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Introduction

ä ’Random Sampling’ or ’probabilistic methods’: use of ran-
dom data to solve a given problem.

ä Eigenvalues, eigenvalue counts, traces, ...

ä Many well-known algorithms use a form of random sam-
pling: The Lanczos algorithm

ä Recent work : probabilistic methods - See [Halko, Martins-
son, Tropp, 2010]

ä Huge interest spurred by ‘big data’

ä In this talk: A few specific applications of random sampling
in numerical linear algebra
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

ä Arises in cross validation :
‖(I −A(θ))g‖2

Tr (I −A(θ))
with A(θ) ≡ I−D(DTD+θLLT)−1DT ,

D == blurring operator and L is the regularization operator

ä In [Huntchinson ’90] Tr[Inv[A]] is stochastically estimated

ä Motivation for the work [Golub & Meurant, “Matrices, Mo-
ments, and Quadrature”, 1993, Book with same title in 2009]
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Problem 2: Compute Tr [ f (A)], f a certain function

Arises in many applications in Physics. Example:

ä Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15382 (1997)]

ä Will be covered in detail later in this talk.
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

ä Harder than just getting the trace

ä Arises in Dynamic Mean Field Theory [DMFT, motivation for
our work on this topic].

ä Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

ä In uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
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Problem 4: Compute diag[ f (A)] ; f = a certain function.

ä Arises in any density matrix approach in quantum modeling
- for example Density Functional Theory.

ä Here, f = Fermi-Dirac operator:

f(ε) =
1

1 + exp(ε−µ
kBT

)

Note: when T → 0
then f becomes a step
function.

Note: if f is approximated by a rational function then diag[f(A)]
≈ a lin. combination of terms like diag[(A− σiI)−1]

ä Linear-Scaling methods based on approximating f(H) and
Diag(f(H)) – avoid ‘diagonalization’ of H
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ä Rich litterature on ‘linear scaling’ or ’order n’ methods

ä The review paper [Benzi, Boito, Razouk, “Decay properties
of Specral Projectors with applications to electronic structure”,
SIAM review, 2013] provides theoretical foundations

ä Several references on approximating textDiag(f(H)) for
this purpose – See e.g., work by L. Lin, C. Yang, E. E [Code:
SelInv]
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Motivation: Dynamic Mean Field Theory (DMFT)

ä Quantum mechanical studies of highly correlated particles

ä Equation to be solved (repeatedly) is Dyson’s equation

G(ω) = [(ω + µ)I − V − Σ(ω) + T ]−1

• ω (frequency) and µ (chemical potential) are real

• V = trap potential = real diagonal

• Σ(ω) == local self-energy - a complex diagonal

• T is the hopping matrix (sparse real).

ä Interested only in diagonal of G(ω) – in addition, equation
must be solved self-consistently and ...

ä ... must do this for many ω’s
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Stochastic Estimator

Notation:

•A = original matrix, B = A−1.

• δ(B) = diag(B) [matlab notation]

•D(B) = diagonal matrix with diagonal δ(B)

•� and �: Elementwise multiplication and
division of vectors

• {vj}: Sequence of s random vectors

Result: δ(B) ≈

 s∑
j=1

vj �Bvj

�
 s∑
j=1

vj � vj


Refs: C. Bekas , E. Kokiopoulou & YS (’05); C. Bekas, A.
Curioni, I. Fedulova ’09; ...

Caltech 11/11/2013 10



Typical convergence curve for stochastic estimator

ä Estimating the diagonal of inverse of two sample matrices
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ä Let Vs = [v1, v2, . . . , vs]. Then, alternative expression:

D(B) ≈ D(BVsV
>
s )D−1(VsV

>
s )

Question: When is this result exact?

Answer:

• Let Vs ∈ Rn×s with rows {vj,:}; and B ∈ Cn×n with
elements {bjk}

• Assume that: 〈vj,:, vk,:〉 = 0, ∀j 6= k, s.t. bjk 6= 0

Then:
D(B)=D(BVsV

>
s )D−1(VsV

>
s )

ä Approximation to bij exact when rows i and j of Vs are⊥
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Ideas from information theory: Hadamard matrices

ä Want the rows of V (with each row scaled by its 2-norm) to
be as ‘mutually orthogonal as possible, i.e., want to minimize

Erms =
‖I − V V T‖F√
n(n− 1)

or Emax = max
i6=j
|V V T |ij

ä Problems that arise in coding: find code book [rows of V =
code words] to minimize ’cross-correlation amplitude’

ä Welch bounds:

Erms ≥
√

n− s
(n− 1)s

Emax ≥
√

n− s
(n− 1)s

ä Result: ∃ a sequence of s vectors vk with binary entries
which achieve the first Welch bound iff s = 2 or s = 4k.
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ä Hadamard matrices are a special class: n × n matrices
with entries±1 and such that HH> = nI.

Examples :
[

1 1
1 −1

]
and


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
ä Achieve both Welch bounds

ä Can build larger Hadamard matrices recursively:

Given two Hadamard matrices H1 and H2, the Kro-
necker product H1 ⊗H2 is a Hadamard matrix.

ä Too expensive to use the whole matrix of size n

ä Can use Vs = matrix of s first columns of Hn
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Test: Hadamard vectors for AF23560 and ORSREG_1

] vectors AF23560 RelErr ORSREG_1 RelErr
4 0.99 0
8 0.5 0

16 0.0028 0
32 0 0
64 0 0

... ... ...
1024 0 0

ä Note: half-banwidth of AF23560 is 305. half-banwidth of
ORSREG1 is 442.
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Other methods for the diagonal of matrix inverse

ä Probing techniques [exploit sparsity]

ä Direct methods: use LU factorization – exploit paths in graph

ä Domain Decomposition type methods [J. Tang and YS’2009]
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Standard probing (e.g. to compute a Jacobian)

ä Several names for same method: “probing”; “CPR”, “Sparse
Jacobian estimators”,..

Basis of the method: can compute Jacobian if a coloring of
the columns is known so that no two columns of the same
color overlap.

All entries of same color
can be computed with
one matvec.
Example: For all blue

entries multiply B by the
blue vector on right.
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What about Diag(inv(A))?

ä Define vi - probing vector associated with color i:

[vi]k =

{
1 if color(k) == i
0 otherwise

ä Standard probing satisfies requirement of Proposition but...

ä ... this coloring is not what is needed! [It is an overkill]

Alternative:

ä Color the graph of B in the standard graph coloring algo-
rithm [Adjacency graph, not graph of column-overlaps]

Result: Graph coloring yields a valid set of probing
vectors for D(B).
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Proof:

ä Column vc: one for each
node i whose color is c, zero
elsewhere.

ä Row i of Vs: has a ’1’ in
column c, where c = color(i),
zero elsewhere.

1

1

0 0 0 0 0

0 0 0 0 0 0

0 i

j

i

j

color red color black

ä If bij 6= 0 then in matrix Vs:

• i-th row has a ’1’ in column color(i), ’0’ elsewhere.

• j-th row has a ’1’ in column color(j), ’0’ elsewhere.

ä The 2 rows are orthogonal.
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Example:

ä Two colors required for this graph→ two probing vectors

ä Standard method: 6 colors [graph of BTB]
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Guessing the pattern of B

ä Assume A diagonally dominant

ä Write A = D − E , with D = D(A). Then :

A−1 ≈ (I + F + F 2 + · · ·+ F k)D−1︸ ︷︷ ︸
B(k)

with F ≡ D−1E

ä When A is D.D. ‖F k‖ decreases rapidly.

ä Can approximate pattern of B by that of B(k) for some k.

ä Distance k graph.

Q: How to select k? Heuristic: Inspect A−1ej for some j
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Improvements

ä Recent work by A. Stathopoulos, J. Laeuchli, and K. Orginos,
on hierarchical probing. Produce approximate k-distance col-
oring of the graph to determine the patterns

ä Somewhat specific to Lattice QCD

ä E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Comput-
ing 2012] combine probing with stochastic estimation. Good
improvements reported.
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Eigenvalue counts [with E. Polizzi and E. Di Napoli]

The problem:

ä Find an estimate of the number of eigenvalues of a matrix
in a given interval [a, b].

Main motivation:

ä Eigensolvers based on splitting the spectrum intervals and
extracting eigenpairs from each interval independently.

ä Contour integration-type methods:
• FEAST approach [Polizzi 2011]
• Sakurai-Sigiura method [2002]

ä Polynomial filtering:
• Schofield, Chelikowsky, YS’2011.
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Eigenvalue counts: Standard approach

ä Let spectrum of a Hermitnan matrix A be

λ1 ≤ λ2 ≤ · · · ≤ λn

with eigenvectors u1, u2, · · · , un
ä a, b such that λ1 ≤ a ≤ b ≤ λn.

ä Want number µ[a,b] of λi’s ∈ [a, b]

ä Standard method: Use Sylvester inertia theorem

ä Requires two LDLT factorizations→ can be expensive!
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ä Alternative: Exploit trace of the eigen-projector:

P =
∑

λi ∈ [a b]

uiu
T
i .

ä We know that the trace of P is the wanted number µ[a,b]

ä Goal: calculate an approximation to :

µ[a,b] = Tr (P ) .

ä P is not available ... but can be approximated by
• a polynomial in A, or
• a rational function in A.
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Eigenvalue counts: Approximation theory viewpoint

ä Interpret P as a step function of A, namely:

P = h(A) where h(t) =

{
1 if t ∈ [a b]
0 otherwise

ä Hutchinson’s unbiased estimator uses only matrix-vector
products to approximate the trace of a generic matrix A.

ä Generate random vectors vk, k = 1, .., nv with equally
probable entries±1. Then:

tr(A) ≈
n

nv

nv∑
k=1

v>kAvk.

ä No need to restrict values to±1
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Polynomial filtering

ä h(t) ≈ ψ(t), where ψ is a polynomial of degree k.

ä We can estimate the trace of P as:

µ[a,b] ≈
n

nv

nv∑
k=1

v>k ψ(A)vk

ä We use degree p Chebyshev polynomials:

h(t) ≈ ψp(t) =

p∑
j=0

γjTj(t).
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Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson
approximation of a
function f :

f(x) ≈
k∑
i=0

gki γiTi(x)

γi =
2− δi0
π

∫ 1

−1

1
√

1− x2
f(x)dx δi0 = Kronecker symbol

The gki ’s attenuate higher order
terms in the sum.

Attenuation coefficient gki for
k=50,100,150 →  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100 120 140 160

gk i

i (Degree)

k=50
k=100
k=150

Caltech 11/11/2013 30



Let αk =
π

k + 2
, then :

gki =

(
1− i

k+2

)
sin(αk) cos(iαk) + 1

k+2
cos(αk) sin(iαk)

sin(αk)

See

‘Electronic structure calculations in plane-wave codes without
diagonalization.’ Laurent O. Jay, Hanchul Kim, YS, and James R.
Chelikowsky. Computer Physics Communications, 118:21–30,
1999.
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The expansion coefficients γi

When f(x) is a step function on [a, b] ⊆ [−1 1]:

γi =


1

π
(arccos(a)− arccos(b)) : i = 0

2

π

(
sin(i arccos(a))− sin(i arccos(b))

i

)
: i > 0

ä A few examples follow –
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Computing the polynomials: Jackson-Chebyshev

ä Polynomials of degree 30 for [a, b] = [.3, .6]
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µ[a,b] = Tr (P ) ≈
n

nv

nv∑
k=1

 p∑
j=0

γjv
T
kTj(A)vk

 .
Easy to compute Tj(A)vk with 3-term recurrence of Cheby-
shev polynomials

wj+1 = 2Awj − wj−1.

(A is transformed so its eigenvalues are in [−1 1])
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Generalized eigenvalue problems

Ax = λBx

ä MatricesA andB are symmetric andB is positive definite.

The projector P becomes

P =
∑

λi ∈ [a b]

uiu
T
i B,

ä Again: Eigenvalue count == Tr (P )

ä Exploit relation: inertia(A− σB) = inertia(B−1A− σI)

ä No need to factor or to solve systems
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An example

ä Matrix ‘Na5’ from PARSEC [see U. Florida collection]

ä n = 5832, nnz = 305630 nonzero entries.

ä Obtain the eigenvalue count when a = (λ100 + λ101)/2
and b = (λ200 + λ201)/2 so µ[a,b] = 100.

ä Use pol. of degree 70.
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Without Jackson Damping
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With Jackson Damping
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An example from FEAST

ä FEAST developed by Eric Polizzi (Amherst)..

ä Based on a form of subspace iteration with a rational func-
tion of A

ä Also works for generalized problems Au = λB.

ä Example: a small generalized problem (n = 12, 450, nnz =
86, 808).

ä Result with standard Chebyshev shown. Deg=100, nv =
70.
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ä A few more comments:

• Method also works with rational approximations ...

• .. and it works for nonsymmetric problems (eigenvalues in-
side a given contour).

• For details see paper:

E. Di Napoli, E, Polizzi, and YS. Efficient estimation of eigen-
value counts in an interval. Preprint – see arXiv: http://arxiv.org/abs/1308.4275.
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Computing Densities of States [with Lin-Lin and Chao Yang]

ä Formally, the Density Of States (DOS) of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where
• δ is the Dirac δ-function or Dirac distribution
• λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A

ä Note: number of eigenvalues in an interval [a, b] is

µ[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a
nφ(t)dt .
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ä φ(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

ä DOS is also referred to as the spectral density

ä In Solid-State physics, λi’s represent single-particle energy
levels.

ä So the DOS represents # of levels per unit energy.

ä Many uses in physics
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Issue: How to deal with Distributions

ä Highly discontinuous nature – not easy to handle

ä Solution for practical and theoretical purposes: replace φ by
a ‘blurred” (continuous) version φσ:

φσ(t) =
1

n

n∑
j=1

hσ(t− λj),

where hσ(t) = any C∞ function s.t.:
•
∫ +∞
−∞ hσ(s)ds = 1

• hσ has a peak at zero
ä An example is the Gaussian:

hσ(t) =
1

(2πσ2)1/2
e−

t2

2σ2.
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ä How to select σ? Example for Si2
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ä But loss of detail ..
ä Compromise: σ = h

2
√

2 log(κ)
,

ä h = resolution, κ = parameter > 1

0 10 20 30 40
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

κ = 1.08, σ = 0.96

t

φ
(t
)

Caltech 11/11/2013 48



The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and
Röder’94 , Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Use trace estimators [discovered independently] to get traces
needed in calculations

ä Assume change of variable done so eigenvalues lie in [−1, 1].

ä Include the weight function in the expansion so expand:

φ̂(t) =
√

1− t2φ(t) =
√

1− t2 ×
1

n

n∑
j=1

δ(t− λj).

Then, (full) expansion is: φ̂(t) =
∑∞
k=0µkTk(t).
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ä Expansion coefficients µk are formally defined by:

µk =
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)φ̂(t)dt

=
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)

√
1− t2φ(t)dt

=
2− δk0

nπ

n∑
j=1

Tk(λj).

ä Here 2− δk0 == 1 when k = 0 and == 2 otherwise.

ä Note:
∑
Tk(λi) = Trace[Tk(A)]

ä Estimate this, e.g., via stochastic estimator

ä Generate random vectors v(1), v(2), · · · , v(nvec)

ä Assume normal distribution with zero mean
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ä Each vector is normalized so that ‖v(l)‖ = 1, l = 1, . . . , nvec.

ä Estimate the trace of Tk(A) with stochastisc estimator:

Trace(Tk(A)) ≈
1

nvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä Will lead to the desired estimate:

µk ≈
2− δk0

nπnvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä To compute scalars of the form vTTk(A)v, exploit 3-term
recurrence of the Chebyshev polynomial:

Tk+1(A)v = 2ATk(A)v − Tk−1(A)v

so if we let vk ≡ Tk(A)v, we have

vk+1 = 2Avk − vk−1
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ä Same Jackson smoothing as before can be used
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An example with degree 80 polynomials
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Why not use Legendre Polynomials?

ä They yield very similar results

ä Same Example as before – with same degree:
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The Lanczos Spectroscopic approach

ä Described in Lanczos’ book “Applied Analysis, (1956)” as a
means to compute eigenvalues.

ä Idea: assimilate λi;s to frequencies and perform Fourrier
analysis to extract them

ä Also relies on Chebyshev polynomials

ä Though not emphasized in the description, the method uses
random sampling

ä Let B a symmetric real matrix with eigevalues in [-1,1]

ä Let v0 == an initial vector – expand in eigenbasis as

v0 =
n∑
j=1

βjuj, with βj = uTj v0
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ä Let vk = Tk(A)v0, for k = 0, · · · ,M . Then:

vT0 vk =
n∑
j=1

β2
jTk(λj) =

n∑
j=1

β2
j cos(kθj), with λj = cos θj.

View vT0 vk as a discretization of
the periodic function to the right
sampled at t = 0, 1, · · · ,M .

f(t) =
n∑
j=1

β2
j cos(tθj)

ä Problem: find values of θj, for j = 1, · · · , n

ä Compute cosine transform of f ; For p = 0, · · · ,M :

F (p) =
f(0) + (−1)pf(M)

2
+

M−1∑
k=1

f(k) cos
kpπ

M
,
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ä If f has an eigenvalue λ = cos θ, then component cos(θt),
revealed by a peak at the point

p =
lθ

π
.

ä Peak at pj corresponds to eigenvalue λj = cos θj with
θj = (pj/M)π, and so,

λj = cos(θj) = cos(pjπ/M)

ä For a sequence of random vectors compute

F̂ (p̂) ≡ F
(
M

π
arccos p̂

)
, p̂ = cos(pπ/M), p = 0 : M.

ä Average these values→ φ(ti) ≈ Cst× F̂ (ti)
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The Lanczos Spectroscopic approach: Example

ä Same example as before

0 5 10 15 20

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Spectroscopic , deg = 40

t

φ
(t
)

Exact
Spectroscopic

0 5 10 15 20

0

0.05

0.1

0.15

0.2

Spectroscopic , deg = 100

t

φ
(t
)

Exact
Spectroscopic

Left: Degree 40; Right: degree 100
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Delta Chebyshev

ä The Lanczos spectroscopic approach suggests a ‘new’ idea:

• Select ’mesh points’ ti on the interval [−1, 1] of
eigenvalues (still assume Λ(A) ⊆ [−1, 1]).
• At each point expand the δ function in Chebyshev
polynomials.
• Add the results.

ä Each δ-function defined at ti acts as a ‘spectral probe’
[Presence of an eigenvalue at ti can be detected by the value
of
∫
δ(t− ti)dt == 1 if ti ∈ Λ(A), 0 otherwise.]

ä It turns out that the method just defined is mathematically
equivalent to KPM.
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Delta-Gauss Legendre

ä Idea: Instead of approximating φ directly, first select a rep-
resentative φσ of φ for a given σ and then approximate φσ.

ä φσ is a ‘surrogate’ for φ. Obtained by replacing δλ by :

hσ(λ− t) =
1

(2πσ2)1/2
exp

[
−

(λ− t)2

2σ2

]
.

ä Goal: to expand into Legendre polynomials Lk(λ)

ä With normalization factor expansion is written as:

hσ(λ− t) =
1

(2πσ2)1/2

∞∑
k=0

(
k +

1

2

)
γkLk(λ) .
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ä To determine the γk’s we will also need to compute:

ψk =

∫ 1

−1
L′k(s)e

−1
2
((s−t)/σ)2

ds.

Set ζk = e−
1
2
((1−t)/σ)2 − (−1)ke−

1
2
((1+t)/σ)2

.

ä Then, for k = 0, 1, · · · ,:{
γk+1 = 2k+1

k+1

[
σ2(ψk − ζk) + tγk

]
− k

k+1
γk−1

ψk+1 = (2k + 1)γk + ψk−1.

Initiialization: set γ−1 = ψ−1 = 0 ψ1 = γ0, and ψ0 = 0 and:

γ0 = σ

√
π

2

[
erf
(

1− t
√

2σ

)
+ erf

(
1 + t
√

2σ

)]
,
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Use of the Lanczos Algorithm

ä Background: The Lanczos algorithm generates an orthonor-
mal basis Vm = [v1, v2, · · · , vm] for the Krylov subspace:

span{v1, Av1, · · · , Am−1v1}

ALGORITHM : 1 Lanczos

1. Choose start vector v1 with ‖v1‖2 = 1.
2. For j = 1, 2, . . . ,m Do:
3. wj := Avj − βjvj−1, (β1 ≡ 0, v0 ≡ 0)
4. αj := (wj, vj)
5. wj := wj − αjvj
6. βj+1 := ‖wj‖2. If βj+1 = 0 then Stop
7. vj+1 := wj/βj+1

8. EndDo
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ä Basis is such that V H
m AVm = Tm - with

Tm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .
. . .
βm αm


ä Note: three term recurrence

βj+1vj+1 = Avj − αjvj − βjvj−1

ä Lanczos builds orthogonal polynomials wrt to dot product:∫
p(t)q(t)dt ≡ (p(A)v1, q(A)v1)

ä In theory vi’s defined by 3-term recurrence are orthogonal.
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ä Let θi, i = 1 · · · ,m be the eigenvalues of Tm [Ritz values]

ä yi’s associated eigenvectors; Ritz vectors: {Vmyi}i=1:m

ä Ritz values approximate eigenvalues [from ‘outside in’]

ä Could compute θi’s then get approximate DOS from these

ä Problem: θi not good enough approximations – especially
inside the spectrum.
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ä Better idea: exploit relation of Lanczos with (discrete) or-
thogonal polynomials and related Gaussian quadrature:∫

p(t)dt ≈
m∑
i=1

aip(θi) ai =
[
eT1 yi

]2
ä See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub
and Welsch ’69.

ä Formula exact when p is a polynomial of degree≤ 2m+ 1

ä Let, in the sense of distributions:

〈φv1
, p〉 ≡ (p(A)v1, v1) =

∑
β2
ip(λi) =

∑
β2
i 〈δλi, p〉

Then 〈φv1
, p〉 ≈

∑
aip(θi) =

∑
ai 〈δθi, p〉 →

φv1
≈
∑

aiδθi

ä Use several vectors v1 and average results
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Experiments

ä Goal: to compare errors for similar number of matrix-vector
products

ä Example: Kohn-Sham Hamiltonian associated with a ben-
zene molecule generated PARSEC. n = 8, 219

ä In all cases, we use 10 sampling vectors

ä General observation: DGL, Lanczos, and KPM are best,

ä Spectroscopic method does OK

ä Haydock’s method [another method based on the Lanczos
algorithm] not as good
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Method L1 error L2 error L∞ error
KPM w/ Jackson, deg=80 2.592e-02 5.032e-03 2.785e-03
KPM w/o Jackson, deg=80 2.634e-02 4.454e-03 2.002e-03
KPM Legendre, deg=80 2.504e-02 3.788e-03 1.174e-03
Spectroscopic, deg=40 5.589e-02 8.652e-03 2.871e-03
Spectroscopic, deg=100 4.624e-02 7.582e-03 2.447e-03
DGL, deg=80 1.998e-02 3.379e-03 1.149e-03
Lanczos, deg=80 2.755e-02 4.178e-03 1.599e-03
Haydock, deg=40 6.951e-01 1.302e-01 6.176e-02
Haydock, deg=100 2.581e-01 4.653e-02 1.420e-02

L1, L2, and L∞ error compared with the normalized “surro-
gate” DOS for benzene matrix

Caltech 11/11/2013 67



10
0

10
2

10
4

10
−3

10
−2

10
−1

nv e c

E
r
r
o
r

Error of the DGL method

L
1

L
2

L
∞

n
−0 . 5
v e c

10
0

10
2

10
4

10
−3

10
−2

nv e c

E
r
r
o
r

Error of the Lanczos method

L
1

L
2

L
∞

n
−0 . 5
v e c

10
0

10
2

10
4

10
−3

10
−2

nv e c

E
r
r
o
r

Error of the KPM method

L
1

L
2

L
∞

n
−0 . 5
v e c

The L1, L2 and L∞ errors for the DGL , Lanczos, and the KPM
methods with varying number of random vectors used (nvec).
Same model midified Laplacian. We set σ = 0.56.
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Other matrices

Matrix n λ1 λn
Ga10As10H30 113,081 −1.2 1.3× 103

PE3K 9,000 8.1× 10−6 1.3× 102

CFD1 70,656 2.0× 10−5 6.8
SHWATER 81,920 5.8 2.0× 101

Description of the size and the spectrum range of the test
matrices.
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Matrix Method L1 error L2 error L∞ error

Ga10As10H30
DGL 3.937e-03 3.214e-04 4.301e-05

Lanczos 4.828e-03 3.940e-04 5.452e-05

PE3K
DGL 4.562e-03 7.368e-04 3.143e-04

Lanczos 5.459e-03 7.372e-04 3.294e-04

CFD1
DGL 2.276e-03 1.299e-03 1.746e-03

Lanczos 2.024e-03 1.286e-03 2.478e-03

SHWATER
DGL 3.779e-03 1.282e-03 9.328e-04

Lanczos 3.047e-03 9.829e-04 6.100e-04

L1, L2, and L∞ error associated with the approximate spec-
tral densities produced by the DGL and Lanczos methods for
different test matrices.
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Conclusion

ä Probabilistic algorithms provide powerful tools for solving
various problems: eigenvalue counts, DOS, Diag (f(A))..

ä Most of the algorithms we discussed rely on estimating trace
of f(A) or Diag(f(A)).

ä Analysis left to do: adapt known decay bounds (Benzi al,..)
to analyze convergence

ä Also: Can we do better than random sampling [e.g., prob-
ing,..]?

ä Physicists are interested in modified forms of the density of
states.→ Explore extentions of what we did.
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