

Automated Interaction Design for Command
and Control of Military Situations

Robin R. Penner
Iterativity, Inc.

118 E. 26th St., #201
Minneapolis, MN 55404 USA

+1 612 871 4514
robin@iterativity.com

Erik S. Steinmetz
Iterativity, Inc.

118 E. 26th St., #201
Minneapolis, MN 55404 USA

+1 612 871 4514
erik@iterativity.com

ABSTRACT
We will demonstrate the SHARED software, which contains
an implementation of the Automated Interaction Design
(AID) approach to dynamic creation of user interfaces. AID
uses multiple agents, multiple models, and productive
compositional processes to generate need-based user
interfaces within a complex control domain. In addition to
demonstrating operational software that responds to military
interaction needs, we will present details of the underlying
models and operations that support user interface generation
in this domain.

Categories & Subject Descriptors: H.1.2. [Information
Systems]: Models and Principles: User/Machine Systems:
Human Factors

General Terms: Design, Human Factors

Keywords: Automated design, model-based reasoning,
dynamic user interface, domain semantics

INTRODUCTION
As part of the SHARED project, funded under the DARPA
Mixed-Initiative Control of Automatons (MICA) program,
we developed software to support commanders who are
engaged in the command and control of fleets of unmanned
aerial vehicles (UAVs). MICA research emphasized mixed-
initiative control of teams of automated systems, with the
integration of numerous collaborative planning agents who
operate with variable autonomy. Details of the approach and
the architecture are given in [1], [2], [3] and [4].

Using a simulation as the source of situation information,
SHARED builds a semantic model of the situation, designs
and presents visualizations to support decision-making, calls
planning reasoners as required, and provides interfaces to
allow the commander to configure and control equipment,
convey the evolving command concept, and oversee mission
execution.

SHARED PERFORMANCE
The architecture of the SHARED system is shown in Figure
1.

Figure 1. Architecture of SHARED

The steps in running the software begin with the commander
starting the SHARED application. This causes the situation
agent to connect to a simulation (or other data source) and
collect information about the entities in the current
battlespace. Based on this information, it uses exemplars
from a domain model to create and maintain a semantically
rich representation of the situation throughout the life of the
active software.

After a complete situation representation has been formed,
objects in the situation that need planning assistance call on
any available external planning agents to produce the plans
they require. Finally, because there is a human user in the
situation representation who has responsibility for the
command and control of the battlespace situation, the
Automated Interaction Design (AID) module is called to
build and maintain a user interface to the system.

The sequence diagram for the AID portion of the SHARED
software is shown in Figure 2.

Interaction
Model

Interaction
Design
Agent

Domain
Model

Presentation
Model

Roles

Presentation
Design
Agent

Situation
Agent

Situation
Representation

Interaction
Design

Interface
Design

Models

Agents

Generated
Software

Copyright is held by the author/owner(s).
IUI’04, Jan. 13–16, 2004, Madeira, Funchal, Portugal.
ACM 1-58113-815-6/04/0001.

362

Figure 2. AID Sequence of Operations

The interaction agent creates a high level object to represent
the interaction with the user. This object then composes
subparts of itself (views) based on the activities,
responsibilities, and capabilities of the human user. The
“needs” are embodied in the objects, relationships, and roles
present in the situation. To do this without dependence on
prior knowledge of the contents of the situation, the domain
model and the interaction model share a set of static roles
available in a separate role model. Once the high level
interaction has determined which views are necessary to
support the user’s activities, it creates one or more views of
each required type. These views then self-compose
themselves, selecting and representing their required
contents.

All objects in the interaction model (and many in the domain
model) are productively self-composing. When created, they
create their own subcomponents based on factors such as the
context or the roles of the things in the domain that need to
be represented in the interaction. Each view selects the
required information about the situation by selecting the
appropriate data associated with the object being represented.
For example, specification views select the data associated
with an object that expresses parameters, like heading or
speed, while information views select information that
expresses identity and description, like name and color.

Once the data that need to be represented have been selected,
interaction elements to represent each piece of information
are created, based on the format of the data. For example, the
number element is chosen to represent the speed setting
because it is both changeable under the context of a
specification interaction and its data format is a continuous
number. Each applicable data property of this speed setting is
represented as part of the number element, using the
appropriate primitives from the interaction model; for
example, value primitives are used to represent current value,
minimum value, maximum value, and the decimal places,
while a text enter primitive is used to represent the editable
setting value.

When the interaction design is complete, an agent
specializing in presenting interactions to humans as concrete
presentations is called. The presentation agent uses heuristics
and best practices rules to group data, line up widgets as
appropriate, and color or otherwise code the information for
human consumption, and it dynamically manages translating
user inputs back to the interaction design. As the user
interacts with the system, the situation representation, the
interaction design, and the presentation design all remain
dynamically connected. This allows AID to automatically
continue to meet the changing needs of the user. A
screenshot from SHARED is shown in Figure 3.

Figure 3. SHARED Example Display

AID automates, using a model-based productive process, the
composition of user interfaces to meet user needs. The use of
AID in SHARED, a fully operational software application
for command and control of a complex military application,
demonstrates the applicability of this approach.

ACKNOWLEDGEMENTS
The work on AID was supported by DARPA and AFRL
under contract F33615-01-C-3151.

REFERENCES
1. Penner, R. and Steinmetz, E. (2002a) Model-based

automation of the design of user interfaces to digital
control systems. IEEE Transactions on Systems, Man and
Cybernetics, Part A: Systems and Humans. Vol 32, No.
1, January, 41-49.

2. Penner, R. and Steinmetz, E. (2002b) DIGBE: Online
model-based design automation. Kolski and
Vanderdonckt, eds., Computer-Aided Design of User
Interfaces III, Kluwer, pp 179-192.

3. Penner, R. and Steinmetz, E. (2003) Implementation of
automated interaction design with collaborative models.
Interacting with Computers, Vol. 15, 367-385.

4. Penner, R. and Steinmetz, E. (2003) Automated Support
for Human Mixed-Initiative Decision and Control.
Proceedings of the Conference on Decision and Control,
December.

What views
required?

Generated
UI

Interaction
Agent

Presentation
Agent

Create Views

Views
Self-Compose

Design
Presentation

Invoke
AID

Complete?
Interaction
Requests

Presentation

Situation
Needs/Roles

363

