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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

• Survey of the state of the art linear algebra at that time:
direct & iterative methods, conditioning, preconditioning, the
Conjugate Gradient method, acceleration methods, ...

ä An amazing paper in which the author was urging researchers
to start looking at solution methods for linear systems.
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Introduction: a historical perspective

In 1953, George Forsythe published a paper titled:
“Solving linear systems can be interesting”.

• Survey of the state of the art linear algebra at that time:
direct & iterative methods, conditioning, preconditioning, the
Conjugate Gradient method, acceleration methods, ...

ä An amazing paper in which the author was urging researchers
to start looking at solution methods for linear systems.

ä Almost 7 decades later – we can similarly state that:

“Linear Algebra problems in Machine Learn-
ing can be interesting”
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Focus of numerical linear algebra changed many times over
the years

1940s–1950s: Major issue: the flutter problem in aerospace
engineering→ eigenvalue problem [cf. Olga Taussky Todd]

ä Then came the discoveries of the LR and QR algorithms.
The package Eispack followed a little later

1960s: Problems related to the power grid promoted what we
would call today general sparse matrix techniques

Early-late 1990: Thrust on parallel matrix computations.

Early 2000: Spur of interest in “financial computing”

Current: Machine learning, data-centered computing
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Solution of PDEs (e.g., Fluid Dynamics) and problems in me-
chanical eng. (e.g. structures) major force behind numerical
linear algebra algorithms in the past few decades.

ä Strong new forces are now reshaping the field

ä Machine learning is appearing everywhere:

Design of materials, drugs, ...
Machine learning in geophysics
Self-driving cars, ..
.. Even: solving PDEs
...

ä Look at what you are doing under new lenses: DATA

ä Big impact on the economy .. and on jobs:
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Plan:

1. A mini-tutorial: machine learning
2. Focus: Graph methods ...
3. ... and Graph coarsening.
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INTRODUCTION & BACKGROUND: GRAPH LAPLACIANS



Graph Laplacians - Definition

• “Laplace-type” matri-
ces associated with gen-
eral undirected graphs –
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ä Given a graph G = (V,E) define

• A matrix W of weights wij for each edge with:
wij ≥ 0, wii = 0, and wij = wji ∀(i, j)

• The diagonal matrix D = diag(di) with di =
∑
j wij

ä Corresponding graph Laplacian
of G is→

L = D −W
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ä Simplest case: wij =

{
1 if (i, j) ∈ E & i 6= j
0 else

Example:
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L =


1 −1 0 0 0
−1 2 0 0 −1
0 0 1 0 −1
0 0 0 1 −1
0 −1 −1 −1 3
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Basic results on graph Laplacians

Proposition:

1. L is symmetric semi-positive definite.

2. L is singular with 1 as a null vector. If G is connected,
then Null(L) = span{1}

3. If G has k > 1 connected components G1, G2, · · · , Gk,
then the nullity of L is k and Null(L) is spanned by the
vectors z(j), j = 1, · · · , k defined by:

(z(j))i =

{
1 if i ∈ Gj

0 if not.
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A few properties of graph Laplacians

x

x
j

i

Strong relation between xTLx and
local distances between entries of x
ä Let L = a graph Laplacian. Then:
Property 1: for any x ∈ Rn :

x>Lx =
∑
j>iwij|xi − xj|2

Property 2: (Generalization) for any Y ∈ Rn×d :

Tr [Y >LY ] =
∑
j>i

wij‖yi,: − yj,:‖2

ä Note: yj,: = j-th row of Y . Each row can represent a data
sample.
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Property 3: (Graph partitioning) Consider situation whenwij
∈ {0, 1}. If x is a vector of signs (±1) then

x>Lx = 4× (‘number of edge cuts’)

Edge-cut≡ pair (i, j) with xi 6= xj

Can be used to partition graphs....
+1

−1

ä Minimize (Lx, x) s.t. x ∈
{−1, 1}n and 1Tx = 0.→ Hard

min
x∈{−1,1}n; 1Tx=0

(Lx, x)

(x, x)

ä Instead solve a relaxed form of
problem. Solution = u2 2nd smallest
eigenvector of L (Fiedler vector)

min
x∈Rn; 1Tx=0

(Lx, x)

(x, x)
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UNSUPERVISED LEARNING & CLUSTERING



Unsupervised learning

Data is not labeled

• Example of digits: perform a 2-
D projection. Images of same digit
tend to cluster (more or less)
• Such 2-D representations are
popular for visualization
• Problem: find natural clusters in
data, e.g., in materials

−6 −4 −2 0 2 4 6 8
−5

−4

−3

−2

−1

0

1

2

3

4

5
PCA − digits : 5 −− 7

 

 

5
6
7

Superhard
Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

Cedya21, 06-15-2021 p. 16



“Manifold Learning” Example: projection of face images

Frey Dataset: 1,965 images of an individual – different ex-
pressions. Each image: 20× 28 grey-scale pixels

Various projections [see H-R Fang, S. Sakellaridi, YS ’10]
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Clustering

ä Problem: we are given n data items: x1, x2, · · · , xn.
Would like to ‘cluster’ them, i.e., group them so that each group
or cluster contains items that are similar in some sense.

ä Example: materials
Superhard

Photovoltaic

Superconductors

Catalytic

Ferromagnetic

Thermo−electricMulti−ferroics

ä Example: Digits
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ä Refer to each group as a ‘cluster’ or a ‘class’

ä ‘Unsupervised learning’ : Methods do not exploit labeled
data
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Example: Community Detection

ä Communities modeled by an ‘affinity’ graph [e.g., ’user A
sends frequent e-mails to user B’]
ä Adjacency Graph represented by a sparse matrix

← Original
matrix
Goal: Find

ordering so
blocks are
as dense as
possible→

ä Use ‘blocking’ techniques for sparse matrices
ä Advantage of this viewpoint: need not know # of clusters.
[data: www-personal.umich.edu/~mejn/netdata/]
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A basic clustering method: K-means (Background)

ä A basic algorithm that uses Euclidean distance

1. Select p initial centers: c1, c2, ..., cp for classes
1, 2, · · · , p

2. For each xi do: determine class of xi as argmink‖xi−ck‖
3. Redefine each ck to be the centroid of class k
4. Repeat until convergence
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Works well but can be slow
Performance depends on initializa-
tion
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Spectral clustering: General approach

1. Given: Collection of data samples {x1, x2, · · · , xn}

2. Build a similarity graph between
items
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i

j

w(i,j)=?

3. Compute (smallest) d eigenvectors of resulting graph
Laplacian [this ‘embeds’ graph to Rd]

4. Use k-means on eigenvector (s) of Laplacean
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GRAPH EMBEDDINGS



Graph embeddings

In Similarity Graphs: we build a graph to represent data
Graph embedding: We do the opposite, i.e., map a graph to
vectors

Vertex embedding: map every vertex xi to a vector yi ∈ Rd
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● −→ Data: Y = [y1, y2, · · · , yn] in Rd

ä Trivial use: visualize a graph (d = 2)

Graph embedding: map whole graphG to a vector yG ∈ Rd
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ä Many applications [clustering, finding missing link, semi-
supervised learning, community detection, ...]

ä Embeddings are central to Graph Neural Networks (GNNs)

Graph built to captures similarities in
data
Goal of the embedding is to preserve
these similarities.
Done via the Graph (e.g., Laplacian)

x

x
j

i

y
i

y
j

ä Many methods do this. Examples:
Eigenmaps , Isomap , LLE

ä Used in earlier illustration with Frey dataset
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Graph-based dimension reduction

• A class of methods that exploit graphs to perform dimension-
ality reduction [eigenmaps, LLE, isomap, LLP, ..]

General Approach:

i

j

Data in R

Data in R

m

d

Mapping

1) Build sim. graph

2) Embed graph
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SUPERVISED LEARNING



Supervised learning

Now: data is ‘labeled’

• Example: (health sciences) ‘malignant’- ’non malignant’

• Example: (materials) ’photovoltaic’, ’hard’, ’conductor’, ...

• Example: (Digit recognition) Digits ’0’, ’1’, ...., ’9’

c

e

f

d

a b g
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Supervised learning

We now have data that is ‘labeled’

• Example: (health sciences) ‘malignant’- ’non malignant’

• Example: (materials) ’photovoltaic’, ’hard’, ’conductor’, ...

• Example: (Digit recognition) Digits ’0’, ’1’, ...., ’9’
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Supervised learning: classification

ä Example: written digits recognition

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.
Problem: find

label of test image
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ä Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space

Cedya21, 06-15-2021 p. 29



Basic method: K-nearest neighbors (KNN) classification

ä Idea of a voting system: get
distances between test sample
and training samples

ä Get the k nearest neighbors
(here k = 8)

ä Predominant class among
these k items is assigned to the
test sample (“∗” here)
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Supervised learning: Linear classification

Linear classifiers: Find
a hyperplane that best
separates data in two
classes. Examples:

• Fisher’s Linear Dis-
criminant Analysis (LDA)

• Support Vector Ma-
chines (SVM) Linear

classifier

ä Note: The world in non-linear. Often this is combined with
Kernels – amounts to changing the inner product
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A harder case:
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ä Use kernels to transform
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DEMO



A few words on Deep Neural Networks (DNNs)

ä Ideas of neural networks goes back to the 1960s - were
popularized in early 1990s – then laid dormant until recently.

ä Training a neural network amounts to approximating a
function φ which is defined via sets (‘layers’) of parameters:

Problem:

Find sets of parameters such
that φ(x) ≈ y
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Input: x, Output: y
Set: z0 = x
For l = 1 : L+1 Do:
zl = σ(Wl

Tzl−1 + bl)
End
Set: y = φ(x) := zL+1

• layer # 0 = input layer
• layer # (L+1) = output layer

Layer

Input

Layer

OutputHidden

Layer

ä Matrix Wl associated with layer l for l = 1, 2, · · · , L+ 1

ä Problem: Find φ (i.e., matrices Wl) s.t. φ(x) ≈ y
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DNN (continued)

Problem is not convex and it is highly over-parameterized
Main method used: Stochastic gradient descent [basic]
It all works like alchemy... but great results for certain appli-
cations
Training is still quite expensive – GPUs can help
*Very* active area of research
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FOCUS: GRAPH COARSENING



Graph Coarsening in scientific computing

ä Goal : exploit coarse representation of problem

ä Fewer nodes so: cheaper
ä Can be used recursively

ä Success story: Multigrid, Alge-
braic Multigrid
ä AMG: Define coarse / fine nodes
based on ‘strength of coupling’→
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Example: Multilevel ILU [D. Osei-Kuffuor, R. Li, YS, ’15]

Goal: Form of ILU preconditioning with improved robustness

ä To define coarse nodes: traverse edges (i, j) ∈ Nz(A) in
decreasing order of the weights:

wij = min

{ |aij|
δr(i)

,
|aij|
δc(j)

}
where:

δr(i) =
‖Ai,:‖1

nz(Ai,:)
and δc(j) =

‖A:,j‖1

nz(A:,j) i

j

w ij

ä Select i as ‘coarse’ if σi > σj and
j otherwise, where→ σk = |akk|

δr(k)δc(k)
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ä (Matlab) Test with matrix Raefsky3 1

ä 4 levels of coarsening. Then reorder matrix and:

ä Solve with ILUT- GMRES(50) or BSOR - GMRES(50)
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Coarsening approaches by matching: Pairwise aggregation

1. Visit edges (i, j) in decreasing value of their weight wi,j
2. If both i and j have no parents yet (left), create a new coarse

node (’new’). Set parents of i and j to be new.
3. When loop is completed deal with unassigned nodes: Either

(middle) add as a coarse nodes if disconnected (“singleton")
or (right) lump as a child to an existing coarse node

ä We will refer to this as: Heavy Edge Matching (HEM)
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Coarsening by independent sets

Recall: An independent set S ⊆ V consists of vertices that
are not adjacent to each other: i, j ∈ S =⇒ aij = 0

ä S is maximal if it cannot be augmented into another IS

ä Can take Vc = S as a coarse set. Need to define edges.

ä Let L = reordered graph Lapla-
cian (nc vertices of Vc listed first):
(note: Dc is diagonal)

L =

(
Dc −F
−F T B

)

ä Replace B by Df = F T
1

and defineGc = graph of Sc→
Sc = Dc − FD−1

f F
T

Property: Sc = Graph Laplacian of coarse graph Gc
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Coarsening by ‘algebraic distance’

ä Motivated by “bootstrap algebraic multigrid” (BAMG) [Brandt’01]

ä In BAMG notion of closeness (used for coarsening) defined
from a few steps of Gauss-Seidel for solving Ax = 0

ä Speed of convergence of the iterate determines an ‘alge-
braic distance’ between variables.

ä Exploited to aggregate the unknowns and define restriction
and interpolation operators. Analysis in [Chen-Safro’11]
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Coarsening by ‘kron’ decomposition

ä Kron reduction of networks proposed back in 1939 by Kron

ä Revived by Dorfler and Bullo(2013) and Shuman et al. (2016)

Main idea:

• Select a coarse set V1: Shuman-al use eigenvectors

• Reorder matrix so that nodes of V1

come 1st. Laplacean becomes→
L =

[
L11 L12

LT12 L22

]

• Kron reduction of L defined
as the Schur complement:

L(V1) = L11 − L12L
−1
22 L

T
12

Property L(V1) == graph Laplacian of V1 [Dorfler-Bullo]
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Example:

Two ways of using
independent sets for
coarsening.
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Q. 1: How to deal with ‘denser’ graph?

A Sparsify - using spectral sparsificaition

Q. 2: How to select V1?

A Use signs of largest eigenvector of original Laplacian L

ä If u1 = [ξ1, ξ2, · · · , ξn]T = the largest eigenvector.

ä Define V+ = {i|ξi ≥ 0} and V− = {i|ξi < 0}

ä Then select one of V+, V− as V1.

ä Opposite of what is done in spectral graph partitioning
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ä Easy to show: (under mild condition on eigenvector) Each
node of V+ (resp. V−) must have at least one nearest neighbor
node from V− (resp. V+).
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GRAPH COARSENING IN MACHINE LEARNING



Multilevel Dimension Reduction

Idea:

Coarsen for a few levels.
Use resulting data set X̂ to
find a projector P from Rm
to Rd. Use this P to project
data items.
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ä Gain: Dimension reduction is done with a much smaller set.

ä Wish: not much loss compared to using whole data
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Multilevel Dimension Reduction (for sparse data- e.g., text)

ä Use Hypergraph Coarsening with column matching – similar
to a common one used in graph partitioning

ä Compute the non-zero inner product 〈a(i), a(j)〉 between
two vertices i and j, i.e., the ith and jth columns of A.

ä Note: 〈a(i), a(j)〉 = ‖a(i)‖‖a(j)‖ cos θij

Modif. 1: Parameter: 0 < ε < 1. Match
columns i & j only if angle satisfies:

tan θij ≤ ε

Modif. 2: Re-Scale. If i and
j match and ‖a(i)‖0 ≥ ‖a(j)‖0

replace a(i) and a(j) by
c(`) =

(
1 + cos2 θij

)1
2 a(i)
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ä Call C the coarsened matrix obtained from A using the
approach just described

Lemma: Let C ∈ Rm×c be the coarsened matrix of A
obtained by one level of coarsening of A ∈ Rm×n, with
columns a(i) and a(j) matched if tan θi ≤ ε. Then

|xTAATx− xTCCTx| ≤ 3ε‖A‖2
F ,

for any x ∈ Rm with ‖x‖2 = 1.

ä Very simple bound for Rayleigh quotients for any x.

ä Implies some bounds on singular values and norms - skipped.

ä See details + experiments in [Ubaru-YS ’19]
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Graph coarsening for graph embeddings: HARP and MILE

ä Vertex embedding: Given G = (V,E) find mapping Φ:

Φ : v ∈ V −→ Φ(v) ∈ Rd d is small: d� n

Hierarchical Representation
Learning for Networks
(HARP): (Chen et al. ’18)
coarsen for a few levels. Find
embedding Φ(`) for coarsest
graph (level `). Then a
succession of expansions to
higher level + refinement.
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ä Gain: Embedding done with a much smaller set.
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ä MILE approach [Liang et al. ’18] very similar (difference in
refinement).

Experiment to evaluate the effectiveness of HARP.

ä Baseline. Three embedding algorithms: DeepWalk [Perozzi-
al’14], LINE [Tang-al’15] and Node2vec [Grover-Leskovec’16]

ä Combined with Coarsening methods:

1. Heavy Edge Matching (HEM) - sketched earlier
2. Algebraic distance (ALG) - sketched earlier
3. Leverage Score Coarsening (LESC) – variant of HEM
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ä Problem: Multilabel classification with dataset Citeseer

[Citation network. Publications in computer science consisting
of 3.3K nodes and 4.5K edges. Label (zeros and ones) indi-
cates research areas to which a paper belongs.]

Multi-label classification results. x-axis == portion of nodes
randomly sampled for training. y-axis == Macro F1 score
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Coarsening with eigenvectors

It is possible to coarsen a graph with the goal of exactly
preserving a few eigenvectors.
This has turned out not to be too useful in practice.
Instead we use eigenvectors to define ‘importance of nodes’
for the graph traversal

Leverage Scores

ä A = UΣV T (ran (A) = ran (U))
ä Leverage score of i-th row→

ηi = ‖Ui,:‖2
2

• Used to measure importance of row i in random sampling
methods [e.g. El-Aloui & Mahonney ’15]
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• LetA now be a graph Laplacian andA = UΛUT with λ1 ≤
λ2 ≤ · · · ≤ λn

In Leverage-score coarsening (LESC)
we dampen lower sing. vectors→

ηi =
∑r
k=1(e

−τλkUik)
2

• Use ηi to decide order of traversal in coarsening algorithm

• Slightly different way of handling left-over nodes (‘singletons’)

• Next: visualization with 5 different coarsening methods on a
graph with n = 312 nodes and ne = 761 edges
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Original , ne = 761 HEM ne = 340 LV 1,ne = 321

ALG,ne = 327 Kron, ne = 485 LESC, ne = 362

1. Local Variation (Loukas’2019)
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Consider case when r = n (or simply r is large)

ηi =
n∑
k=1

(e−τλkUik)
2 =

n∑
k=1

e−2τλk|Uik|2 = eTi e
−2τLei.

ä ηi equals the i-th diagonal entry of the matrixH ≡ exp(−2τL)

Alternative definition

ä We consider the following alternative - related to L†

ηi =
n∑
j=2

(
1√
λj
Uij

)2

→ ηi ≈
r∑
j=2

(
1√
λj
Uij

)2

Property: L†ii =
n∑
j=2

Uij√
λj

Uij√
λj

= ηi
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Traversal order: HEM (left) and LESC (right) on a small graph.
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Analysis

ä L† has long been used to define node importance

ä The nonzero entries of L† define resistance distance. Its
trace is the Effective graph resistance. Related to betweenness
centrality measure... + many other links.

ä Important fact: η helps measure the change in L†

Let the graph be connected. The magnitude of the difference
between L† and L†∞ caused by assigning the +∞ edge
weight to an edge e(i, j) is bounded by

||∆L†||2F ≤ κ(L)(L†ii + L†jj),

where κ ≡ effective condition number.

[Adapted from a result of Hermsdorff and Gunderson’19]
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Application: Graph classification

Problem: determine the label of a graph [e.g., graph of a
molecule in chemistry applications].

Method: Graph Neural Networks [GNN]

ä GNNs find an embedding of a graph by using several ‘pool-
ing’ layers of a neural network. We use:

1. SortPool
2. DiffPool
3. TopKPool
4. SAGPool
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What are these ‘pooling’ methods?

Aim: generalize the convolu-
tion and subsampling layers of
Convolutional Neural Networks
to graphs: C

o
n

v
o

lu
ti

o
n

● ● ●

ReLu  (Nonlinear) 

1) 

3) 

2) 

Sub−sample 

4) Next Layer −− repeat

CNN

(e.g., max−pool)

ä End result : embedding of a graph.
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Datasets:

D&D protein data set (predict protein functions from structure)

REDDIT-BINARY (REBI) and

REDDIT-MULTI-5K (RE5K) social network data sets from the
discussion forum Reddit [Graph: discussion threads]

Stats.

DD REBI RE5K
#GRAPHS 1178 2000 4999
#CLASSES 2 2 5

AVG.#NODES 284.32 429.63 508.52
AVG.#EDGES 715.66 497.75 594.87

ä Method: preprocess (coarsen) each graph prior to using it.
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Relative times vs. original (No coarsening). Percentates on
right of each figure: gain (loss) in accuracy
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Conclusion

*Many* interesting new matrix problems in areas that involve
the effective exploitation of data
Many online resources available
Huge potential in scientific areas like materials science
To a researcher in computational linear algebra : Tsunami
of change on types or problems, algorithms, frameworks,
culture,..
But change should be welcome :
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ä From “Who Moved My Cheese?” [Spencer Johnson ’02]:

“The quicker you let go of old cheese, the sooner you find new
cheese.”

“If you do not change, you can become extinct!”

Thank you !

ä Visit my web-site at www.cs.umn.edu/~saad
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