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Large-scale linear least-squares (LS) problems occur widely in practice. They arise both in
their own right and as subproblems of more general nonlinear problems. Moreover, the normal
equations that are naturally connected to LS problems can shed light on solving the Schur
complement systems that are routinely faced in many applications.

Our focus in this talk is on gaining a better understanding of the case when the sparse LS
problem contains additional coupling terms represented by one or more dense rows. It has
long been recognised that the effectiveness of sparse matrix techniques for directly solving such
problems is severely limited by the presence of dense rows. We consider, in particular, the

following m x n (m > n) LS problem
As . bs
Ag ba

in which each row of the mg x n block Ay is considered to be dense and Ag is m, x n with
ms > mg > 1; the vector b is partitioned conformally. These LS problems represent a simple
motivating case for more general situations that appear in practice where a dense substructure
hidden in the problem may prohibit efficient solution.
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There are a number of ways to tackle this problem. Classical approaches based on direct
methods are summarized in the monograph [2]; see also [4]. More recently, methods based on
preconditioned iterative methods [5] or Schur complement reduction [6] have been considered.
In this talk, we discuss a number of approaches. One specific approach discussed here is based
on matrix stretching in which dense rows are replaced by submatrices with much sparser rows
[3, 1]. Experimental problems demonstrate not only the strengths of stretching but also some
of its limitations [8]; these point towards future research directions.
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