UNIVERSITY
 OF Minnesota twin cities

Sampling algorithms in numerical linear algebra and their application Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

Caltech, Nov. 11, 2013

Introduction

> 'Random Sampling' or 'probabilistic methods': use of random data to solve a given problem.
$>$ Eigenvalues, eigenvalue counts, traces, ...
> Many well-known algorithms use a form of random sampling: The Lanczos algorithm
$>$ Recent work : probabilistic methods - See [Halko, Martinsson, Tropp, 2010]
$>$ Huge interest spurred by 'big data'
> In this talk: A few specific applications of random sampling in numerical linear algebra

Introduction: A few examples

Problem 1: Compute $\operatorname{Tr}[$ inv[A]] the trace of the inverse.
$>$ Arises in cross validation :
$\frac{\|(I-A(\theta)) g\|_{2}}{\operatorname{Tr}(I-A(\theta))} \quad$ with $\quad A(\theta) \equiv I-D\left(D^{T} D+\theta L L^{T}\right)^{-1} D^{T}$,
$D==$ blurring operator and L is the regularization operator
$>$ In [Huntchinson '90] $\operatorname{Tr[Inv[A]]~is~stochastically~estimated~}$
> Motivation for the work [Golub \& Meurant, "Matrices, Moments, and Quadrature", 1993, Book with same title in 2009]

Problem 2: Compute $\operatorname{Tr}[f(A)], f$ a certain function

 Arises in many applications in Physics. Example:$>$ Stochastic estimations of $\operatorname{Tr}(f(A))$ extensively used by quantum chemists to estimate Density of States, see
[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382 (1997)]
> Will be covered in detail later in this talk.

Problem 3: Compute diag[inv(A)] the diagonal of the inverse

$>$ Harder than just getting the trace
$>$ Arises in Dynamic Mean Field Theory [DMFT, motivation for our work on this topic].
> Related approach: Non Equilibrium Green's Function (NEGF) approach used to model nanoscale transistors.
$>$ In uncertainty quantification, the diagonal of the inverse of a covariance matrix is needed [Bekas, Curioni, Fedulova '09]

Problem 4: Compute diag[$\mathrm{f}(\mathrm{A})] ; \boldsymbol{f}=$ a certain function.

$>$ Arises in any density matrix approach in quantum modeling - for example Density Functional Theory.
$>$ Here, $f=$ Fermi-Dirac operator:

$$
f(\epsilon)=\frac{1}{1+\exp \left(\frac{\epsilon-\mu}{k_{B} T}\right)}
$$

Note: when $\boldsymbol{T} \rightarrow \mathbf{0}$ then f becomes a step function.

Note: if f is approximated by a rational function then $\operatorname{diag}[f(A)]$ \approx a lin. combination of terms like diag[$\left.\left(A-\sigma_{i} I\right)^{-1}\right]$
$>$ Linear-Scaling methods based on approximating $\boldsymbol{f}(\boldsymbol{H})$ and $\operatorname{Diag}(\boldsymbol{f}(\boldsymbol{H}))$ - avoid 'diagonalization' of \boldsymbol{H}
> Rich litterature on 'linear scaling' or 'order n' methods
> The review paper [Benzi, Boito, Razouk, "Decay properties of Specral Projectors with applications to electronic structure", SIAM review, 2013] provides theoretical foundations
$>$ Several references on approximating textDiag $(\boldsymbol{f}(\boldsymbol{H}))$ for this purpose - See e.g., work by L. Lin, C. Yang, E. E [Code: Sellnv]

DIAGONAL OF THE INVERSE

Motivation: Dynamic Mean Field Theory (DMFT)

> Quantum mechanical studies of highly correlated particles
$>$ Equation to be solved (repeatedly) is Dyson's equation

$$
G(\omega)=[(\omega+\mu) I-V-\Sigma(\omega)+T]^{-1}
$$

- $\boldsymbol{\omega}$ (frequency) and $\boldsymbol{\mu}$ (chemical potential) are real
- $\boldsymbol{V}=$ trap potential $=$ real diagonal
- $\Sigma(\omega)==$ local self-energy - a complex diagonal
- \boldsymbol{T} is the hopping matrix (sparse real).
$>$ Interested only in diagonal of $G(\omega)$ - in addition, equation must be solved self-consistently and ...
$>$... must do this for many ω 's

Stochastic Estimator

- $A=$ original matrix, $B=A^{-1}$.
- $\delta(B)=\operatorname{diag}(B)$ [matlab notation]

Notation:

- $\mathcal{D}(B)=$ diagonal matrix with diagonal $\delta(B)$
- \odot and \oslash : Elementwise multiplication and division of vectors
- $\left\{v_{j}\right\}$: Sequence of s random vectors

Result:

$$
\boldsymbol{\delta}(\boldsymbol{B}) \approx\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{B} \boldsymbol{v}_{j}\right] \oslash\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{v}_{j}\right]
$$

Refs: C. Bekas, E. Kokiopoulou \& YS ('05); C. Bekas, A. Curioni, I. Fedulova '09; ...

Typical convergence curve for stochastic estimator

$>$ Estimating the diagonal of inverse of two sample matrices

$>$ Let $V_{s}=\left[v_{1}, v_{2}, \ldots, v_{s}\right]$. Then, alternative expression:

$$
\mathcal{D}(B) \approx \mathcal{D}\left(B V_{s} V_{s}^{\top}\right) \mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)
$$

Question: When is this result exact?

Answer:

- Let $V_{s} \in \mathbb{R}^{n \times s}$ with rows $\left\{v_{j,!}\right\}$; and $B \in \mathbb{C}^{n \times n}$ with elements $\left\{b_{j k}\right\}$
- Assume that: $\left\langle v_{j,:}, v_{k,:}\right\rangle=0, \forall j \neq k$, s.t. $b_{j k} \neq 0$

Then:

$$
\mathcal{D}(B)=\mathcal{D}\left(B V_{s} V_{s}^{\top}\right) \mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)
$$

$>$ Approximation to $b_{i j}$ exact when rows i and j of V_{s} are \perp

Ideas from information theory: Hadamard matrices

$>$ Want the rows of \boldsymbol{V} (with each row scaled by its 2-norm) to be as 'mutually orthogonal as possible, i.e., want to minimize

$$
E_{r m s}=\frac{\left\|I-V V^{T}\right\|_{F}}{\sqrt{n(n-1)}} \quad \text { or } \quad E_{m a x}=\max _{i \neq j}\left|V V^{T}\right|_{i j}
$$

$>$ Problems that arise in coding: find code book [rows of $\boldsymbol{V}=$ code words] to minimize 'cross-correlation amplitude'
> Welch bounds:

$$
E_{r m s} \geq \sqrt{\frac{n-s}{(n-1) s}} \quad E_{\max } \geq \sqrt{\frac{n-s}{(n-1) s}}
$$

$>$ Result: \exists a sequence of s vectors v_{k} with binary entries which achieve the first Welch bound iff $s=2$ or $s=4 k$.
> Hadamard matrices are a special class: $n \times n$ matrices with entries ± 1 and such that $\boldsymbol{H} \boldsymbol{H}^{\top}=n \boldsymbol{I}$.

$$
\text { Examples : }\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \text { and }\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] .
$$

> Achieve both Welch bounds
> Can build larger Hadamard matrices recursively:
Given two Hadamard matrices H_{1} and H_{2}, the Kronecker product $\boldsymbol{H}_{1} \otimes \boldsymbol{H}_{2}$ is a Hadamard matrix.
$>$ Too expensive to use the whole matrix of size n
$>$ Can use $V_{s}=$ matrix of s first columns of \boldsymbol{H}_{n}

Pattern of $\boldsymbol{V}_{s} \boldsymbol{V}_{s}^{\top}$, for $s=32$ and $s=64$.

Test: Hadamard vectors for AF23560 and ORSREG_1

\sharp vectors	AF23560 RelErr	ORSREG_1 RelErr
4	0.99	0
8	0.5	0
16	0.0028	0
32	0	0
64	0	0
$:$	\vdots	\vdots
1024	0	0

> Note: half-banwidth of AF23560 is 305. half-banwidth of ORSREG1 is 442.

Other methods for the diagonal of matrix inverse

> Probing techniques [exploit sparsity]
$>$ Direct methods: use LU factorization - exploit paths in graph
$>$ Domain Decomposition type methods [J. Tang and YS'2009]

Standard probing (e.g. to compute a Jacobian)

> Several names for same method: "probing"; "CPR", "Sparse Jacobian estimators",..

Basis of the method: can compute Jacobian if a coloring of the columns is known so that no two columns of the same color overlap.

All entries of same color can be computed with one matvec.
Example: For all blue entries multiply \boldsymbol{B} by the blue vector on right.

What about $\operatorname{Diag}(\operatorname{inv}(A))$?

$>$ Define v_{i}-probing vector associated with color i :

$$
\left[v_{i}\right]_{k}=\left\{\begin{array}{l}
1 \text { if } \operatorname{color}(k)==i \\
0 \text { otherwise }
\end{array}\right.
$$

> Standard probing satisfies requirement of Proposition but...
$>$... this coloring is not what is needed! [It is an overkill]

Alternative:

$>$ Color the graph of B in the standard graph coloring algorithm [Adjacency graph, not graph of column-overlaps]

Result:
Graph coloring yields a valid set of probing vectors for $\mathcal{D}(B)$.

Proof:

$>$ Column v_{c} : one for each node \boldsymbol{i} whose color is \boldsymbol{c}, zero elsewhere.
$>$ Row i of V_{s} : has a '1' in column c, where $c=\operatorname{color}(i)$, zero elsewhere.

$>$ If $b_{i j} \neq 0$ then in matrix V_{s} :

- i-th row has a '1' in column color (i), '0' elsewhere.
- j-th row has a '1' in column color (j), '0' elsewhere.
$>$ The 2 rows are orthogonal.

Example:

$>$ Two colors required for this graph \rightarrow two probing vectors
$>$ Standard method: 6 colors [graph of $\boldsymbol{B}^{\boldsymbol{T}} \boldsymbol{B}$]

Guessing the pattern of B

$>$ Assume A diagonally dominant
$>$ Write $A=D-E$, with $D=\mathcal{D}(A)$. Then :

$$
A^{-1} \approx \underbrace{\left(I+\boldsymbol{F}+\boldsymbol{F}^{2}+\cdots+\boldsymbol{F}^{k}\right) D^{-1}}_{B^{(k)}} \text { with } \boldsymbol{F} \equiv D^{-1} \boldsymbol{E}
$$

$>$ When \boldsymbol{A} is D.D. $\left\|\boldsymbol{F}^{k}\right\|$ decreases rapidly.
$>$ Can approximate pattern of B by that of $\boldsymbol{B}^{(k)}$ for some \boldsymbol{k}.
$>$ Distance k graph.
Q: How to select \boldsymbol{k} ? Heuristic: Inspect $\boldsymbol{A}^{-1} \boldsymbol{e}_{j}$ for some \boldsymbol{j}
$>$ Recent work by A. Stathopoulos, J. Laeuchli, and K. Orginos, on hierarchical probing. Produce approximate \boldsymbol{k}-distance coloring of the graph to determine the patterns
> Somewhat specific to Lattice QCD
$>$ E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Computing 2012] combine probing with stochastic estimation. Good improvements reported.

EIGENVALUE COUNTS

Eigenvalue counts [with E. Polizzi and E. Di Napoli]

The problem:

> Find an estimate of the number of eigenvalues of a matrix in a given interval $[a, \quad b]$.

Main motivation:

$>$ Eigensolvers based on splitting the spectrum intervals and extracting eigenpairs from each interval independently.
$>$ Contour integration-type methods:

- FEAST approach [Polizzi 2011]
- Sakurai-Sigiura method [2002]
> Polynomial filtering:
- Schofield, Chelikowsky, YS'2011.

Eigenvalue counts: Standard approach

$>$ Let spectrum of a Hermitnan matrix \boldsymbol{A} be

$$
\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}
$$

with eigenvectors $u_{1}, u_{2}, \cdots, u_{n}$
$>a, b$ such that $\lambda_{1} \leq a \leq b \leq \lambda_{n}$.
$>$ Want number $\mu_{[a, b]}$ of $\boldsymbol{\lambda}_{i}$'s $\in[a, b]$
> Standard method: Use Sylvester inertia theorem
$>$ Requires two $L D L^{T}$ factorizations \rightarrow can be expensive!
$>$ Alternative: Exploit trace of the eigen-projector:

$$
\boldsymbol{P}=\sum_{\lambda_{i} \in[a b]} u_{i} u_{i}^{T}
$$

$>$ We know that the trace of \boldsymbol{P} is the wanted number $\boldsymbol{\mu}_{[a, b]}$
> Goal: calculate an approximation to :

$$
\boldsymbol{\mu}_{[a, b]}=\operatorname{Tr}(\boldsymbol{P})
$$

$>\boldsymbol{P}$ is not available ... but can be approximated by

- a polynomial in \boldsymbol{A}, or
- a rational function in \boldsymbol{A}.

Eigenvalue counts: Approximation theory viewpoint

$>$ Interpret \boldsymbol{P} as a step function of \boldsymbol{A}, namely:

$$
P=h(A) \quad \text { where } \quad h(t)= \begin{cases}1 & \text { if } t \in[a b] \\ 0 & \text { otherwise }\end{cases}
$$

$>$ Hutchinson's unbiased estimator uses only matrix-vector products to approximate the trace of a generic matrix \boldsymbol{A}.
$>$ Generate random vectors $v_{k}, k=1, . ., n_{v}$ with equally probable entries ± 1. Then:

$$
\operatorname{tr}(A) \approx \frac{\boldsymbol{n}}{\boldsymbol{n}_{\boldsymbol{v}}} \sum_{k=1}^{\boldsymbol{n}_{v}} \boldsymbol{v}_{\boldsymbol{k}}^{\top} \boldsymbol{A} \boldsymbol{v}_{\boldsymbol{k}}
$$

$>$ No need to restrict values to ± 1

Polynomial filtering

$>\boldsymbol{h}(t) \approx \psi(t)$, where ψ is a polynomial of degree k.
$>$ We can estimate the trace of \boldsymbol{P} as:

$$
\mu_{[a, b]} \approx \frac{n}{n_{v}} \sum_{k=1}^{n_{v}} v_{k}^{\top} \psi(A) v_{k}
$$

$>$ We use degree p Chebyshev polynomials:

$$
h(t) \approx \psi_{p}(t)=\sum_{j=0}^{p} \gamma_{j} T_{j}(t)
$$

Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson approximation of a function f :

$$
f(x) \approx \sum_{i=0}^{k} g_{i}^{k} \gamma_{i} \boldsymbol{T}_{i}(x)
$$

$\gamma_{i}=\frac{2-\delta_{i 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x) d x \quad \delta_{i 0}=$ Kronecker symbol

The g_{i}^{k} 's attenuate higher order terms in the sum.

Attenuation coefficient g_{i}^{k} for $k=50,100,150$

$$
\begin{aligned}
& \text { Let } \alpha_{k}=\frac{\pi}{k+2}, \text { then : } \\
& g_{i}^{k}=\frac{\left(1-\frac{i}{k+2}\right) \sin \left(\alpha_{k}\right) \cos \left(i \alpha_{k}\right)+\frac{1}{k+2} \cos \left(\alpha_{k}\right) \sin \left(i \alpha_{k}\right)}{\sin \left(\alpha_{k}\right)}
\end{aligned}
$$

See
'Electronic structure calculations in plane-wave codes without diagonalization.' Laurent O. Jay, Hanchul Kim, YS, and James R. Chelikowsky. Computer Physics Communications, 118:21-30, 1999.

The expansion coefficients γ_{i}

When $f(x)$ is a step function on $[a, b] \subseteq[-11]$:

$$
\gamma_{i}=\left\{\begin{aligned}
\frac{1}{\pi}(\arccos (a)-\arccos (b)) & : i=0 \\
\frac{2}{\pi}\left(\frac{\sin (i \arccos (a))-\sin (i \arccos (b))}{i}\right) & : i>0
\end{aligned}\right.
$$

> A few examples follow -

Computing the polynomials: Jackson-Chebyshev

$>$ Polynomials of degree 30 for $[a, b]=[.3, .6]$

Mid-pass polynom. filter [-1 . 3 . 6 1]; Degree $=80$

Mid-pass polynom. filter [-1 . 3 . 6 1]; Degree = 200

$$
\boldsymbol{\mu}_{[a, b]}=\operatorname{Tr}(\boldsymbol{P}) \approx \frac{n}{n_{v}} \sum_{k=1}^{n_{v}}\left[\sum_{j=0}^{p} \gamma_{j} \boldsymbol{v}_{k}^{T} \boldsymbol{T}_{j}(A) \boldsymbol{v}_{k}\right]
$$

Easy to compute $\boldsymbol{T}_{j}(\boldsymbol{A}) \boldsymbol{v}_{k}$ with 3-term recurrence of Chebyshev polynomials

$$
w_{j+1}=2 A w_{j}-w_{j-1}
$$

(\boldsymbol{A} is transformed so its eigenvalues are in $\left[\begin{array}{ll}-1 & 1\end{array}\right]$)

Generalized eigenvalue problems

$$
A \boldsymbol{x}=\lambda \boldsymbol{B} \boldsymbol{x}
$$

$>$ Matrices \boldsymbol{A} and \boldsymbol{B} are symmetric and \boldsymbol{B} is positive definite.
The projector \boldsymbol{P} becomes

$$
P=\sum_{\lambda_{i} \in[a b]} u_{i} u_{i}^{T} B
$$

$>$ Again: Eigenvalue count $==\operatorname{Tr}(\boldsymbol{P})$
$>$ Exploit relation: inertia $(A-\sigma B)=\operatorname{inertia}\left(B^{-1} A-\sigma I\right)$
> No need to factor or to solve systems

An example

> Matrix 'Na5' from PARSEC [see U. Florida collection]
$>n=5832$, $n \boldsymbol{n z}=305630$ nonzero entries.
$>$ Obtain the eigenvalue count when $a=\left(\lambda_{100}+\lambda_{101}\right) / 2$ and $b=\left(\boldsymbol{\lambda}_{200}+\lambda_{201}\right) / 2$ so $\mu_{[a, b]}=100$.
$>$ Use pol. of degree 70.

Without Jackson Damping

Chebyshev exp. deg. 70- No Jackson smoothing

With Jackson Damping

Chebyshev exp. deg. 70-With Jackson smoothing

An example from FEAST

> FEAST developed by Eric Polizzi (Amherst)..
$>$ Based on a form of subspace iteration with a rational function of \boldsymbol{A}
$>$ Also works for generalized problems $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{B}$.
$>$ Example: a small generalized problem ($n=12$, 450, $n n z=$ $86,808)$.
$>$ Result with standard Chebyshev shown. Deg=100, nv $=$ 70.

$>$ A few more comments:

- Method also works with rational approximations ...
- .. and it works for nonsymmetric problems (eigenvalues inside a given contour).
- For details see paper:
E. Di Napoli, E, Polizzi, and YS. Efficient estimation of eigenvalue counts in an interval. Preprint - see arXiv: http://arxiv.org/abs/13

DENSITY OF STATES

Computing Densities of States [with Lin-Lin and Chao Yang]

$>$ Formally, the Density Of States (DOS) of a matrix \boldsymbol{A} is

$$
\phi(t)=\frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

where

- δ is the Dirac δ-function or Dirac distribution
- $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of A
$>$ Note: number of eigenvalues in an interval $[a, b]$ is

$$
\mu_{[a, b]}=\int_{a}^{b} \sum_{j} \delta\left(t-\lambda_{j}\right) d t \equiv \int_{a}^{b} n \phi(t) d t
$$

$>\phi(t)==$ a probability distribution function == probability of finding eigenvalues of \boldsymbol{A} in a given infinitesimal interval near t.
$>$ DOS is also referred to as the spectral density
$>$ In Solid-State physics, λ_{i} 's represent single-particle energy levels.
> So the DOS represents \# of levels per unit energy.
> Many uses in physics

Issue: How to deal with Distributions

> Highly discontinuous nature - not easy to handle
$>$ Solution for practical and theoretical purposes: replace ϕ by a 'blurred" (continuous) version ϕ_{σ} :

$$
\phi_{\sigma}(t)=\frac{1}{n} \sum_{j=1}^{n} h_{\sigma}\left(t-\lambda_{j}\right)
$$

where $h_{\sigma}(t)=$ any \mathcal{C}^{∞} function s.t.:

- $\int_{-\infty}^{+\infty} h_{\sigma}(s) d s=1$
- $\boldsymbol{h}_{\boldsymbol{\sigma}}$ has a peak at zero
$>$ An example is the Gaussian:

$$
h_{\sigma}(t)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

$>$ How to select σ ? Example for $S i_{2}$

$>$ Higher $\sigma \rightarrow$ smoother curve
$>$ But loss of detail ..
$>$ Compromise: $\sigma=\frac{h}{2 \sqrt{2 \log (\kappa)}}$,
$>h=$ resolution, $\kappa=$ parameter >1

The Kernel Polynomial Method

> Used by Chemists to calculate the DOS - see Silver and Röder'94, Wang '94, Drabold-Sankey'93, + others
> Basic idea: expand DOS into Chebyshev polynomials
> Use trace estimators [discovered independently] to get traces needed in calculations
$>$ Assume change of variable done so eigenvalues lie in $[-1,1]$.
> Include the weight function in the expansion so expand:

$$
\hat{\phi}(t)=\sqrt{1-t^{2}} \phi(t)=\sqrt{1-t^{2}} \times \frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

Then, (full) expansion is: $\hat{\phi}(t)=\sum_{k=0}^{\infty} \mu_{k} T_{k}(t)$.
$>$ Expansion coefficients μ_{k} are formally defined by:

$$
\begin{aligned}
\mu_{k} & =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \hat{\phi}(t) d t \\
& =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \sqrt{1-t^{2}} \phi(t) d t \\
& =\frac{2-\delta_{k 0}}{n \pi} \sum_{j=1}^{n} T_{k}\left(\lambda_{j}\right)
\end{aligned}
$$

$>$ Here $2-\delta_{k 0}==1$ when $k=0$ and $==2$ otherwise.
$>$ Note: $\sum T_{k}\left(\lambda_{i}\right)=\operatorname{Trace}\left[T_{k}(A)\right]$
$>$ Estimate this, e.g., via stochastic estimator
$>$ Generate random vectors $v^{(1)}, v^{(2)}, \cdots, v^{\left(n_{\text {vec }}\right)}$
> Assume normal distribution with zero mean
$>$ Each vector is normalized so that $\left\|v^{(l)}\right\|=1, l=1, \ldots, n_{\text {vec }}$.
$>$ Estimate the trace of $T_{k}(A)$ with stochastisc estimator:

$$
\operatorname{Trace}\left(T_{k}(A)\right) \approx \frac{1}{n_{\mathrm{vec}}} \sum_{l=1}^{n_{\mathrm{vec}}}\left(v^{(l)}\right)^{T} T_{k}(A) \boldsymbol{v}^{(l)}
$$

> Will lead to the desired estimate:

$$
\mu_{k} \approx \frac{2-\delta_{k 0}}{n \pi n_{\mathrm{vec}}} \sum_{l=1}^{n_{\mathrm{vec}}}\left(v^{(l)}\right)^{T} T_{k}(A) v^{(l)}
$$

$>$ To compute scalars of the form $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{T}_{k}(\boldsymbol{A}) \boldsymbol{v}$, exploit 3-term recurrence of the Chebyshev polynomial:

$$
T_{k+1}(A) v=2 A T_{k}(A) v-T_{k-1}(A) v
$$

so if we let $v_{k} \equiv \boldsymbol{T}_{k}(A) v$, we have

$$
v_{k+1}=2 A v_{k}-v_{k-1}
$$

> Same Jackson smoothing as before can be used

An example with degree 80 polynomials

Left: Jackson damping; right: without Jackson damping.

Why not use Legendre Polynomials?

> They yield very similar results
> Same Example as before - with same degree:

The Lanczos Spectroscopic approach

> Described in Lanczos' book "Applied Analysis, (1956)" as a means to compute eigenvalues.
$>$ Idea: assimilate $\boldsymbol{\lambda}_{i}$;s to frequencies and perform Fourrier analysis to extract them
> Also relies on Chebyshev polynomials
> Though not emphasized in the description, the method uses random sampling
$>$ Let B a symmetric real matrix with eigevalues in $[-1,1]$
$>$ Let $\boldsymbol{v}_{0}==$ an initial vector - expand in eigenbasis as

$$
v_{0}=\sum_{j=1}^{n} \boldsymbol{\beta}_{j} u_{j}, \quad \text { with } \quad \boldsymbol{\beta}_{j}=u_{j}^{T} v_{0}
$$

$>$ Let $v_{k}=T_{k}(A) v_{0}$, for $k=0, \cdots, M$. Then:
$\boldsymbol{v}_{0}^{T} \boldsymbol{v}_{k}=\sum_{j=1}^{n} \beta_{j}^{2} \boldsymbol{T}_{k}\left(\lambda_{j}\right)=\sum_{j=1}^{n} \beta_{j}^{2} \cos \left(k \theta_{j}\right)$, with $\lambda_{j}=\cos \theta_{j}$.

View $\boldsymbol{v}_{0}^{T} \boldsymbol{v}_{k}$ as a discretization of the periodic function to the right sampled at $t=0,1, \cdots, M$.

$$
f(t)=\sum_{j=1}^{n} \beta_{j}^{2} \cos \left(t \theta_{j}\right)
$$

$>$ Problem: find values of θ_{j}, for $j=1, \cdots, n$
$>$ Compute cosine transform of f; For $p=0, \cdots, M$:

$$
F(p)=\frac{f(0)+(-1)^{p} f(M)}{2}+\sum_{k=1}^{M-1} f(k) \cos \frac{k p \pi}{M}
$$

$>$ If f has an eigenvalue $\lambda=\cos \theta$, then component $\cos (\theta t)$, revealed by a peak at the point

$$
p=\frac{l \theta}{\pi}
$$

$>$ Peak at p_{j} corresponds to eigenvalue $\lambda_{j}=\cos \theta_{j}$ with $\theta_{j}=\left(p_{j} / M\right) \pi$, and so,

$$
\lambda_{j}=\cos \left(\theta_{j}\right)=\cos \left(p_{j} \pi / M\right)
$$

$>$ For a sequence of random vectors compute

$$
\hat{F}(\hat{\boldsymbol{p}}) \equiv F\left(\frac{M}{\pi} \arccos \hat{p}\right), \quad \hat{p}=\cos (p \pi / M), p=0: M .
$$

$>$ Average these values $\rightarrow \phi\left(t_{i}\right) \approx C s t \times \hat{F}\left(t_{i}\right)$

The Lanczos Spectroscopic approach: Example

> Same example as before

Left: Degree 40;

Right: degree 100

Delta Chebyshev

> The Lanczos spectroscopic approach suggests a 'new' idea:

- Select 'mesh points' t_{i} on the interval $[-1,1]$ of eigenvalues (still assume $\Lambda(A) \subseteq[-1,1]$).
- At each point expand the δ function in Chebyshev polynomials.
- Add the results.
$>$ Each δ-function defined at t_{i} acts as a 'spectral probe' [Presence of an eigenvalue at t_{i} can be detected by the value of $\int \delta\left(t-t_{i}\right) d t==1$ if $t_{i} \in \Lambda(A), 0$ otherwise.]
> It turns out that the method just defined is mathematically equivalent to KPM.

Delta-Gauss Legendre

$>$ Idea: Instead of approximating ϕ directly, first select a representative ϕ_{σ} of ϕ for a given σ and then approximate ϕ_{σ}.
$>\phi_{\sigma}$ is a 'surrogate' for ϕ. Obtained by replacing δ_{λ} by :

$$
h_{\sigma}(\lambda-t)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left[-\frac{(\lambda-t)^{2}}{2 \sigma^{2}}\right]
$$

$>$ Goal: to expand into Legendre polynomials $L_{k}(\boldsymbol{\lambda})$
$>$ With normalization factor expansion is written as:

$$
h_{\sigma}(\lambda-t)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \sum_{k=0}^{\infty}\left(k+\frac{1}{2}\right) \gamma_{k} L_{k}(\lambda)
$$

$>$ To determine the γ_{k} 's we will also need to compute:

$$
\psi_{k}=\int_{-1}^{1} L_{k}^{\prime}(s) e^{-\frac{1}{2}((s-t) / \sigma)^{2}} d s
$$

Set $\zeta_{k}=e^{-\frac{1}{2}((1-t) / \sigma)^{2}}-(-1)^{k} e^{-\frac{1}{2}((1+t) / \sigma)^{2}}$.
$>$ Then, for $k=0,1, \cdots$,

$$
\left\{\begin{array}{l}
\gamma_{k+1}=\frac{2 k+1}{k+1}\left[\sigma^{2}\left(\psi_{k}-\zeta_{k}\right)+t \gamma_{k}\right]-\frac{k}{k+1} \gamma_{k-1} \\
\psi_{k+1}=(2 k+1) \gamma_{k}+\psi_{k-1}
\end{array}\right.
$$

Initiialization: set $\gamma_{-1}=\psi_{-1}=0 \psi_{1}=\gamma_{0}$, and $\psi_{0}=0$ and:

$$
\gamma_{0}=\sigma \sqrt{\frac{\pi}{2}}\left[\operatorname{erf}\left(\frac{1-t}{\sqrt{2} \sigma}\right)+\operatorname{erf}\left(\frac{1+t}{\sqrt{2} \sigma}\right)\right]
$$

Use of the Lanczos Algorithm

$>$ Background: The Lanczos algorithm generates an orthonormal basis $V_{m}=\left[v_{1}, v_{2}, \cdots, v_{m}\right]$ for the Krylov subspace:

$$
\operatorname{span}\left\{v_{1}, A v_{1}, \cdots, A^{m-1} v_{1}\right\}
$$

ALGORITHM:1. Lanczos

1. Choose start vector v_{1} with $\left\|v_{1}\right\|_{2}=1$.
2. For $j=1,2, \ldots, m$ Do:
3. $\quad w_{j}:=A v_{j}-\boldsymbol{\beta}_{j} v_{j-1}, \quad\left(\beta_{1} \equiv 0, v_{0} \equiv 0\right)$
4. $\alpha_{j}:=\left(w_{j}, v_{j}\right)$ $w_{j}:=w_{j}-\alpha_{j} v_{j}$
$\boldsymbol{\beta}_{j+1}:=\left\|\boldsymbol{w}_{j}\right\|_{2}$. If $\boldsymbol{\beta}_{j+1}=0$ then Stop $v_{j+1}:=w_{j} / \boldsymbol{\beta}_{j+1}$
5. EndDo
$>$ Basis is such that $V_{m}^{H} A V_{m}=T_{m}$ - with

$$
T_{m}=\left(\begin{array}{cccccc}
\alpha_{1} & \beta_{2} & & & & \\
\beta_{2} & \alpha_{2} & \beta_{3} & & & \\
& \beta_{3} & \alpha_{3} & \beta_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \\
& & & & \boldsymbol{\beta}_{m} & \alpha_{m}
\end{array}\right)
$$

> Note: three term recurrence

$$
\boldsymbol{\beta}_{j+1} v_{j+1}=A v_{j}-\alpha_{j} v_{j}-\boldsymbol{\beta}_{j} v_{j-1}
$$

> Lanczos builds orthogonal polynomials wrt to dot product:

$$
\int p(t) q(t) d t \equiv\left(p(A) v_{1}, q(A) v_{1}\right)
$$

> In theory v_{i} 's defined by 3-term recurrence are orthogonal.
$>$ Let $\theta_{i}, i=1 \cdots, m$ be the eigenvalues of T_{m} [Ritz values]
$>\boldsymbol{y}_{i}$'s associated eigenvectors; Ritz vectors: $\left\{\boldsymbol{V}_{m} \boldsymbol{y}_{i}\right\}_{i=1: m}$
$>$ Ritz values approximate eigenvalues [from 'outside in']
$>$ Could compute θ_{i} 's then get approximate DOS from these
$>$ Problem: $\boldsymbol{\theta}_{i}$ not good enough approximations - especially inside the spectrum.
> Better idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

$$
\int p(t) d t \approx \sum_{i=1}^{m} a_{i} p\left(\theta_{i}\right) \quad a_{i}=\left[e_{1}^{T} y_{i}\right]^{2}
$$

$>$ See, e.g., Golub \& Meurant '93, and also Gautschi'81, Golub and Welsch '69.
$>$ Formula exact when p is a polynomial of degree $\leq 2 m+1$
> Let, in the sense of distributions:

$$
\left\langle\phi_{v_{1}}, p\right\rangle \equiv\left(p(A) v_{1}, v_{1}\right)=\sum \beta_{i}^{2} p\left(\lambda_{i}\right)=\sum \beta_{i}^{2}\left\langle\delta_{\lambda_{i}}, p\right\rangle
$$

Then $\left\langle\phi_{v_{1}}, p\right\rangle \approx \sum a_{i} p\left(\theta_{i}\right)=\sum a_{i}\left\langle\delta_{\theta_{i}}, p\right\rangle \rightarrow$

$$
\phi_{v_{1}} \approx \sum a_{i} \delta_{\theta_{i}}
$$

$>$ Use several vectors \boldsymbol{v}_{1} and average results

Experiments

$>$ Goal: to compare errors for similar number of matrix-vector products
$>$ Example: Kohn-Sham Hamiltonian associated with a benzene molecule generated PARSEC. $n=8,219$
> In all cases, we use 10 sampling vectors
> General observation: DGL, Lanczos, and KPM are best,
> Spectroscopic method does OK
$>$ Haydock's method [another method based on the Lanczos algorithm] not as good

Method	\boldsymbol{L}^{1} error	\boldsymbol{L}^{2} error	\boldsymbol{L}^{∞} error
KPM w/ Jackson, deg=80	$2.592 \mathrm{e}-02$	$5.032 \mathrm{e}-03$	$2.785 \mathrm{e}-03$
KPM w/o Jackson, deg=80	$2.634 \mathrm{e}-02$	$4.454 \mathrm{e}-03$	$2.002 \mathrm{e}-03$
KPM Legendre, deg=80	$2.504 \mathrm{e}-02$	$3.788 \mathrm{e}-03$	$1.174 \mathrm{e}-03$
Spectroscopic, deg=40	$5.589 \mathrm{e}-02$	$8.652 \mathrm{e}-03$	$2.871 \mathrm{e}-03$
Spectroscopic, deg=100	$4.624 \mathrm{e}-02$	$7.582 \mathrm{e}-03$	$2.447 \mathrm{e}-03$
DGL, deg=80	$1.998 \mathrm{e}-02$	$3.379 \mathrm{e}-03$	$1.149 \mathrm{e}-03$
Lanczos, deg=80	$2.755 \mathrm{e}-02$	$4.178 \mathrm{e}-03$	$1.599 \mathrm{e}-03$
Haydock, deg=40	$6.951 \mathrm{e}-01$	$1.302 \mathrm{e}-01$	$6.176 \mathrm{e}-02$
Haydock, deg=100	$2.581 \mathrm{e}-01$	$4.653 \mathrm{e}-02$	$1.420 \mathrm{e}-02$

L^{1}, L^{2}, and L^{∞} error compared with the normalized "surrogate" DOS for benzene matrix

The L^{1}, L^{2} and L^{∞} errors for the DGL, Lanczos, and the KPM methods with varying number of random vectors used ($n_{\text {vec }}$). Same model midified Laplacian. We set $\sigma=0.56$.

Other matrices

Matrix	\boldsymbol{n}	λ_{1}	$\boldsymbol{\lambda}_{n}$
$\mathrm{Ga}_{10} \mathrm{As}_{10} \mathrm{H}_{30}$	113,081	-1.2	1.3×10^{3}
PE3K	9,000	8.1×10^{-6}	1.3×10^{2}
CFD1	70,656	2.0×10^{-5}	6.8
SHWATER	81,920	5.8	2.0×10^{1}

Description of the size and the spectrum range of the test matrices.

Matrix	Method	L^{1} error	\boldsymbol{L}^{2} error	\boldsymbol{L}^{∞} error
$\mathrm{Ga}_{10} \mathrm{As}_{10} \mathrm{H}_{30}$	DGL	$3.937 \mathrm{e}-03$	$3.214 \mathrm{e}-04$	$4.301 \mathrm{e}-05$
	Lanczos	$4.828 \mathrm{e}-03$	$3.940 \mathrm{e}-04$	$5.452 \mathrm{e}-05$
PE3K	DGL	$4.562 \mathrm{e}-03$	$7.368 \mathrm{e}-04$	$3.143 \mathrm{e}-04$
	Lanczos	$5.459 \mathrm{e}-03$	$7.372 \mathrm{e}-04$	$3.294 \mathrm{e}-04$
CFD1	DGL	$2.276 \mathrm{e}-03$	$1.299 \mathrm{e}-03$	$1.746 \mathrm{e}-03$
	Lanczos	$2.024 \mathrm{e}-03$	$1.286 \mathrm{e}-03$	$2.478 \mathrm{e}-03$
SHWATER	DGL	$3.779 \mathrm{e}-03$	$1.282 \mathrm{e}-03$	$9.328 \mathrm{e}-04$
	Lanczos	$3.047 \mathrm{e}-03$	$9.829 \mathrm{e}-04$	$6.100 \mathrm{e}-04$

L^{1}, L^{2}, and L^{∞} error associated with the approximate spectral densities produced by the DGL and Lanczos methods for different test matrices.

Approximate spectral densities of CFD1 and SHWATER matrices obtained by DGL along with exact smoothed ones

Conclusion

> Probabilistic algorithms provide powerful tools for solving various problems: eigenvalue counts, DOS, Diag $(f(A))$..
$>$ Most of the algorithms we discussed rely on estimating trace of $f(A)$ or $\operatorname{Diag}(f(A))$.
> Analysis left to do: adapt known decay bounds (Benzi al,..) to analyze convergence
> Also: Can we do better than random sampling [e.g., probing,..]?
> Physicists are interested in modified forms of the density of states. \rightarrow Explore extentions of what we did.

