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Introduction

» ’'Random Sampling’ or 'probabilistic methods’: use of ran-
dom data to solve a given problem.

» Eigenvalues, eigenvalue counts, traces, ...

» Many well-known algorithms use a form of random sam-
pling: The Lanczos algorithm

» Recent work : probabilistic methods - See [Halko, Martins-
son, Tropp, 2010]

» Huge interest spurred by ‘big data’

» |n this talk: A few specific applications of random sampling
iIn numerical linear algebra
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

» Arises in cross validation :

(I — A(09))gll2
Tr (I — A(0))
D == blurring operator and L is the regularization operator

with A(0) = I-D(D'D+oLL") 'D7',

» |n [Huntchinson ’90] Tr[Inv[A]] is stochastically estimated

» Motivation for the work [Golub & Meurant, “Matrices, Mo-
ments, and Quadrature”, 1993, Book with same title in 2009]
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Problem 2: Compute Tr[f (A)], f a certain function
Arises in many applications in Physics. Example:

» Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[Ref: H. Roder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15382 (1997)]

»  Will be covered in detail later in this talk.
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse
» Harder than just getting the trace

» Arises in Dynamic Mean Field Theory [DMFT, motivation for
our work on this topic].

» Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

» |n uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
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Problem 4: Compute diag[ f (A)] ; f = a certain function.

» Arises in any density matrix approach in quantum modeling
- for example Density Functional Theory.

» Here, f = Fermi-Dirac operator:

£(e) 1 Note: when T' — O
€) =
e—p then f becomes a step
Lt exp(r function.

Note: if f is approximated by a rational function then diag[f(A)]
~ a lin. combination of terms like diag[(A — o; 1) ']

» Linear-Scaling methods based on approximating f(H') and
Diag(f(H)) — avoid ‘diagonalization’ of H
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» Rich litterature on ‘linear scaling’ or ‘'order n" methods

» The review paper [Benzi, Boito, Razouk, “Decay properties
of Specral Projectors with applications to electronic structure”,
SIAM review, 2013] provides theoretical foundations

» Several references on approximating textDiag(f(H)) for
this purpose — See e.g., work by L. Lin, C. Yang, E. E [Code:
Sellnv]
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Motivation: Dynamic Mean Field Theory (DMFT)

» Quantum mechanical studies of highly correlated particles
» Equation to be solved (repeatedly) is Dyson’s equation
Gw)=[(w+mWI -V -%(w) +T]"

e w (frequency) and u (chemical potential) are real
e V = trap potential = real diagonal

e X (w) == local self-energy - a complex diagonal
e T'is the hopping matrix (sparse real).

» Interested only in diagonal of G(w) — in addition, equation
must be solved self-consistently and ...

» ... must do this for many w’s
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Stochastic Estimator

e A = original matrix, B = A~
¢ (B) = diag(B) [matlab notation]
Notation: I e D(B) = diagonal matrix with diagonal é (B)

e (® and @: Elementwise multiplication and
division of vectors

e {v;}: Sequence of s random vectors

Result: | 0(B) =~ ivj ©® Buw;

7=1

@ |)_viOv;
=1 _

Refs: C. Bekas , E. Kokiopoulou & YS ('05); C. Bekas, A.

Curioni, |. Fedulova '09; ...

Caltech 11/11/2013 10




Typical convergence curve for stochastic estimator

» Estimating the diagonal of inverse of two sample matrices
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» Let Vy = [vy,vq,...,vs]. Then, alternative expression:

D(B) = D(BV,V, ) D~ (V.V,')

Question: | When is this result exact?

L

Answer:

elet V, € R™* with rows {v,.}; and B &€ C™*™ with
elements {b,x}

e Assume that: <’Uj’;, ’Uk,:> =0,V # k, s.t. bjk # 0

Then:
D(B)=D(BV.V,") DY (V.V,")

» Approximation to b;; exact when rows ¢z and 5 of V; are L
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Ideas from information theory: Hadamard matrices

» Want the rows of V' (with each row scaled by its 2-norm) to
be as ‘mutually orthogonal as possible, i.e., want to minimize

L =VVTF

T
E,.,. .= or Epgr = max |[VV?';;

vn(n —1) i#]

» Problems that arise in coding: find code book [rows of V' =
code words] to minimize 'cross-correlation amplitude’

» Welch bounds:

n—sS n—sS

Erms 2 >
—V(n—1)s

—\(n—1)s

maxr

» Result: 4 a sequence of s vectors v, with binary entries
which achieve the first Welch bound iff s = 2 or s = 4k.
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» Hadamard matrices are a special class: n X m matrices
with entries =1 and such that HH " = nlI.

1 1 1 1

1 1 1 -1 1-1

Examples : [1_1] and 11 -1 —1
1 —-1-1 1

» Achieve both Welch bounds

» (Can build larger Hadamard matrices recursively:

Given two Hadamard matrices H; and H,, the Kro-
necker product H; ® H- is a Hadamard matrix.

» Too expensive to use the whole matrix of size n

» (Can use V, = matrix of s first columns of H,,
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Pattern of V,V.', for s = 32 and s = 64.
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Test: Hadamard vectors for AF23560 and ORSREG _1

g vectors AF23560 RelErr| ORSREG_1 RelErr
4 0.99 0
8 0.5 0
16 0.0028 0
32 0 0
64 0 0
1024 0 0

» Note: half-banwidth of AF23560 is 305. half-banwidth of

ORSREGT1 is 442.
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Other methods for the diagonal of matrix inverse

» Probing techniques [exploit sparsity]

» Direct methods: use LU factorization — exploit paths in graph

» Domain Decomposition type methods [J. Tang and YS2009]

Caltech 11/11/2013 17




Standard probing (e.g. to compute a Jacobian)

» Several names for same method: “probing”; “CPR”, “Sparse

Jacobian estimators’,..

Basis of the method: can compute Jacobian if a coloring of
the columns is known so that no two columns of the same

color overlap.

All entries of same color
can be computed with
one matvec.

Example: For all blue
entries multiply B by the
blue vector on right.

1

3

S

12 13 16 20
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What about Diag(inv(A))?

» Define v; - probing vector associated with color z:
0], = 1 if color(k) == 1
Yk = ) 0 otherwise
» Standard probing satisfies requirement of Proposition but...

» ... this coloring is not what is needed! [lt is an overkill]

Alternative: |

» Color the graph of B in the standard graph coloring algo-
rithm [Adjacency graph, not graph of column-overlaps]

-1 Graph coloring yields a valid set of probing
M vectors for D(B).
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colorred color black
] ]

Proof: | x

» (Column v.: one for each
node ¢ whose color is ¢, zero
elsewhere. |

» Row 2z of V,: has a "1’ In
column ¢, where c = color (i), ;@ T
zero elsewhere.

V
|

. >|0:1:0:0:0:0:0]

» |f b;; # 0 then in matrix V;:
e ¢-th row has a’1’ in column color(z), '0’ elsewhere.
e j-throw has a’1’ in column color(j), 0’ elsewhere.

» The 2 rows are orthogonal.
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Example:

» Two colors required for this graph — two probing vectors
» Standard method: 6 colors [graph of BT B]
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Guessing the pattern of B

» Assume A diagonally dominant
» Write A=D — E ,withD =D(A). Then:

A'=(I+F+F+---+ F)D 'with F = D7'E
B

» When A is D.D. || F*|| decreases rapidly.
» Can approximate pattern of B by that of B(*) for some k.
» Distance k graph.

Q: How to select k? Heuristic: Inspect A~'e; for some j
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Improvements

» Recent work by A. Stathopoulos, J. Laeuchli, and K. Orginos,
on hierarchical probing. Produce approximate k-distance col-
oring of the graph to determine the patterns

» Somewhat specific to Lattice QCD

» E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Comput-
ing 2012] combine probing with stochastic estimation. Good
iImprovements reported.
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Eigenvalue counts [with E. Polizzi and E. Di Napoli]

The problem: \

» Find an estimate of the number of eigenvalues of a matrix
in a given interval [a, b].

Main motivation: |

» Eigensolvers based on splitting the spectrum intervals and
extracting eigenpairs from each interval independently.

» Contour integration-type methods:
e FEAST approach [Polizzi 2011]
e Sakurai-Sigiura method [2002]

» Polynomial filtering:
e Schofield, Chelikowsky, YS'2011.
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Eigenvalue counts: Standard approach

» Let spectrum of a Hermitnan matrix A be

A1SA2S"'SAn

with eigenvectors wy, ug, *++ , Uy,

» a,bsuchthat A\ < a <b< A,

» Want number 115 Of Ai's € |a, b]

» Standard method: Use Sylvester inertia theorem

» Requires two LD L7 factorizations — can be expensive!
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vY

Alternative: Exploit trace of the eigen-projector:

P—Zuz

Ai € [a b]

We know that the trace of P is the wanted number g1, p)

Goal: calculate an approximation to :

Hia,b] = Tr (P) -

P is not available ... but can be approximated by
e a polynomial in A, or
e a rational function in A.
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Eigenvalue counts: Approximation theory viewpoint

» Interpret P as a step function of A, namely:

1 ift € [a b]
0O otherwise

P = h(A) where h(t) = {

» Hutchinson’s unbiased estimator uses only matrix-vector
products to approximate the trace of a generic matrix A.

» (Generate random vectors v, &k = 1,..,n, with equally
probable entries =1. Then:

» No need to restrict values to +1
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Polynomial filtering

» h(t) = 1 (t), where ¢ is a polynomial of degree k.

» We can estimate the trace of P as:

Hiab] =~ ka P(A)vg

’Ukl

» We use degree p Chebyshev polynomials:

A(t) = o(t) = > AT(0):

Caltech 11/11/2013
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Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson k
approximation of a f(x) = ng%Ti(m)
function f: =0
2 — d;0 [ 1
vi = / f(x)dx d;0 = Kronecker symbol
0y “1vV1 — x2
o.; o .kﬁlgg —
The g¥’s attenuate higher order ~ 2°[| 777
terms in the sum. -
Attenuation coefficient g¥ for o]
k=50,100,150 —

0 20 40 60 80 100120140160
i (Degree)
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7T
Let ap, = ——, then:
k + 2

L ( k—|—2) Sln(ak) COS(ZOAk) + k—|—2 COS(ak) Sm(zak)

sin(ay)

See

‘Electronic structure calculations in plane-wave codes without
diagonalization.” Laurent O. Jay, Hanchul Kim, YS, and James R.

Chelikowsky. Computer Physics Communications, 118:21-30,
1999.
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The expansion coefficients ~; |

When f(x) is a step function on [a, b] C [—1 1]:

/

/"

Yi

2

1
— (arccos(a) — arccos(b)) : 2 =0
T

. T

(

sin(z arccos(a)) ; sin (% arccos(b))) >0

» A few examples follow —
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Computing the polynomials: Jackson-Chebyshev

» Polynomials of degree 30 for [a, b] = [.3, .6]
Mid—pass polynom. filter [-1 .3 .6 1]; Degree = 30

—IStandlard Clheb.
—Jackson—Cheb.

1.2

0.8

0.6

0.4

0.2

02 ! ! ! ! ! ! ! ! !
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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1.2

Mid- pass polynom f||ter[ 1 3 .6 1]; Degree 80

—Standard Cheb

—Jackson—Cheb.

0.6

0.2

-0.2

-0.8 -0.6 -0.4

-0.2

0.2

0.4

0.6 0.8
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1.2

0.8

0.6

0.4

0.2

-0.2

|\/|Id pass polynom fllter[ 1.3 6 1]; Degree 200

— Standard Cheb
— Jackson—Cheb. - |
—Of8 —0!6 —OI.4 —Of2 Of2 0!4 0{6 Of8




Ty

I p
n
UV k=1 | j=0

Easy to compute T;(A)v, with 3-term recurrence of Cheby-
shev polynomials

Wiyl = 2ij — Wj—1.

(A is transformed so its eigenvalues are in [—1 1))
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Generalized eigenvalue problems

Ax = \Bx

» Matrices A and B are symmetric and B is positive definite.

The projector P becomes

» Again: |[Eigenvalue count == Tr (P)

» Exploit relation: inertia(A — oB) = inertia(B~'A — o)

» No need to factor or to solve systems
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» Matrix ‘Na5’ from PARSEC [see U. Florida collection]

» n = 5832, nnz = 305630 nonzero entries.

» Obtain the eigenvalue count when a = (X190 + A101)/2
and b = ()\20() -+ )\201)/2 SO Hia,b] = 100.

» Use pol. of degree 70.
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Without Jackson Damping

Chebyshev exp. deg. 70— No Jackson smoothing

125

o o RQ samples
120 — Mean I
- - - exact
115
- 110
c
3
O 105
()
3 100
©
g
o ° o |
w ° o
90 —
851 o© -
o
80 o) n
| | | | o | o
75
0 5 10 15 20 25 30

Sample vectors
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With Jackson Damping

Chebyshev exp. deg. 70— With Jac

Eigenvalue Count

120

115

110

105

100

95

90

85

80

kson smoothing

o

o

o RQ samples
— Mean
- - - exact

o

15

Sample vectors

20

25 30
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An example from FEAST

» FEAST developed by Eric Polizzi (Amherst)..

» Based on a form of subspace iteration with a rational func-
tion of A

» Also works for generalized problems Au = AB.

» Example: a small generalized problem (n = 12,450, nnz =
86, 808).

» Result with standard Chebyshev shown. Deg=100, nv =
70.



Eigenvalue Count

Case: Gen2D; deg = 100; n = 70

130 T T T T

o o o RQ samples
o — Running Mean
120 - o i
o o - - - Exact

110

100

90

80

60 ! ! ! ! ! !
0 10 20 30 40 50 60 70

Sample vectors
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» A few more comments:
e Method also works with rational approximations ...

e .. and it works for nonsymmetric problems (eigenvalues in-
side a given contour).

e For detalls see paper:

E. Di Napoli, E, Polizzi, and YS. Efficient estimation of eigen-
value counts in an interval. Preprint — see arXiv: http://arxiv.org/abs/1:
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Computing Densities of States [with Lin-Lin and Chao Yang]

» Formally, the Density Of States (DOS) of a matrix A is

where

e 0 is the Dirac d-function or Dirac distribution
o N\ < A < ... < N\, are the eigenvalues of A

» Note: number of eigenvalues in an interval |a, b] is
b
a

Wiap = /abzcm — ;) dt = / no(t)dt .
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» ¢(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

» DOS is also referred to as the specitral density

» |n Solid-State physics, \;’'s represent single-particle energy
levels.

» So the DOS represents # of levels per unit energy.

» Many uses in physics
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Issue: How to deal with Distributions

» Highly discontinuous nature — not easy to handle

» Solution for practical and theoretical purposes: replace ¢ by
a ‘blurred” (continuous) version ¢,

n

Bolt) =~ 3 ho(t = y)

where h,(t) = any C* function s.t.:  «— |
o [h,(s)ds=1 : [\
e h, has a peak at zero 30

» An example is the Gaussian:

1 2 ]Z
ha(t) — (271_0_2)1/28 202, | j \
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» How to select o? Example for S,

k=1.750 =0.35

o(t)

0.057

0.047

0.03}

0.027

0.01y

K =1.30,0 = 0.52

» Higher o0 — smoother curve

» But loss of detall ..
» Compromise: o =

» h =resolution, kK = parameter > 1

h

2\/2log(n),

k=1.150 = 0.71

0.05

0.04

0.037

o(t)

0.02¢

0.017

0.045¢
0.04¢
0.035¢
0.03¢

g 0.025¢
0.02¢
0.015¢
0.01¢
0.005¢

0

0 10 20
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The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials

» Use trace estimators [discovered independently] to get traces
needed in calculations

» Assume change of variable done so eigenvalues liein [—1, 1].

» Include the weight function in the expansion so expand:
R 1 &
P(t) = V1 —t2¢(t) = VI — 12 x — > (Lt — Aj).
n -
71=1
Then, (full) expansion is: ¢(t) = >.7° e Tk(t).
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» Expansion coefficients u are formally defined by:

Ty.(t)d(t)dt

2_5k0/ 1
\/1—t2

py, =
2= 0po
_ / mTk(t)\/l () dt
2 5k0
— e ;Tk(AJ)

» Here 2 — 09 == 1 when k = 0 and == 2 otherwise.
» Note: > Tp(\;) = Trace|Ti(A)]

» Estimate this, e.g., via stochastic estimator

» Generate random vectors vV, v(2), ... | p(Pwec)

» Assume normal distribution with zero mean
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» Each vector is normalized so that |[[v® ]| = 1,1 = 1,. .., Nyec.

» Estimate the trace of Ty (A) with stochastisc estimator:

nVEC

S (o) Ti(4)0

vecCc l:]_
» Wil lead to the desired estimate:

B = 2~ Ono g: (v(l))TTk(A)v(l).

NTNyec I—1

Trace(Tx(A)) =~

» To compute scalars of the form vIT,(A)v, exploit 3-term
recurrence of the Chebyshev polynomial:

Tk_|_1(A)’U — ZATk(A)U — Tk_l(A)’U
so if we let vy, = Ti(A)v, we have
Vi1 = 2Av; — V1
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» Same Jackson smoothing as

before can be used

18
167
14+
121

'
Y

= ==FExact |
w /o Jackson

——w/ Jackson |

WS
"

+~ Ot
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An example with degree 80 polynomials

KPM, deg = 80 KPM, deg = 80
0.18f - I ! LN 02F T ¥ T T
o | —— Exact . Y —&— Exact
0.16¢ oo | —e— KPM w/ Jackson| 1 d | —e— KPM w/o Jackson
0.14} |
0.15¢
0.12¢
= 0.1r =
= = 0.1
= 0.08} <
0.06¢
0.05¢

0.04 |

0.02}

Left: Jackson damping; right: without Jackson damping.

Caltech 11/11/2013 53




Why not use Legendre Polynomials?

» They yield very similar results

» Same Example as before — with same degree:

KPM, deg = 80

0.2} \ | ——Exact
P | —e— KPM (Legendre)

0.15¢

0.051

30
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The Lanczos Spectroscopic approach

» Described in Lanczos’ book “Applied Analysis, (1956)” as a
means to compute eigenvalues.

» |dea: assimilate \;;s to frequencies and perform Fourrier
analysis to extract them

» Also relies on Chebyshev polynomials

» Though not emphasized in the description, the method uses
random sampling

» Let B a symmetric real matrix with eigevalues in [-1,1]
» Let vy == an initial vector — expand in eigenbasis as

Vg = Zﬂjuj, with 38, = u;.rvo

7=1
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» Letwv, = Tp(A)vy, fork =0,-.-- , M. Then:

n

Ve v = Z,B?Tk()\j) = Zﬁ? cos(k6;), with A\; = cos 6;.
j=1

7=1

View vj vy, as a discretization of no
the periodic function to the right ft) = Zﬁj cos(t0;)
sampledatt = 0,1,.-- , M. J=1

» Problem: find values of 8;,foryg =1,--- ,n

» Compute cosine transform of f; Forp = 0,--. , M.:

£(0) + (—1)Pf (M) | =
2 I

! kpr
f (k) cos ——,

k=1

F(p) =
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» If f has an eigenvalue A = cos 6, then component cos(6t),
revealed by a peak at the point

[0

p=—.
7T

» Peak at p; corresponds to eigenvalue A\; = cos 6; with
0; = (p;/M)m, and so,

Aj = cos(0;) = cos(p;m/M)
» For a sequence of random vectors compute

- M
F(p)=F <?arccosﬁ> , p=cos(pwt/M),p=0: M.

> Average these values — ¢(t;) ~ Cst x F(t;)

Caltech 11/11/2013



The Lanczos Spectroscopic approach: Example

» Same example as before

Spectroscopic, deg = 40 Spectroscopic, deg = 100
0.18¢ ¥ | —— Exact 1 0.2} D —a&— Exact
0.16! —e— Spectroscopic || ¢ —e— Spectroscopic

—
+~

-
0.08}

Left: Degree 40; Right: degree 100
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Delta Chebyshev

» The Lanczos spectroscopic approach suggests a ‘new’ idea:

e Select ‘'mesh points’ ¢; on the interval [—1, 1] of
eigenvalues (still assume A(A) C [—1, 1]).

e At each point expand the é function in Chebyshev
polynomials.

e Add the results.

» Each o-function defined at t; acts as a ‘spectral probe’
[Presence of an eigenvalue at t; can be detected by the value
of [d(t —t;)dt==1ift; € A(A), 0 otherwise.]

» |t turns out that the method just defined is mathematically
equivalent to KPM.
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Delta-Gauss Legendre

» |dea: Instead of approximating ¢ directly, first select a rep-
resentative ¢, of ¢ for a given o and then approximate ¢,.

» ¢ IS a ‘surrogate’ for ¢. Obtained by replacing 0, by :
(A —1)*
(2mwo2)1/2 202

» Goal: to expand into Legendre polynomials Ly ()

he(A—1) = exp

»  With normalization factor expansion is written as:

© @)

(271'01-2)1/2 > ("5 + %) YeLi(N) .

k=0

ho(A — t) =
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» To determine the ~;’'s we will also need to compute:

1
Y = / L;{(s)e_i (s=t)/7)*ds.

—1
Set ¢, = e~ 2((1=1)/0)* _ (_1)ke—2((A+1)/0)*,
» Then,fork =0,1,---,

Ye+1 — 2,5—:_11 [02(¢k — Ck) + t’)’k} — k_+17"’ 1
Vi1 = (2k 4+ 1)y + Pr—1.

Initiialization: set v_; = ¥_1 = 0 Y1 = 7, and ¥ = 0 and:
ol () +er ()]
=0
Yo = \/_0' \/_0'
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Use of the Lanczos Algorithm

» Background: The Lanczos algorithm generates an orthonor-
mal basis V,,, = [vy, v, -+ , ] for the Krylov subspace:

span{v, Avy,--- , A" v}

ALGORITHM : 1. Lanczos

1.

NSO AODN

Choose start vector v, with ||v]||2 = 1.

For =1,2,...,m Do:
w; = A’Uj — /ijj—la (,61 = 0,v9 = O)
;= (wjavj)
W; = W; — &0y

/Bj—l—l = ||’UJJ||2 If,@j_|_1 = 0 then StOp

U1 = W/ Bjy1
EndDo
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» Basis is such that VAV, = T,, - with

/Oﬂ1 Be \
B2 oz O3
T, — B3 a3 B4
\ B am )

» Note: three term recurrence

Bi+1vj41 = Avj — ajv; — B

» Lanczos builds orthogonal polynomials wrt to dot product:
[ p®at)dt = (p(A)os, a(A)w)

» |ntheory v;’s defined by 3-term recurrence are orthogonal.
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» Letf;, 1 =1---,m bethe eigenvalues of T, [Ritz values]
» y,’s associated eigenvectors; Ritz vectors: {V,,y; }i—1:m

» Ritz values approximate eigenvalues [from ‘outside in’]

» Could compute 6;’s then get approximate DOS from these

» Problem: 6; not good enough approximations — especially
Inside the spectrum.
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» Better idea: exploit relation of Lanczos with (discrete) or-
thogonal polynomials and related Gaussian quadrature:

ik 2
/p(t)dt ~ Z a;p(0;) a; = [er{yi}
i=1
» See, e.g., Golub & Meurant '93, and also Gautschi’'81, Golub
and Welsch '69.

» Formula exact when p is a polynomial of degree < 2m + 1

» Let, in the sense of distributions:
(Pui, P) = (P(A)v1,v1) =) Bip(A) =) B7 (6x,P)
Then (¢, p) = >_ a;p(6;) = > a;{dg,p) —
P, = Y ;0

» Use several vectors v; and average results
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» (Goal: to compare errors for similar number of matrix-vector
products

» Example: Kohn-Sham Hamiltonian associated with a ben-
zene molecule generated PARSEC. n = 8, 219

» In all cases, we use 10 sampling vectors
» General observation: DGL, Lanczos, and KPM are best,
» Spectroscopic method does OK

» Haydock’s method [another method based on the Lanczos
algorithm] not as good
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Method L' error | L?error | L™ error
KPM w/ Jackson, deg=80 |2.592e-02|5.032e-032.785e-03
KPM w/o Jackson, deg=80|2.634e-02|4.454e-03 | 2.002e-03
KPM Legendre, deg=80 |2.504e-02|3.788e-03|1.174e-03
Spectroscopic, deg=40 5.589e-02 8.652e-032.871e-03
Spectroscopic, deg=100 |4.624e-02 7.582e-03|2.447e-03
DGL, deg=80 1.998e-02 | 3.379e-03 | 1.149e-03
Lanczos, deg=80 2.755e-02 4.178e-03 | 1.599e-03
Haydock, deg=40 6.951e-01 1.302e-01 |6.176e-02
Haydock, deg=100 2.581e-01/4.653e-02|1.420e-02

L', L?, and L> error compared with the normalized “surro-
gate” DOS for benzene matrix
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Error of the DGL method Error of the Lanczos method Error of the KPM method

_e_Ll ] _e_Ll _e_Ll
_A_LZ —A—L2 A L2
+LOCO 5| +LOCO 5| +LOCO 5
—0. —0. —U.9o
4 Nyec Nyec Nyec

Error

The L', L? and L errors for the DGL , Lanczos, and the KPM
methods with varying number of random vectors used (1yec).
Same model midified Laplacian. We set o0 = 0.56.
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Other matrices

Matrix n A1 A,
GajpAsioHso | 113,081 —1.2 1.3 x 103
PE3K 9,000 8.1 x 1079/1.3 x 102
CFD1 70,656 2.0 x 107° 6.8
SHWATER 81,920 5.8 2.0 x 10!

Description of the size and the spectrum range of the test

matrices.
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Matrix Method | L' error | L? error | L™ error
GayoAsoHag DGL 3.937e-03 3.214e-04 4.301e-05
Lanczos | 4.828e-03|3.940e-04 | 5.452e-05

PE3K DGL |4.562e-03|7.368e-04 3.143e-04
Lanczos | 5.459e-03 | 7.372e-04 | 3.294e-04

CED DGL 2.276e-031.299e-03|1.746e-03
Lanczos | 2.024e-03 | 1.286e-03 | 2.478e-03

DGL 3.779e-03 1.282e-03 9.328e-04

SHWATER Lanczos|3.047e-03|9.829e-04 | 6.100e-04

L', L? and L error associated with the approximate spec-
tral densities produced by the DGL and Lanczos methods for

different test matrices.
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DGL o = 0.19, deg = 80 DGL o = 0.37, deg = 80

¢(1)

Approximate spectral densities of CFD1 and SHWATER matri-
ces obtained by DGL along with exact smoothed ones
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Conclusion

» Probabilistic algorithms provide powerful tools for solving
various problems: eigenvalue counts, DOS, Diag (f(A))..

» Most of the algorithms we discussed rely on estimating trace
of f(A) or Diag(f(A)).

» Analysis left to do: adapt known decay bounds (Benzi al,..)
to analyze convergence

» Also: Can we do better than random sampling [e.g., prob-
ing,..]?

» Physicists are interested in modified forms of the density of
states. — Explore extentions of what we did.
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