
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 1, JANUARY 2002 41

Model-Based Automation of the Design of User
Interfaces to Digital Control Systems

Robin R. Penner and Erik S. Steinmetz

Abstract—Digital control systems, like those controlling the
functions of buildings or industrial processes, pose a number
of special problems for good user interface design. The general
problems of providing usability, common to all systems, include
difficulty in accessing and applying principles of good design. In
addition, digital control systems can have multiple users, with
multiple roles, and each installation has different configura-
tions of systems, controls, and user interface devices. Providing
interactions for the users of building control systems is often
achieved by manually implementing each required display. This
is an expensive solution, which often produces less than optimal
results. We address these problems through the automation of
user interface design. Our solution, called DIGBE (Dynamic In-
terface Generation for Building Environments), separates domain
knowledge, interaction design, and presentation heuristics into
multiple collaborating models. Each model contains knowledge
about a particular aspect of interface design, and uses this knowl-
edge to dynamically create each user interface that is needed to
support the users of a control system. DIGBE demonstrates that
it is possible to automatically and dynamically create consistent
and individualized user interfaces from model-based design
knowledge.
Index Terms—Building management systems, cooperative sys-

tems, design automation, user interfaces, user modeling.

I. INTRODUCTION

I N the day-to-day operations of a building, digital control
systems provide numerous automated and semi-automated

distributed functions, including heating, cooling, ventilation,
access control, and security. Human users may need to interact
with the components of each function. The building manager
may interact with the system by setting desired comfort and
consumption ranges (room and zone temperatures, electricity
usage), entering or modifying occupancy schedules, and
managing access codes and user databases. Other users of
the building systems, like building engineers, security guards,
or occupants, perform some of these management functions,
and additionally operate equipment (such as escalators and
thermostats). Technicians who install and service the building
management system interact with the digital control system
to install, set-up, fine tune, diagnose, and repair functional
components. Other technicians may modify configurations and
install replacement parts and systems, or add new functionality.
In specialized or complicated buildings, other user roles and
tasks might be required, like scheduling operating rooms or
maintaining sterile environments.

Manuscript received August 17, 2000; revised October 19, 2001.
The authors are with the Iterativity, Inc., Minneapolis, MN, 55404 USA

(e-mail: robin@rpenner.com).
Publisher Item Identifier S 1083-4427(02)01481-9.

Each of the interactions with the building automation sys-
tems must be provided through user interfaces between the
automation functions and the user. Current systems largely
provide these user interfaces through individual single-function
controls (thermostats, valves, keypads) and computer stations.
The computer stations may be dedicated displays, with data
tables and mimic displays (diagrams that mimic the organi-
zation of system components), or they may be multi-use PCs
with specialized programs providing scheduling spreadsheets,
access code databases, or configuration applications. Integra-
tion of functions, components, or data is not widespread in
building automation systems; user interfaces for each system
typically do not provide the same interface styles or interaction
designs. Switching between these different user interfaces often
causes errors and user confusion. In addition, the usability of
many of the user interfaces that are provided is poor, and many
are outdated, resulting in difficulty accessing and using the
functions that users need from the building automation systems.
User interfaces to individual functions and systems are hard
coded, and so may not get updated when additional automation
functions are added or when system components change.
Buildings, by their very nature, are unique. This uniqueness

presents additional difficulties when attempting to create good
user interfaces to the building’s distributed control systems.
Each building has a different set of users, tasks, systems,
equipment, and requirements. Small buildings differ from large
buildings, forced air systems differ from boiler systems, and
automated security installations differ from buildings that are
staffed with human security guards. Even within similar build-
ings with similar systems, the components of each particular
system will not be the same, and the environment within which
they operate and the special parameters required for individual
installations and operations cannot be predicted in advance.
There will be differences in the number of floors, the layout of
each floor, available ductwork, system placement, and system
distribution, which make it necessary to individually create
any mimic displays that are required. This is an expensive
procedure; hand crafting of individual displays for building
management systems generally accounts for an average of one
third of the total installed cost of a new building management
system.
Research in the last several decades has contributed to the

development of a solid practice of usability engineering, and
has clearly demonstrated that the design of the user interface to
an automated system determines the ability of humans to use it
(see, for example, [1] and [2]). Processes and artifacts for per-
forming user interface design have been successfully developed
over the last several decades (e.g., [3]–[5]; surveyed in [6]), and

1083–4427/02$17.00 © 2002 IEEE

42 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 1, JANUARY 2002

integrated user interface design and testing software is readily
available. In practice, however, fully usable systems often re-
main both undefined and unrealized. Uniformly good user inter-
faces to complex systems have been difficult to achieve formany
reasons, including the need for specialists to perform the design
work, rapidly changing technology which increases interaction
options, difficulty quantifying procedures or results, and the dif-
ficulty inherent in producing useful specifications, standards, or
guidelines. In addition, when standards and processes do exist,
there is often little management support for their application by
software developers. User interface design is very often not con-
sidered an integral part of the development process until late in
the cycle, and the separation between user interface designers
and application implementers can compound the problem.
Even when performed under optimal conditions by experi-

enced and talented professionals, user interface design as it is
currently practiced may no longer be sufficient to meet the com-
plex needs of the users of current control systems. Increases in
computing power and in the prevalence of distributed computer
systems make it difficult to predict in advance which tasks and
what information users will need when they interact with such
systems. This makes it difficult to design a user interface or
interaction structure in advance to suit the user, the task, the
information or objects involved in the task, the application or
system providing the task functions, and the device and oper-
ating system the user has chosen to embody the user interface.
It may be impossible to predict the interactions that will be re-
quired for a particular system and user, the information that will
be necessary, or the information that will be available. It will
also be impossible to predict or control the hardware and soft-
ware capabilities that will exist in local and distributed forms,
or the experience and capabilities of the human participants.
In other work ([7]–[9]), we describe how we used usability

principles and processes to cognitively engineer (through task
and scenario analysis, integrated user involvement, and func-
tional prototyping with iterative development) a user interface
design framework for building managers, operators, and techni-
cians, including full design specifications for environmental and
security domains. This system provided a general, tested user in-
terface framework for building management systems hosted on
PCs, including specification of the displays required for each
role and task. Since the components and functions required at
each installation are different, general rules for widget selection
and layout, culled from the literature, were detailed and illus-
trated in a style guide [10], available to application developers
as a paper document and as an electronic hypertext document.
This effort would have been sufficient (at least, until it needed

to be revised as the state of the art in user interface design pro-
gressed) if the applications that were being designed were not
required to differ based on system configuration or user role.
Each special case could not be addressed within the limits of
a style guide, resulting in the requirement for implementers to
make design choices, often to the detriment of the “user expe-
rience”. In addition, this solution does not provide integration
between other building systems and the environment and secu-
rity systems, and does nothing to alleviate the costly burden of
creating specialized displays and controls for each installation.
To explore other approaches, we undertook a five-year research

program to explore and prototype automated solutions to pro-
viding user interfaces to complex digital control systems. This
program had several explicit goals, including the following.
• Reduce the need for user interface software development
efforts.

• Maximize the appropriate application of user interface
knowledge.

• Minimize end user and design engineer configuration re-
quirements.

• Provide for multiple types of functionality, data, and users.
• Support reuse of user interface designs.
• Support multiple types of hardware devices.
• Support evolution in control systems, user functions, user
interface design knowledge, and user interface devices and
interaction paradigms.

We hypothesized that a system with multiple collaborating
models could be constructed, capable of automatically de-
signing, presenting, and managing the interface between a user
and a control system. To test whether such a system would meet
our goals, we designed and iteratively created an operational
prototype called DIGBE (Dynamic Interaction Generation for
Building Environments [11]). We used the tested user interface
framework and style guide that we had developed for building
management as the basis for the knowledge that our system
contains. DIGBE is a fully functional system, based on solid
design principles, for dynamically and adaptivelymanaging the
basic tasks of building management (including configuration,
monitoring and control of security and environmental systems,
management of users, and data analysis), through the collabora-
tion of three models. TheDomainModel provides the semantic
basis for interaction design, allowing control system indepen-
dence and an object-oriented representation of control system
components. The hierarchical, task-based Interaction Model
provides the design knowledge required to design appropriate
tasks and interactions, allowing dynamic application of the
principles of usability engineering. The Presentation Model
converts interaction designs into user interfaces, allowing
hardware and operating system independence.

II. RELATED RESEARCH

Researchers and practitioners have attempted to address
the problems of automating usability engineering for several
decades. The popularity of graphical user interfaces in the
1980s spurred an emphasis on user interface management
systems (UIMSs), which, it was hoped, would result in the
ability to automatically design and present user interfaces.
However, in the mid-1990s, industry and university researchers
generally concluded [12] that automated user interface gener-
ation is too difficult, because it depends on human knowledge
of task structures and domain requirements. Many of these
UIMS researchers chose to concentrate on approaches in which
automated, model-based systems provide a critique of designs
developed (mainly) by human designers [13].
Despite the lack of emphasis on totally automated generation,

the related work on computer-assisted design has had much to
offer in the areas of user and task modeling, and also informs the
issues of separation of processes between domains, interactions,

PENNER AND STEINMETZ: MODEL-BASED AUTOMATION 43

and presentations. SAGE [14] generated (two–dimensional) 2-D
static presentations of relational data, and emphasized the im-
portance of multidimensional representations of data and the
effect of user goals. BOZ [15] took a task analytic approach to
interface automation, included some rules of composition that
responded to situational parameters, and separated interaction
content from user interface format. IBIS [16] had a separate pre-
sentation component, and included representation knowledge of
users, tasks, and contexts. Later work on IBIS included an em-
phasis on data characterization [17] and hierarchical decompo-
sition of visual lexicons [18].
Investigations in the area of user interface design environ-

ments (UIDE) included modeling of user interface design
knowledge [19], separation of design environments into
multiple layers for the domain, the interactions, and the pre-
sentations [20], and declarative user interface design models
[21]. Mecano [22] used domain models to provide the under-
lying semantics for user interface design. Recently, computer
aided design of user interfaces (CADUI) [23], [24] has been
suggested as a more efficient emphasis than automated gen-
eration. CADUI provides incremental design aiding through
a task-based (rather than a widget-model-based) mechanism,
and includes an automatic presentation layer. Many researchers
are investigating the various aspects of CADUI, contributing
to the development of powerful tools to assist human usability
engineers.
Driven by the high costs of delivering good user interfaces for

each installation of a complex control system, some industrial
practitioners have been developing pragmatic solutions to the
problem. In the domain of manufacturing information systems,
a generated user interface has been demonstrated [25] which
combined user, task, and information modeling with templates
to produce dynamic, adaptive interfaces for controlling auto-
mated manufacturing parameters. Our approach contained these
elements, but also incorporated an adaptive model of the design
of interactions for subtasks and interaction elements that can
compose and modify themselves to suit different types of users,
data, or task situations.

III. DYNAMIC INTERACTION GENERATION FOR
BUILDING ENVIRONMENTS

The DIGBE prototype was developed in Java, and runs on
most hardware platforms. There are two software components
apparent to a user of a DIGBE building management system.
First, a general DIGBE application is available as a standard
desktop application on a multi-use PC. A user, generally a
building manager, starts up that program, and is presented with
a simple dialog that allows the user to identify the type and
location of the control system database, the name of the system,
and the system-level user’s name and password. In response,
DIGBE creates an executable to allow log-on to the control
system. This executable is available as another application,
titled with the name of the chosen control system. When a
user executes this application, DIGBE presents a log-on screen
requesting the user type and password.
After successful log-on, DIGBE designs and presents (in real

time) the user interface appropriate to the task set of that user.

Each of the tasks required by the user’s role is presented as
part of an integrated application, specialized to the user’s role
and access privileges. The user interface is also automatically
adapted to best suit each specific task, the objects of interest,
the interface device, and the value and type of data. As the in-
teraction progresses, the system continues to dynamically adapt
to these factors by designing, presenting, and managing the on-
going user interface. The DIGBE research implementation pro-
vides for three user roles (manager, operator, or technician),
can interpret any building management control system database
in its known formats, and can present fully functional building
management user interfaces on either a CRT or a handheld user
interface (simultaneously, if desired). It requires no pre-built
user interfaces to any of its functions, but creates each inter-
action and interface as required.
Fig. 1 shows a screen shot of a DIGBE-generated user in-

terface for a manager of a large building environmental con-
trol system. The basic tasks for this user are presented as panes
of an application window, and include system navigation (left
pane), system monitoring (top right) and detail data interactions
(lower right). With these displays, the user is automatically pre-
sented with the display of (or access to) all necessary tasks and
system components, through a consistent and “usability engi-
neered” user interface, specialized to the particular building and
combination of control systems.
DIGBE is able to provide a well-designed, specialized user

interface for each situation, because it uses internal models of
good design (as we currently understand them) to create and
tune each interaction. DIGBE’s knowledge is stored in object-
oriented models, and is separated into domain information, in-
formation about user tasks and interaction requirements, and in-
formation about how to select and present interactions on dif-
ferent types of hardware. The models in DIGBE allow it to
• create an object-oriented applicationmodel (containing a
representation of the site-specific digital control system),
using a domain model (which defines an ontology of the
objects, relationships, actions, user roles, data roles, and
data types in the domain);

• create a representation of the interaction design to
support a specific user’s interaction with the control
system, using an interaction model (which contains
compositional rules for creating interactions to support
task structures);

• format and present that interaction as a user interface,
using a presentation model (which contains information-
coding heuristics and hardware-specific widget selection
information);

• manage and automatically update the representations (and
therefore the user interface) in real-time, as the interaction
progresses.

The remainder of this section provides a brief overview of the
structure, function, and operation of each of the three main
models in DIGBE.

A. Domain Model

The domain of building management is fairly well under-
stood, and numerous domain models with information about

44 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 1, JANUARY 2002

Fig. 1. DIGBE-generated user interface for a building manager.

data types and information roles have been constructed (e.g.,
[26]). The domain model required to support automatic user in-
terface design in DIGBE, like other representations of buildings
and their control systems, contains information about control
objects, their location within the building structure, and their
hierarchical organization within control systems. The types of
artifacts in the DIGBE domain model are shown in Fig. 2. In
this and other diagrams, we conform to the Unified Modeling
Standard [27], and represent object oriented inheritance rela-
tionships as arrows (with the arrow head pointing to the parent,
and the child referred to as the specialization). Composition (or
“has-a”) relationships are shown as lines with a circle at one end
(with that end indicating the owner or container in the relation-
ship, and the other end the subpart).
The artifacts and their organization in the DIGBE domain

model mirror the organization that the users of building man-
agement systems hold about their systems; many databases cur-
rently in use have similar structures. Sites have three sub-hier-
archies: their logical engineering structure (panel groups, con-
taining panels that physically contain controllers), the network
structure (C-buses, which are networks of controllers, each con-
trolling multiple plants), and the physical structure (buildings,
containing areas, then rooms with equipment and occupants).
Plants and equipment may have associated points, which are the
input and output components of control systems. There are a
number of different types of points possible in a control system,
including sensors, actuators, and counters, with specializations
of each type of point to include the basic types of input/output
objects present in buildings.

Fig. 2. Domain model classes in DIGBE.

When the DIGBE application is provided with a pointer to a
database containing digital control configuration information
for a building (or set of buildings, called a “site”), and it has
knowledge of the schema for that database, it does two things.
First, it converts the objects that are defined in the database
into corresponding domain model objects, then instantiates
them into an application model that it creates to represent that
building system.

PENNER AND STEINMETZ: MODEL-BASED AUTOMATION 45

A very small building with only one simple controller would
have an application model with the artifacts shown in Fig. 3.
The highest-level object represents the site “My Store.” It has
one building, one panel, and one control network. The con-
trol network contains a heating and ventilation control (HVAC)
plant, which has a selectable mode (heat/auto/off). There are
two rooms that also contain equipment that is part of the HVAC
plant; the “Back Room” contains equipment called “Furnace,”
with an on/off switch, and the “Sales Room” contains equipment
called “Thermostat,” which has a sensor for the actual temper-
ature and a controller to set the desired temperature.
An application model consisting only of physical artifacts

provides important semantic information about objects and their
relationships. Other domain information, however, is necessary
to support the automation of interface design. The problem lies
in the different types of data that are present in different aspects
of the control system, and the different types of interactions re-
quired with different types of equipment. While sensors cannot
be controlled, only read, actuators need to be both readable and
controllable. Different types of actuators have different control
and display requirements; for example, a temperature control
has a continuous range with high and low limits, while a heat
mode switch is a three-state control. The automated interface
design system needs to be able to select the appropriate inter-
faces for different kinds of data types; for example, on a stan-
dard PC user interface, state objects like on/off switches require
very different interactions and coding than, for example, video
objects.
To provide some of the required data semantics needed to

support automatic interface design, we also include a category
of objects in the domain model called Domain Data. Each ar-
tifact in the domain model has a number of properties, such as
their current value, permissible settings, or operational limits.
We have identified eight basic data types required to represent
the properties of objects in use in digital control systems of
the type we are considering: accumulator (simple counter), con-
tinuous (range), discrete (setting choices), file (data file), state
(Boolean), text, time, and video. When an artifact is created,
each of its data properties is also instantiated as one or another
type of domain data object. For example, all artifacts, when
they are instantiated, also instantiate a text data object, to rep-
resent their name. The data objects associated with an analog
sensor (e.g., a temperature or humidity sensor) include status (a
state data), access level (a discrete data), various continuous data
values representing their current value and alarm limits, and file
data objects representing pointers to history files.
During the development of DIGBE, we found that the design

of appropriate interfaces is also enhanced by deeper knowledge
of the uses to which that information may be put in context.
To provide this information to the interaction design model, we
provided additional semantic data markers in the DIGBE do-
main model, in the form of Java classes called Roles. The Role
classes in DIGBE are singleton classes (only one instance of a
class is ever present in a virtual machine). These classes provide
the language spoken between the domain model and the inter-
action model, much as a set of enumerations would act in the
C programming environment. Because the language consists of
software objects instead of simple numbers or strings, however,

Fig. 3. Example application model for a simple building.

it becomes much more flexible: the language can represent an
ontological hierarchy through inheritance, and actions (function
calls) can be attached to these language objects to give them ob-
ject-oriented semantic knowledge.
There are four main types of roles provided in the domain

model: agent roles, process roles, referential roles, and data
roles. Agent roles are associated with a user when that user is
created or re-defined, and currently include engineer, guard,
maintainer, manager, or operator. These roles are used by the
Interaction Model to select the task set for the initial user
interface design. Because of the agent role of operator assigned
to a particular security guard, only operations tasks, and not
maintenance, management, or technical tasks, will be presented
to this user.
Process roles are currently limited to the two main pro-

cesses that DIGBE has knowledge of: building environmental
processes and security processes. These roles are assigned
to both plants and users when they are created, and are used
to constrain information for particular users. For example, a
particular security guard has the process role security. When the
interaction model composes the interaction design to support
this user, only objects from plants that the user is concerned
with will be selected, so that the security operator will not
be shown or have access to environmental control system
components.
Referential roles are used to provide information about

the kind of thing referenced by each object in the domain
model. They are statically preassigned to each object in the
domain model, and their instantiations retain the referential role
assigned to them. all artifacts are assigned an object referent
role, to indicate that they refer to objects in the world. Data
objects are assigned individual referential roles that are used by
the interaction design objects to provide a basis to choose be-
tween different user interface components; for example, radio
buttons, rather than number spinners, are better choices for data
that refers to Boolean states. Using referential role interfaces
provides the semantic information that allows DIGBE to make
such choices. State data objects have a Boolean referential
role, for example, to generically represent that any data object
that is a specialization of a state data object refers to Boolean

46 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 1, JANUARY 2002

data. Continuous data objects, in contrast, are associated with
a number referential role, to represent that they operate on
numerical, continuous data.
Data roles are associated with the data objects in the appli-

cation model when a particular data object is instantiated. Data
roles provide semantic information about the purpose of the in-
formation represented by the data object, in the context of the ar-
tifact it is associated with. For example, the objects representing
the current value of a temperature sensor, a fan switch, and ther-
mostat are the data objects continuous, state, and continuous,
respectively. Each of these current values is assigned a data role
that indicates the type of information they represent for the ob-
ject they are associated with. The temperature sensor provides
a measured value, and is given the data role of value. The fan
switch, in contrast, is a setting that determines how the system
will operate; the current value for the fan switch is assigned an
operational parameter data role. The thermostat isn’t a measured
value, but a desired setting, and so is given the data role of set-
ting. These data roles are used to constrain the subtasks to apply
only to information that is needed in the current situation.
The DIGBE domain model objects are used as templates

when DIGBE builds the application model that represents the
processes, structures, and objects that are present in the system.
Using an architecture like DIGBE, we have found that a domain
model needs to support the following semantic information:
• control system objects and their hierarchical relationships;
• data objects, to represent the semantic information about
data values associated with objects;

• role information, to guide the selection of appropriate user
interface elements, to provide differential access to dif-
ferent types of building processes, and to allow interaction
design based on the purpose and form of information.

B. Interaction Model

DIGBE’s interactionmodel contains the information required
to design interactions between a user and a control system, based
on the requirements of the current situation as they are repre-
sented in the application model. We built a five-layer hierar-
chical model for DIGBE, with the top level representing appli-
cations that are required by the major roles of building man-
agement system users. Fig. 4 shows the organization of the five
levels; using UML notation, this figure shows that the compo-
nents of each level are objects from the next lower level. In
DIGBE, applications are composed of tasks, which are com-
posed of subtasks. Subtasks are composed of elements, which,
in turn, are composed of primitives.
DIGBE has three applications: building management,

building operation, and building technician. When a user logs
on to a DIGBE control system, the role associated with that
user determines which application is selected as the basis for
the user interface. Based on our analysis of the requirements
of building management user interfaces in earlier work, we
had developed task analyzes for each of the users in a building
management system. The basic tasks that each user requires
for each application make up the second layer in the DIGBE
interaction model, the task level. Fig. 5 presents the task
hierarchy in the DIGBE interaction model. Objects that are

Fig. 4. Interaction model hierarchical levels.

Fig. 5. Interaction model tasks.

Fig. 6. Interaction model subtasks.

Fig. 7. Interaction model elements.

shown with shaded boxes are terminal objects, which can be
instantiated into an interaction design, while objects in white
boxes are abstract, and only their terminal specializations can
actually be instantiated.
Tasks are composed of subtasks; the DIGBE subtask hier-

archy is shown in Fig. 6. Subtasks are composed of elements,
shown in Fig. 7, which are in turn composed of primitives,
shown in Fig. 8.
The interaction model is a self-composing productive system.

When an instance of any interaction object is created for a partic-
ular user and a particular set of domain objects, that instance is
responsible for adapting to the current situation and producing
its own parts. Objects fine-tune their sub-components for the
specific context, based on appropriateness to the situation and
the user. Each subcomponent then tunes itself by selecting and
tuning its own subcomponents. Fig. 9 shows the compositional
nature of the interaction model. To simplify the diagram, we
only include the technical, command, and configuration tasks,

PENNER AND STEINMETZ: MODEL-BASED AUTOMATION 47

Fig. 8. Interaction model primitives.

Fig. 9. Portion of the interaction model, showing compositional relationships.

and have removed any abstract objects that are not composi-
tional subparts of the interactions included in the figure.
When a user requests a DIGBE application by logging on,

the system selects the appropriate application, and instantiates
it into the interaction design that it is building. This application
object then determines the tasks it requires for that user, and se-
lects the appropriate task objects to be instantiated into the inter-
action design. These task objects also compose themselves, by
selecting the subtasks that are defined for their tasks. Subtasks,
in turn, select and specialize their component Elements, which,
finally, select and instantiate appropriate primitives. Using this
process of self-composition, an entire user interface (or only the
parts that need to be changed) is automatically produced ormod-
ified in real time, when needed. An example of a generated in-
teraction design is shown in Fig. 10. The example shows only
the configuration task for a building manager interested in con-
figuring a freeze stat (a thermostat that monitors for freezing
temperatures). To simplify the example, only the specifier sub-
task is expanded to show its component elements, and only the
StateItem element that represents the operating mode for the
freeze stat is expanded to show component primitives.

Fig. 10. Portion of interaction design for configuration task.

Of particular interest is the mechanism by which subtasks
in the DIGBE interaction model select and specialize their el-
ements. First, the subtask uses the role of the data in the system
to select only the objects that have the same role as that subtask.
The specifier subtask, for example, searches for data objects that
are associated with the freeze stat that have the operational pa-
rameter role, and creates an editable element for only those data
objects. The specification subtask, on the other hand, presents
the same information as noneditable elements.
As shown in Fig. 9, the elements that are subcomponents of

themaintainer subtasks are only defined generically, as dynamic
information elements. because this object is an abstract object
in the interaction model, the dynamic information element spe-
cializes itself to fit the data object of interest, using the referen-
tial role associated with that data object. For example, the data
representing the operating mode of the freeze stat is associated
with referential role of Boolean, as is the element StateItem, so
a StateItem is selected to represent that particular data object.

C. Presentation Model
The presentation model in DIGBE is separate from the inter-

actionmodel and the interaction design in order to make DIGBE
applicable to multiple types of user interface devices. To prove
the DIGBE concept, the prototype is capable of composing in-
terfaces for users on handheld Palm devices or CRTs, with sep-

48 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 1, JANUARY 2002

arate presentation models for each of these two devices. The
DIGBE presentation model converts the interaction design into
an actual presentation, by selecting user interface components
like windows (for applications), frames (for tasks), and widgets
(for elements). It also contains a number of heuristics that allow
it to line up widgets, add appropriate coding (selecting, for ex-
ample, icons to represent objects in mimic displays, and to ap-
propriately color code alarm status of objects in navigation hier-
archies). Fig. 11 presents a portion of a user interface presenta-
tion for the specifier subtask, showing only the ObjectSelection
(labeled “Freeze Stat”), ActionSelection (“View: Details”) and
Specifier SubTasks.
Separation of the presentation model from the interaction

model provides device independence, allowing the same
interaction to be presented in the most appropriate fashion for a
particular device. For example, although the interaction design
element that represents alarm status is turned into a color code
when the user interface device is a CRT, the handheld device
we used for the prototype implementation of DIGBE did not
display color. The presentation model for this type of device,
instead, converts the element that represents alarm status into
“bold coding”, in which the symbol or name of an object in
alarm is shown with bolder lines than normal.
In the DIGBE proof of concept prototype that we developed,

there is one application model for each site, and one active In-
teraction Design for each user logged onto the control system.
A user may have multiple user interfaces at one time; when they
access a DIGBE application from a different device, a user in-
terface is generated for them, regardless of whether another user
interface is currently being generated; both use the same inter-
action design, differing only in the Presentation Model that is
used to tune the interaction to each device.

IV. CONCLUSIONS AND FUTURE RESEARCH

We have discussed the models that DIGBE uses to automati-
cally design interactions that dynamically adapt to the user and
to the task and data environments. DIGBE demonstrates that
interaction design knowledge can be modeled as an automated
real time constraint- and affordance-driven process, and that this
process can be separated from those necessary to present inter-
actions on user interface devices and from those necessary to
internally represent information about domain objects.
Additional areas of research are suggested by the current

work. An extension of the DIGBE architecture to allow the
incorporation of independently developed models of tasks,
users, interaction design processes, and domains would greatly
increase the utility of the system. In addition, integration of
a modularized, compositional approach with efforts whose
primary emphasis are the development of robust models would
demonstrate both the real-world application of the models
and the scalability of an approach like the one taken with
DIGBE. One promising example is the emerging work on
task characterization [28]. This research has been successfully
applied to automated visual discourse synthesis, using a model
of presentation intents that is matched to a model of the visual
tasks that achieve them. DIGBE attempts to include this sort of
information through its dynamic specialization mechanisms,

Fig. 11. Presentation of specifier subtask for freeze stat.

but the information is embedded in the interaction objects and
not fully constrained by the roles in the domain that correspond
to the intent structure in [28].
Additional future research needs include improvements to the

modeling of actions available to the user (both in the domain
and the interface). In addition, a system like DIGBE would ben-
efit from the development of domain semantic reasoning mech-
anisms to guide visual layouts, the ability to dynamically add
objects to the domain, and mechanisms to accommodate objects
which cannot be fully classified (and therefore given roles) in
the current domain structure. Further research is also required
to provide the information infrastructure that is needed to make
such an approach viable, including automatic discovery of do-
main information and extension of the modeled domains to de-
termine scalability. In addition, to provide ease of evolution,
such a system would require the addition of several complex
programmer interfaces. These interfaces, which DIGBE could
itself generate, would allow user interface design specialists to
refine the design knowledge possessed in the different types of
models.
In complex control domains, automated interface design

could become an economically beneficial alternative to pre-de-
signed user interfaces requiring expensive configuration.
DIGBE demonstrates that, although full automatic synthesis
of any interface at any time may not yet be feasible, it is both
possible and useful to automatically generate interfaces to
complex systems domains with known task structures.

REFERENCES
[1] T. Landauer, The Trouble with Computers. Cambridge, MA: MIT

Press, 1995.
[2] J. Nielsen, Usability Engineering. Boston, MA: Academic, 1993.
[3] D. Mayhew, The Usability Engineering Lifecycle. San Francisco, CA:

Morgan Kaufman, 1999.
[4] W. Galitz, The Essential Guide to User Interface Design. New York:

Wiley, 1997.
[5] T. Mandel, The Elements of User Interface Design. New York: Wiley,

1997.
[6] B. Myers, “User interface software tools,” ACM Trans. Comput.–Hum.

Interact., vol. 2, no. 1, pp. 64–103, March 1995.
[7] R. Penner, “Developing the process control interface,” in Engineering

for Human Computer Interaction. New York: Elsevier, 1993, pp.
317–334.

PENNER AND STEINMETZ: MODEL-BASED AUTOMATION 49

[8] R. Penner and N. Soken, “Consistent honeywell interface: Tools for de-
velopers,” Sci. Honeyweller, pp. 106–109, 1993.

[9] R. Penner, “Multimedia interfaces for process control,” in Proc. Energy-
Sources Technology Conf., ASME Petroleum Div., 1994, pp. 375–383.

[10] , Consistent Honeywell Interface Design Concept for Building
Management. Minneapolis, MN: Honeywell, Inc., Sensor Syst.
Develop. Ctr., 1992.

[11] R. Penner and E. Steinmetz, “DIGBE: Adaptive user interface automa-
tion,” in AAAI Spring Symp., Stanford, CA, Mar. 2000, pp. 98–101.

[12] P. Szekely, “Retrospective and challenges for model-based interface de-
velopment,” in Computer-Aided Design of User Interfaces, J. Vander-
Donckt, Ed. Namur, Belgium: Presses Univ. de Namur, 1996.

[13] M. Byrne, S. Wood, P. Sukaviriya, J. Foley, and D. Kieras, “Automating
user interface evaluation,” in Proc. 1994 Conf. Human Factors in Com-
puting Systems (CHI94), 1994, pp. 232–237.

[14] S. Roth and J. Mattis, “Data characterization for intelligent graphics pre-
sentation,” in Proc. Conf. Human Factors in Computing Systems (CHI
’90), 1990, pp. 193–200.

[15] S. Casner, “A task-analytic approach to the automated design of graphic
presentations,” Trans. Graph., vol. 10, no. 2, pp. 111–151, 1991.

[16] D. Seligman and S. Feiner, “Automated generation of intent-based 3D
illustrations,” Comput. Graph., vol. 25, no. 4, pp. 123–132, 1991.

[17] M. Zhou and S. Feiner, “Data characterization for automatically visual-
izing hetrogeneous information,” in Proc. IEEE Information Visualiza-
tion’96, 1996, pp. 13–20.

[18] , “Top-down hierarchical planning of coherent visual discourse,” in
Proc. 1997 Int. Conf. Intelligent User Interfaces, 1997, pp. 129–136.

[19] J. Foley, C. Gibbs, W. Kim, and S. Kovacevic, “Knowledge-based user
interface management system,” in Proc. 1988 Conf. Human Factors in
Computer Systems (CHI ’88), 1988, pp. 67–72.

[20] C. Wiecha, W. Bennett, S. Boies, J. Gould, and S. Greene, “ITS: A tool
for rapidly developing interactive applications,” Trans. Inform. Syst.,
vol. 8, no. 3, pp. 204–236, 1989.

[21] P. Szekely, P. Luo, and R. Neches, “Beyond interface builders: Model-
based interface tools,” in Proc. INTERCHI ’93, 1993, pp. 383–390.

[22] A. Puerta, H. Eriksson, J. Gennari, and M. Musen, “Model-based auto-
mated generation of user interfaces,” in Proc. Nat. Conf. Artificial Intel-
ligence, 1994, pp. 471–477.

[23] J. Vanderdonckt, “Automatic generation of a user interface for highly in-
teractive business-oriented applications,” in Intelligent User Interfaces,
M. Maybury andW.Wahlster, Eds. San Francisco, CA: Morgan Kauf-
mann, 1998, pp. 516–524.

[24] J. Vanderdonckt and A. Puerta, Eds., Computer-Aided Design of User
Interfaces II. Dordecht, The Netherlands: Kluwer, 1999.

[25] R. Monafred, A. Hodgson, B. Bowen, and A. West, “Implementing a
model-based generic user interface for computer integrated manufac-
turing systems,” in Proc. Inst. Mech. Eng., vol. 1212, 1998, pp. 501–516.

[26] P. Torcellini, “Supervisory control for intelligent building systems,”
Ph.D. dissertation, Purdue Univ., West Lafayette, IN, 1992.

[27] I. Jacobson, G. Booch, and J. Rumbaugh, The Unified Software Devel-
opment Process. New York: Wiley, 1999.

[28] M. Zhou and S. Feiner, “Visual task characterization for automated vi-
sual discourse synthesis,” inProc. CHI98: Human Factors in Computing
Systems, 1998, pp. 392–399.

Robin R. Penner received the Ph.D. degree in cognitive science and robotics
from the University of South Florida, Tampa, in 1989.
She has over 20 years of industry experience in artificial intelligence, usability

engineering, and software engineering, primarily applied to the design and im-
plementation of experimental adaptive systems. She is currently the president
and chief cognitive scientist for Iterativity, Inc., Minneapolis, Minnesota. Her
main research interests include decision-aiding automation, cognitivemodeling,
and user interface design.

Erik S. Steinmetz received the M.S. degree in computer science from the Uni-
versity of Minnesota, Minneapolis, in 1999.
He has formal training in artificial intelligence, computer science, philosophy,

and mathematics. He is currently the Vice-President and Lead Software Archi-
tect for Iterativity, Inc., Minneapolis. His major research interests include agent
communications, adaptable user interfaces, and human decision aiding.

