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Abstract 

In the robot navigation problem, noisy sensor data 
must  be filtered to  obtain the best estimate of the robot 
position. W e  propose using a Recursive Total Least 
Squares algorithm t o  obtain estimates of the robotposi- 
tion. W e  avoid several weaknesses inherent in the use 
of the Kalman and extended Ka lman  filters, achieving 
much faster convergence without good initial (a pri- 
ori) estimates of the position. The performance of the 
method is  illustrated both by simulation and on a n  ac- 
tual mobile robot with a camera. 

1 Introduction 

The purpose of this paper is to  propose a simple 
scheme for estimating the position of a robot from rel- 
atively few sensor readings measuring some aspect of 
the environment. Our algorithms are intended for ap- 
plications where sensor readings are expensive or oth- 
erwise limited so that only relatively few can obtained, 
and the readings that are taken are subject to  consid- 
erable errors or noise. We propose a method capable 
of converging to  a position estimate with greater ac- 
curacy using fewer measurments than other methods 
often used for this application, such as the Kalman 
and extended Kalman filter. Our approach is vali- 
dated using a mobile robot on which a camera is used 
to  obtain bearing information with respect to  one or 
more landmarks in the environment. 

The Kalman filter is often used when estimating 
the values of some dynamic quantity from noisy data 
[8], and also when trying to  estimate a static quan- 
tity [12]. Its application to  the robot navigation prob- 
lem addressed in this paper was also discussed in (21. 
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Given the nonlinearity of the relationships between the 
bearings and the robot positions, often the extended 
Kalman filter is used [l, lo], by using a Taylor ex- 
pansion to  obtain a local linear approximation to  the 
true relation. But the extended Kalman filter suffers 
from lack of robustness. It can often fail to converge 
entirely [13]. This led us to  develop a linear formu- 
lation of the estimation problem that is not a local 
approximation, but holds through the entire range of 
parameter values. 

Although limited modifications can be made to the 
Kalman approach to  improve robustness to noise [ l l ] ,  
our work in outdoor navigation [16], where measure- 
ments are expensive to obtain and have significant er- 
ror inherent to  the system, motivated us to look for 
another filtering method, preferably one which would 
not require numerous measurements to  converge and 
did not assume an error-free data matrix. As demon- 
strated by Mintz et al. [7], the sense in which a method 
is said to  be “optimal” depends critically on the spe- 
cific model being used. When error exists in both the 
measurement and the data matrices, the best solution 
in the least squares sense is often not as good as the 
best solution in the eigenvector sense. This second 
method is known in the statistical literature as or- 
thogonal regression and in numerical analysis as total 
least squares (TLS) [17]. 

To demonstrate the algorithms, we use a mobile 
robot platform on which is mounted a camera. The 
sensor readings are obtained by viewing one or more 
landmarks in the visual images obtained as the robot 
moves. The images yield several bearings to the land- 
marks, which are then used to estimate the position 
of the robot. The bearings are subject to considerable 
noise, both from the coarseness of the image resolu- 
tion and from odometry error in fixing the base line. 
In spite of the noise in the data, location of the robot 
could be fixed with relatively high accuracy. 

In this paper, we show how the task of estimating 
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robot positions from bearing data can be formulated 
directly as a simple, linear matrix problem, which is 
not a local linearized approximation, but is valid glob- 
ally. We propose using a Total Least Squares ap- 
proach, which has the advantage over the Kalman 
filter of admitting errors anywhere in the equations. 
This paper is organized as follows. After this intro- 
duction, we discuss the Recursive TLS algorithm in 
section 2, our experimental results in section 3, and 
some concluding remarks in section 4. 

2 Recursive Total Least Squares Algo- 
rithm 

Given an overdetermined system of equations Ax = 
b, the TLS problem, in its simplest form, is to find the 
smallest perturbation to  A and b to  make the system 
of equations compatible. Specifically, we seek a ma- 
trix E and vector f that  minimizes 1 1  ( E ,  f )  112 such that 
(A + E)x = b + f for some vector x. The vector x 
corresponding to  the optimal ( E ,  f )  is called the TLS 
solution. Recently, some recursive TLS filters have 
been developed for applications in signal processing 
[4, 5 ,  191. Davila [4] used a Kalman filter to obtain a 
fast update for the eigenvector corresponding to  the 
smallest eigenvalue of the covariance matrix. This 
eigenvector was then used to  solve a symmetric TLS 
problem for the filter. It was not explained how the 
algorithm might be modified for the case where the 
smallest eigenvalue is multiple (i.e., corresponding to  
a noise subspace of dimension higher than one), or 
variable (i.e., of unknown multiplicity). In [19], Yu 
described a method for the fast update of an approx- 
imate eigendecomposition of a covariance matrix. He 
replaced all the eigenvalues in the noise subspace with 
their “average”, and did the same for the eigenval- 
ues in the signal subspace, obtaining an approxima- 
tion which would be accurate if the exact eigenvalues 
could be grouped into two clusters of known dimen- 
sions. In [ 5 ] ,  DeGroat used this approach combined 
with the averaging technique used in [19], again as- 
suming that the singular values could be grouped into 
two clusters. Recently, Bose et a1.[3] applied Davila’s 
algorithm to reconstruct images from noisy, under- 
sampled frames after converting complex-valued im- 
age data into equivalent real data. All of these meth- 
ods made some assumptions that the singular values or 
eigenvalues could be well approximated by two tight 
clusters, one big and one small. In this paper, we 
present a recursive algorithm that makes very few as- 
sumptions about the distribution of the singular val- 

ues. 
The most common algorithms to  compute the TLS 

solution are based on the Singular Value Decompo- 
sition (SVD), a non-recursive matrix decomposition 
which is computationally expensive to  update. The 
TLS problem can be solved by the SVD using Al- 
gorithm 3.1 of [17]. The main computation cost of 
that algorithm occurs in the computation of the SVD. 
That cost is 0 ( p 3 )  for each update. The basic solution 
method is sketched as follows. If v = ( V I , .  . . 
is a right singular vector corresponding to  the small- 
est singular value of (A ,  b), then it is well known 
that the TLS solution can be obtained by setting 
x = - ( V I , .  . . , V ~ - ~ ) ~ / V ~ .  If the smallest singular 
value is multiple, then there are multiple TLS solu- 
tions, in which case one usually seeks the solution of 
smallest norm. If vp is too small or zero, then the 
TLS solution may be too big or nonexistent, in which 
case an approximate solution of reasonable size can be 
obtained by using the next smallest singular values(s) 

In cases such as the applications considered in this 
paper where the exact TLS solution is still corrupted 
by external effects such as noise, it suffices to obtain 
an approximate TLS solution at much less cost. We 
seek a method that can obtain a good approximation 
to the TLS solution, but which admits rapid updat- 
ing as new data samples arrive. One such method 
is the so-called ULV Decomposition, first introduced 
by Stewart [14] as a means to  obtain an approximate 
SVD which can be easily updated as new data arrives, 
without making any a priori assumptions about the 
overall distribution of the singular values. The ULV 
Decomposition of a real n x p matrix A (where n 2 p )  
is a triple of 3 matrices U ,  L ,  V plus a rank index r ,  
where A = U L V T ,  V is p x p and orthogonal, L is 
p x p and lower triangular, U has the same shape as A 
with orthonormal columns, and where L has the form 

~ 7 1 .  

where C (T x T )  encapsulates the “large” singular val- 
ues of A, ( E ,  F) ( ( p  - r )  x p )  approximately encapsu- 
late the p - r smallest singular values of A, and the 
last p - T columns of V encapsulate the corresponding 
trailing right singular vectors. To solve the TLS prob- 
lem, the U matrix is not required, hence we need to 
carry only L ,  V, and the effective rank T .  Therefore, a 
given ULV Decomposition can be represented just by 
the triple [L ,  V, r ] .  

The feature that makes this decomposition of in- 
terest is the fact that ,  when a new row of coefficients 
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is appended to  the A matrix, the L,  V and r can 
be updated in only O b 2 )  operations, with L restored 
to  the standard form above, as opposed to  the O(p3)  
cost for an SVD. In this way, it is possible to  track 
the leading r-dimensional "signal subspace" or the re- 
maining "noise subspace" relatively cheaply. Details 
on the updating process can be found in [14, 91. 

We can adapt the ULV Decomposition to  solve the 
Total Least Squares (TLS) problem Ax M b, where 
new measurements b are continually being added, as 
proposed in [2]. The adaptation of the ULV to the 
TLS problem has also been analyzed independently 
in great detail in [MI, though the recursive updating 
process was not discussed at length. For our specific 
purposes, let A be an n x ( p  - 1) matrix and b be 
an n-vector, where p is fixed and n is growing as new 
measurements arrive. Then given a ULV Decompo- 
sition of the matrix (A,  b) and an approximate TLS 
solution to  Ax M b, our task is to  End a TLS solution 
2 to  the augmented system 22 x b, where 

. ^ = ( i $ ) a n d b = ( y ) ,  ,. 

and X is an optional exponential forgetting factor [SI. 
The RTLS Algorithm: 

This RTLS Algorithm makes very few assumptions 
about the underlying system, though the user Zust 
supply a zero tolerance and a gap tolerance for llV2211. 
For the application here, i t  sufficed to  set the zero 
tolerance to  zero and depend on just the gap tolerance 
of 1.5. 

Start with [L, V, 7-1, the ULV Decomposition of 
( A ,  b), and the coefficients aT, ,8 for the new in- 
coming equation aTx = p. 
Compute the updated ULV Decomposition for the 
system augmented with the new incomin8 %qua- 
tion. Denote the new decomposition by [L, V, q. 
Partition 

where f&~ is 1 x ( p  - F). 

If llpz211 is too close to  zero (according to  a user 
supplied tolerance), then we can adjust the rank 
boundary F down to obtain a more robust, but 
approximate solution [2, 91. 

Find an orthogonal matrix Q such that 6&Q = 
(0,. . . ,0,  a), and let v be the last column of V&Q. 
Then compute the new approximate TLS solution 
according to  the formula 2 = -v/a. 
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3 Experimental Results 

To compare the performance of the Kalman filter 
and RTLS in practice, we ran two sets of experiments, 
the first with a physical mobile robot and camera and 
a single landmark, and the second in simulation with 
two landmarks. The setup in the first set was modeled 
after the problems faced by an actual mobile robot 
[l, 6, lo]. The robot did not know its own position 
on the map, but did know the location of a single 
landmark. The robot moved in a straight line taking 
a series of images. Its task was to find the landmark in 
each image, and use the results to  determine its start 
position relative to the landmark. 

Landmark 6 f 
5 

Figure 1: Diagram illustrating angles to landmark. TRC 
Labmate had camera mounted at go", yielding bearing ,O, 
which was bounded by f25'22' for the given field of view. 

A Panasonic WV-BL202 camera was mounted on 
a TRC Labmate at an angle of 90" to  robot bearing, 
so that each image yields an angle ,&, as shown in 
Figure 1. Horizontal field of view was 50"44', limit- 
ing the angles to the range f25"22'. "Landmarks" 
were mini Maglite high intensity flashlight candles. 
The angular position of the landmark was measured 
in a sequence of images taken while the robot moved 
across the room at a constant velocity. In addition 
to  the error in angle measure, error also occurred in 
velocity, robot bearing and in the times at which the 
images were taken. It is not possible to predict and 
model these errors. For example, velocity was set at  
20" / second, but average true velocity across runs 
ranged from 21.4" /second to 22.5mmfsecond. In 
addition, the supposed constant velocity was not con- 
stant throughout a single run, varying in an unpre- 
dictable manner. It would be unrealistic to assume 
any of these errors or their combined result to have a 
gaussian distribution. 

It is assumed that the landmark is located at  (O ,O) ,  



d d 

I I 
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Figure 2: Performance of RTLS (black) and Kalman filter 
(grey) on runs using the TRC Labmate starting with 4 
different landmark locations. Images were grabbed at time 
intervals t (horizontal axis) 12 seconds apart. The vertical 
axis gives the deviation of the estimated start position from 
the actual start position in millimeters. 

that the y coordinate of the robot's position does not 
change as the robot moves, and that the robot knows 
which side of the landmark it is on. At any step i: 

2 + ( t o  + i * interval) * velocity 
Y 

tan(pi)  = 

where (2 ,  y) is the robot start position, pi is the mea- 
sured angle, t o  is robot start time, interval is the in- 
terval at which images are grabbed and velocity is the 
robot velocity. The problem was expressed as a linear 
function so that no accuracy was lost by linearizing. 
However, the data matrix as well as the measurement 
vector contained error: 

where at any step i ,  Ai is the data matrix, bi is the 
measurement vector and xi is the estimated state vec- 
tor consisting of the coordinates ( 2 , ~ )  of the robot 
start position. The Kalman filter was given an esti- 
mated start position of (O ,O) ,  so that the deviation a t  
time 0 for the Kalman filter is just the initial distance 
from the robot to  the landmark. The leading column 
of the data matrix was weighted by = 100 (to ac- 
count for the fact that  this column has no error). 

Figure 2 shows a comparison of four of the robot 
runs. The robot velocity was set to 20mm/sec. Five 
images were grabbed 1 2  seconds apart. The robot 
start position relative to  the landmark used for local- 
ization was different in each run. The deviations d of 

the estimate of start location from actual start loca- 
tion at each 12 second time interval t are compared. 
The RTLS filter converged faster and to  more accu- 
racy than did the Kalman, often requiring only 2 or 3 
steps to  achieve full accuracy. 

The second set of experiments was run in simula- 
tion, but used two landmarks without assuming any 
prior knowledge of the robot's heading. We assume 
that the robot has no instrument such as a compass 
which could be used to  register its compass heading. 
Such instruments can give varying, incorrect readings 
in outdoor, unstructured environments [16], so that 
it is useful to design and evaluate methods to  ob- 
tain heading information from external sources. Such 
heading information could be used independently or 
as corrections to  estimates from internal sources. The 
robot knows the location of the two landmarks on a 
map (ground coordinate system). A coordinate sys- 
tem is arbitrarily centered at one landmark. The goal 
is to determine the robot start position plus the loca- 
tion of the second landmark. Knowing which land- 
mark is which in the view will allow the robot to 
uniquely determine its starting position from multiple 
readings along a baseline of unknown direction, ex- 
cept for certain degenerate configurations. Even if the 
robot does not know the order of the two landmarks 
in its view, it can limit its start position to  only two 
possible locations in the ground coordinate system, 
symmetrically located on either side of the line join- 
ing the landmarks, without any a priori knowledge of 
direction. 

The robot coordinate system is defined by placing 
landmark 1 at (0,O) and landmark 2 at coordinates 
(1,m) to  be determined by the filter. The x-axis is 
defined by the direction of the robot heading. The 
computed coordinates ( I ,  m) permit mapping this co- 
ordinate system to  the ground coordinate system. We 
let ~ l i ,  ol2i  be the angles from the robot heading to 
each of the landmarks at time ti. This is illustrated 
for each individual landmark in Fig. 1. We have the 
following relationships: 

-sin(aili) * 2 + cos(cyli) * y= ti * velocity * sin(ali) 

= ti * velocity * s in (c r2 i )  
-sin(Qai) * (x - 1 )  + COS(Q;? i )  * ( y  - m) 

where (x ,y)  is the robot start position. Random er- 
ror with a uniform distribution was added to  t,he angle 
measures and a normally distributed random error was 
added to the time measurement. As in the previous 
experiments, the problem was expressed as a linear 
function with the data matrix as well as the measure- 
ment vector containing error: 
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Figure 3: Mean deviations (d on vertical axis) between estimated and actual start positions, versus time steps (t on 
horizontal axis). Each row of plots shows the results with uniform errors in the angles of 0 ,  f2', f4', respectively, and 
each column shows the results with normally distributed errors in t with standard deviations 0,5%, lo%, respectively 

-sin(ali) COS(a1i) 0 

X 

where at any step i, Ai is the data matrix, bi is the 
measurement vector and xi is the estimated state vec- 
tor consisting of the coordinates (x,y) of the robot 
start position and the coordinates (1,m) of the sec- 
ond landmark. Figure 3 summarizes the results in an 
example where the two landmarks and the robot were 
placed at positions (-200,0), ( O , O ) ,  and (-200, -200), 
respectively, in the ground coordinate system. When 
the angle error is negligible, the TLS method provides 

uniformly good estimates. When the angle error is 
moderate, the error from TLS method suffers from an 
initial jump, but quickly recovers because it needs no 
initial estimate. Furthermore, in the regions where 
the RTLS error exceeds the Kalman filter error, nei- 
ther filter yields any accuracy at all, since both errors 
are larger than the values being estimated. 

4 Conclusion 

In this paper, we have proposed a Recursive To- 
tal Least Squares (RTLS) filter. This filter is easily 
updated as new data arrives, yet makes very few as- 
sumptions about the data or the problem being solved. 
The method was based on the ULV Decomposition. 
We have suggested its use as an alternative to the 
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Kalman filter in reducing uncertainty in robot naviga- 
tion. In this context RTLS does not require an initial 
state estimate, avoids modeling errors introduced by 
the extended Kalman filter, does not suffer the traps 
of local minima, and converges quickly. We have il- 
lustrated the method with simulated as well as actual 
robot runs. It is demonstrated that in the domain of 
robot navigation the RTLS can often provide more ac- 
curate estimates in fewer time steps than the Kalman 
filter, especially when errors are present in both the 
measurement vector and the data matrix. Future work 
includes utilizing the filter in navigation problems with 
actual outdoor terrain data and combining its use with 
the higher level reasoning described in [15]. 
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