locked out of the current basis and all basis vectors are or-
thogonalized against it. Therefore eigenvectors are not altered after they are locked out.
Notice that the work space required for the basis and the eigenvectors can be viewed as:

Converged eigenvectors  Basis vectors

Uy, u9, ..., U, V1,V2,...,Um, fork < K, and for any user defined m.

The benefits are twofold. First, the Rayleigh-Ritz problem grows only up to the user
defined size m. Second, since only v; contribute to the small problem, only w;,7 =1,...,m
need to be stored. Therefore, the storage requirements of the method reduce from O(2K)
to O(2m + K), and the small problem is much easier to solve.

There are some considerations with using this deflation scheme. The first involves the
choice of a proper convergence test, and the second the choice of the targeting vector,
i.e., which approximation to improve in the next step. Deciding on convergence of some
eigenvector can be misleading, since a poorly converged locked eigenvector (e.g., u;) may
hinder convergence to the following eigenvectors (e.g., us, ...). On the other hand, extreme
eigenvector accuracy is wasteful since low levels of accuracy are often adequate in the SCF
iteration. In our approach a heuristic is used in which the required accuracy is decreased
as more eigenvectors inside the spectrum converge. This usually eases convergences of
inner eigenpairs and also saves considerable time.

The issue of targeting is handled by the use of a window of possible targets from the
set, of basis vectors. The window size is p < m, and depending on a user option, up to
p eigenvectors can be targeted simultaneously (block Davidson [19]). The robustness of
the code is enhanced by carefully selecting and locking the converged eigenpairs from the
targeted ones. This scheme significantly reduces the possibility of “missing” an eigenpair.

Finally, orthogonalization is a very expensive part of the code since it involves all con-
verged and basis vectors. Nonetheless, it is a crucial one. Solutions cannot be obtained if
the basis vectors loose their mutual orthogonality. For that purpose, a reorthogonaliza-
tion procedure has been employed similar to the one proposed in [7]. Whenever the norm
of a vector is reduced below a threshold during the orthogonalization, the procedure is
repeated. The procedure is cheaper than full reorthogonalization, yet provides adequate
accuracy. Currently, we are looking at alternative ways to avoid or reduce orthogonaliza-
tion constraints imposed by this problem.



3.3 Preconditioning

As the size of the Hamiltonian grows, the relative separation of the eigenvalues becomes
smaller, causing slow convergence of the Lanczos process. Although the lowest eigenvalues
remain roughly the same with finer discretization, the larger ones are less affected by the
local and non-local potentials and are therefore governed by the largest eigenvalues of the
Laplacian. One strategy is to focus on this part of the Hamiltonian.

In the earlier plane-wave version of the code, subspace iteration with Jacobi precondi-
tioning was used [28]. This worked well because of the diagonal form of the Laplacian in
Fourier space. In real space, the Laplacian consists of a number of diagonals and Jacobi
preconditioning is not effective. An idea would be to solve only the Laplacian in Fourier
space. This can be performed very efficiently with fast Poisson solvers for (V2 —ol)z = f.
However, it is not clear how efficient it will be for eigenvalues well inside the spectrum.
Also, FFT transforms of two vectors are needed at each step adding on the expense of
the preconditioned Lanczos.

One preconditioner used in our approach is based on a filtering idea and the fact that
the Laplacian is an elliptic operator [27]. The eigenvectors corresponding to the few lowest
eigenvalues of V2 are smooth functions. Physically, the wavefunctions corresponding
to the lowest occupied states are smoothly varying functions. When an approximate
eigenvector is known at the points of the grid, a smoother eigenvector, and therefore
a better approximation, can be obtained by averaging the value at every point with the
values of its neighboring points. Assuming a (z,y, z) coordinate system, the low frequency
filter acting on the value at the point (7, j, k), which corresponds to one element of the
eigenvector, is described by:

Vigk = (Vierjk + Vig-1k + Vigr—1 + Vierje + Vigerk + Viges1) /12 4+ Vije/2 - (9)

This preconditioning has provided significant improvements on the iteration count of
preconditioned Lanczos. However, this is only true for the lowest few (less than 20)
eigenvalues. Eigenvectors associated with higher eigenvalues may not benefit as much
from the above filter, possibly due to the lower degree of smoothness of the associated
eigenfunction. In case of hundreds or thousands of eigenpairs, new preconditioners should
be devised that extend the above idea of filtering. A major weakness of current eigen-
value solvers is that they do not address the issue of preconditioning for eigenvalues that
are well inside the spectrum. Direct solution techniques are the only known means of
preconditioning which work well in this situation. However they are excessively costly.

4 Parallel Implementations

To study real systems with thousands of atoms it is vital to be able to reduce the exe-
cution time by several orders of magnitude. As is often the case in such calculations, a
combination of efficient algorithms and powerful computing platforms can provide gains
in time that can help solve problems that would otherwise be practically infeasible. Finite
difference techniques provided one order of magnitude improvement over of plane-wave
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techniques. The choice of better preconditioners and eigenvalue codes might provide a
significant additional factor. These improvements must be realized with parallel com-
puting in mind. There are few limits in the gains that can be achieved through parallel
processing, safe for the need to use appropriate algorithms.

4.1 Parallel environment and models

The parallel implementation of the current application uses the PVM communication
library [12, 25]. The parallel environment used for the development is a cluster of four
Silicon Graphics Power Challenge workstations, each with four processing elements, inter-
connected through HiPPI and Fiber channels. A cluster of eight IBM 590 workstations,
interconnected through an A.T.M. An IBM SP-2 multiprocessor with 10 processors will
soon be incorporated as well. The architecture of the SGI symmetric multiprocessors
encourages the use of a hierarchical programming model with shared memory paradigm
among intra-node processing elements and message passing among inter-node worksta-
tions. Although the program is based on PVM and the message passing paradigm, direc-
tives and compiler optimizations can easily be performed so that each workstation runs
with one process but uses multithreading to parallelize each loop, as in shared memory
machines.

The master-slave model is followed for the SCF procedure. The master performs
most of the preprocessing, computing of scalar values, and receiving the new potential
at each SCF iteration. The master is also responsible for applying the mixing scheme on
the potentials. The slaves are assigned all the computational intensive work: solving for
the eigenvalues and eigenvectors, updating the charge density, and solving the Poisson
equation for the Hartree potential.

4.2 Problem Mapping

The problem is mapped onto the processors in a data parallel way. The rows of the Hamil-
tonian (and therefore the rows of the eigenvectors and potential vectors) are assigned on
different processors, according to a partitioning of the physical domain. The subdomains
are naturally chosen as sub-cubes or slabs of the domain as illustrated in Figure 2. The
program only requires a function P(i, j, k) that returns the processor number where point
(i, 7, k) resides. Arbitrary partitionings are thus possible, although it is not clear whether
other ones than the ones mentioned may be beneficial. Since the matrix is not actu-
ally stored, an explicit reordering can be considered so that the nodes of a processor are
numbered consecutively. Under this conceptually easier scheme, only a list of pointers
is needed that denote where the rows of each processor start. The non-local part of the
matrix, which is a sum of rank-one updates, is mapped in a similar way. For each atom,
and for each pair of quantum numbers, the vector of the rank-one update is partitioned
according to the rows it contributes to.

With this mapping, the storage requirements of the program are completely distributed
and large problems can be solved on the aforementioned SGI cluster.
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4.3 Parallel Preconditioned Lanczos

In the preconditioned Lanczos algorithm, the basis vectors V', and the auxiliary vectors
W follow the same distribution as the eigenvectors. Thus, all vector updates (saxpy oper-
ations) can be performed in parallel, and all reduction operations (e.g., sdot operations)
require a global reduction (e.g., global sum) of the partial results on each processor.

The matrix-vector multiply is performed in three steps. First, the contributions of the
diagonals (potentials and the Laplacian diagonal) is computed in parallel on all processors.
Second, the contribution of the Laplacian is considered on the rows of each processor. As
in the sequential code, this is performed by using the stencil information. However,
some of the neighbors of the local subdomain may reside on different processors, and
communication is necessary. For this reason, a special preprocessing phase has been
implemented, which is a special case of the PSPARSLIB library [22]. During the setup of
the non-local information by the master, the slaves locate which of their rows are needed
in the stencils of other processors. Data structures are built for all the information that
needs to be communicated among the appropriate processors. In the second step of
matrix-vector multiplication, this information is exchanged among the processors and the
stencil multiplication can proceed completely in parallel. Since, only nearest neighbor
communication is required, this technique is considerably more efficient than globally
collecting the whole vector on all processors. In the third step, each of the rank-one
updates of the non-local components is computed as a distributed dot product. All local
dot products are first computed before a global summation of their values takes place.
Thus, matrix-vector multiplication requires two communication/synchronization points.
Notice that solving (5) for the Hartree potential with Conjugate Gradient, also requires a
matrix-vector multiplication with the stencil. The procedure is equivalent to the second
step above.

Orthogonalization is a very expensive phase of the preconditioned Lanczos, and as the
number of required eigenvectors increases, it is bound to be the dominant one. Although
reorthogonalization recovers the numerical accuracy of the Gram-Schmidt procedure, its
nature is sequential and induces several synchronization points. In the current application,
global summations of the dot-products have been delayed so that only one synchronization
is needed for their computation. Also, easily obtained estimations of the vector norms
are used to perform the reorthogonalization test. As a result the procedure has only
two synchronization points and it is quite efficient. We are currently working on an
orthogonalization procedure which is based only on BLAS-3 routines, and it also involves
only two synchronization points.

Finally, the preconditioning used is still the averaging scheme over the neighbors.
However, the use of the stencil requires the same communication pattern as in matrix-
vector multiplication. Experiments have shown that if the averaging is limited on the
local rows on each processor, the number of Lanczos iterations does not increase consid-
erably, but the total execution time may be reduced. Future, directions include a domain
decomposition preconditioner based on the physical partitioning of the domain.
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5 Beyond Eigenvalue Computations

One of the biggest challenges in electronic structure calculations is in molecular dynamics.
What is sought is the ground state corresponding to the minimum energy level, among
all possible topological structures of the cluster.

The typical approach in this context uses simulated annealing [16]. The goal is to
find a ‘steady-state’ distribution, meaning, for p particles, find locations Ri,..., R, to
minimize the total energy E(Ry, Ry, ..., R,) of the system. This is done by solving an
artificial time-dependent problem of the form [6],

md—v =F+yw+G(t,T)
dt

In the above equation, v is the velocity of the given particle, F' is the force acting on
it, and +y is some damping (viscosity) coefficient. The additional term G, a variable of
time ¢t and temperature 7', is a random force that is added to the system essentially
to prevent converging to a local minimum. The forces F' are easily obtained from the
energies by differentiation, and explicit formulas are available for this. Thus, the system
is started from some initial configuration, and then time-stepped using the forces obtained
from previous step and a simple randomization scheme. This is repeated until the energy
stabilizes. An illustration is shown in Figure 3.

It is important to realize that the number of steps required to reach this ground state
can be very large, potentially in the order of tens of thousands. Each of these steps
itself requires a full-blown self-consistent calculation, i.e., a few iterations each requiring
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the calculation of possibly hundreds or thousands of eigenvalues. This constitutes a real
computational challenge. The core of the calculation resides in the computation of a
large number of eigenvectors which is the main source of difficulty. Indeed, most known
numerical methods for large eigenvalue problems are efficient in computing a small number
of the smallest (or largest) eigenvalues. When this number is an important fraction of the
size n of the matrix, these methods become ineffective. It is important to develop new
techniques which can deal more efficiently with interior eigenvalues.

However, to numerical analysts, the natural question seems to be whether eigenvalues
can be avoided altogether. In other words: is it possible to reformulate the original prob-
lem in terms of a calculation which does not require the eigenvalues? Strictly speaking,
eigenvectors and therefore eigenvalues are not really needed. The eigenvectors are only
needed to compute the charge density via equation (3). Note that after discretization the
function 1 becomes a vector of length N whose ¢-th component is the approximation of ¥
at the mesh-point r;. If we call V' the matrix whose column vectors are the (normalized)
eigenvectors v;, 1 = 1,...,s, for the s occupied states, then

P=vvH (10)

is a projector, and the charge density at a given point r; in space is the i-th diagonal
element of P. A number of techniques have been developed based on using this observation
[1, 18, 26]. In the following we will only sketch the main ideas for the purpose of illustrating
possible new linear algebra problems of interest.

In the so-called Order-n methods, an approximation to the projector P in (10) is
constructed without knowledge of eigenvectors. Denote by p;; the coefficients of the
matrix P. A number of properties are exploited for this purpose. First, are the following
two relations:

tr[P] = > ps = Dparticle number
i

tr[PH] = > pijH; = system energy.
2

The first relation is a consequence of the fact that each p;; represents the charge density at
point r; as was mentioned above. The second is a consequence of the fact that PH = PHP
is the restriction of H to the invariant subspace associated with eigenvalues corresponding
to the occupied states. The trace of PH is therefore the sum of these eigenvalues, which
is the total energy of the system.

Another important property that is exploited is the physical fact that P decays away
from the main diagonal. Hence the idea to try to find a P whose trace is fixed and which
minimizes the trace of PH. The trace constraint can be avoided by shifting H

tr[P(H — pl)] = tr[PH] — uN,

The above optimization problem is not yet well posed since without constraints on
P the minimum can be arbitrarily negative or small. The missing constraint is to force
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P to be a projector. As it turns out, this can be achieved by forcing its eigenvalues
to be between zero and one [18]. The minimization will yield a matrix P which has
eigenvalues equal to either one or zero, thus satisfying the desired idempotent constraint
automatically.

One strategy that has been used in [18] for this purpose is to seek P in the form

P=35%2_253

If the eigenvalues of S are in the range [—0.5, 1.5] this transformation will map them into
[0,1]. The procedure then is to seek a banded S that minimizes

tr[(35% — 25°)(H — ul)]

using descent type-algorithms. The gradient of the above function is computable.

The drawback of this approach is its lack of accuracy. The minimization is also not well
understood. In addition, the band required for S may not be so small for certain systems.
Nevertheless, it is interesting to note that explicit eigenvalue calculations are avoided.
Some global approximation of the invariant subspace associated with these eigenvalues is
extracted, meaning that a global approximation to the set of eigenfunctions is computed
via the approximation to the projector P.

6 Conclusion

There are several challenges arising in the electronic structure problem. Among the cur-
rent issues, are to find algorithms for computing large numbers of eigenvectors, specifically
methods for preconditioning. The methods currently in use are expensive when the num-
ber of eigenvalues is very large. Beyond these issues, there is a potential to make orders
of magnitude improvements in standard electronic calculations by combining three ingre-
dients: (1) efficient matrix methods; (2) better solution to the underlying optimization
problem; and (3) parallel processing.
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