UNIVERSITY
 OF Minnesota twin cities

Numerical Linear Algebra for data-related applications
Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

CEDYA/CMA 2021

Gijón, June 15, 2021

Introduction: a historical perspective

In 1953, George Forsythe published a paper titled: "Solving linear systems can be interesting".

- Survey of the state of the art linear algebra at that time: direct \& iterative methods, conditioning, preconditioning, the Conjugate Gradient method, acceleration methods, ...
> An amazing paper in which the author was urging researchers to start looking at solution methods for linear systems.

Introduction: a historical perspective

In 1953, George Forsythe published a paper titled: "Solving linear systems can be interesting".

- Survey of the state of the art linear algebra at that time: direct \& iterative methods, conditioning, preconditioning, the Conjugate Gradient method, acceleration methods, ...
> An amazing paper in which the author was urging researchers to start looking at solution methods for linear systems.
- Almost 7 decades later - we can similarly state that:
"Linear Algebra problems in Machine Learning can be interesting"

Focus of numerical linear algebra changed many times over the years

1940s-1950s: Major issue: the flutter problem in aerospace engineering \rightarrow eigenvalue problem [cf. Olga Taussky Todd]
> Then came the discoveries of the LR and QR algorithms. The package Eispack followed a little later
1960s: Problems related to the power grid promoted what we would call today general sparse matrix techniques

Early-late 1990: Thrust on parallel matrix computations.
Early 2000: Spur of interest in "financial computing"
Current: Machine learning, data-centered computing

Solution of PDEs (e.g., Fluid Dynamics) and problems in mechanical eng. (e.g. structures) major force behind numerical linear algebra algorithms in the past few decades.
> Strong new forces are now reshaping the field
> Machine learning is appearing everywhere:

- Design of materials, drugs, ...
- Machine learning in geophysics
- Self-driving cars, ..

■ .. Even: solving PDEs
> Look at what you are doing under new lenses: DATA
> Big impact on the economy .. and on jobs:

1. A mini-tutorial: machine learning
2. Focus: Graph methods ...
3. ... and Graph coarsening.

INTRODUCTION \& BACKGROUND: GRAPH LAPLACIANS

Graph Laplacians - Definition

$>$ Given a graph $G=(\boldsymbol{V}, \boldsymbol{E})$ define

- A matrix \boldsymbol{W} of weights $w_{i j}$ for each edge with:

$$
w_{i j} \geq 0, \quad w_{i i}=0, \quad \text { and } \quad w_{i j}=w_{j i} \forall(i, j)
$$

- The diagonal matrix $D=\operatorname{diag}\left(d_{i}\right)$ with $d_{i}=\sum_{j} w_{i j}$
> Corresponding graph Laplacian

$$
L=D-W
$$

$$
\text { of } G \text { is } \rightarrow
$$

- Simplest case: $\quad w_{i j}=\left\{\begin{array}{l}1 \text { if }(i, j) \in E \& i \neq j \\ 0\end{array}\right.$ else

Example:

$$
L=\left(\begin{array}{ccccc}
1 & -1 & 0 & 0 & 0 \\
-1 & 2 & 0 & 0 & -1 \\
0 & 0 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & -1 \\
0 & -1 & -1 & -1 & 3
\end{array}\right)
$$

Basic results on graph Laplacians

Proposition:

1. L is symmetric semi-positive definite.
2. L is singular with $\mathbb{1}$ as a null vector. If G is connected, then $\operatorname{Null}(L)=\operatorname{span}\{\mathbb{1}\}$
3. If G has $k>1$ connected components $G_{1}, G_{2}, \cdots, G_{k}$, then the nullity of L is k and $\operatorname{Null}(L)$ is spanned by the vectors $z^{(j)}, j=1, \cdots, k$ defined by:

$$
\left(z^{(j)}\right)_{i}=\left\{\begin{array}{l}
1 \text { if } i \in G_{j} \\
0 \text { if not. }
\end{array}\right.
$$

A few properties of graph Laplacians

Strong relation between $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{L} \boldsymbol{x}$ and local distances between entries of x
$>$ Let $L=$ a graph Laplacian. Then:
Property 1: for any $x \in \mathbb{R}^{n}$:

$$
\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}=\sum_{j>i} w_{i j}\left|\boldsymbol{x}_{i}-\boldsymbol{x}_{j}\right|^{2}
$$

Property 2: (Generalization) for any $Y \in \mathbb{R}^{n \times d}$:

$$
\operatorname{Tr}\left[\boldsymbol{Y}^{\top} \boldsymbol{L} \boldsymbol{Y}\right]=\sum_{j>i} \boldsymbol{w}_{i j}\left\|\boldsymbol{y}_{i,:}-\boldsymbol{y}_{j,:}\right\|^{2}
$$

$>$ Note: $\boldsymbol{y}_{\boldsymbol{j},:}=\boldsymbol{j}$-th row of \boldsymbol{Y}. Each row can represent a data sample.

Property 3: (Graph partitioning) Consider situation when $\boldsymbol{w}_{i j}$ $\in\{0,1\}$. If x is a vector of signs (± 1) then

$$
x^{\top} L x=4 \times \text { ('number of edge cuts') }
$$

- Edge-cut \equiv pair (i, j) with $x_{i} \neq x_{j}$
- Can be used to partition graphs....

$>\operatorname{Minimize}(L x, x)$ s.t. $x \in \min _{x \in\{-1,1\}^{n} ; \mathbb{1}^{T} x=0} \frac{(L x, x)}{(x, x)}$
> Instead solve a relaxed form of problem. Solution $=u_{2}$ 2nd smallest eigenvector of \boldsymbol{L} (Fiedler vector)

$$
\min _{x \in \mathbb{R}^{n} ; \mathbb{1}^{T} x=0} \frac{(L x, x)}{(x, x)}
$$

UNSUPERVISED LEARNING \& CLUSTERING

Unsupervised learning

Data is not labeled

- Example of digits: perform a 2 D projection. Images of same digit tend to cluster (more or less)
- Such 2-D representations are popular for visualization
- Problem: find natural clusters in data, e.g., in materials

"Manifold Learning" Example: projection of face images

■ Frey Dataset: 1,965 images of an individual - different expressions. Each image: 20×28 grey-scale pixels

Various projections [see H-R Fang, S. Sakellaridi, YS '10]

$2 D$ mappings of Frey Face database using LLE and multilevel-LLE.

Clustering

$>$ Problem: we are given n data items: $x_{1}, x_{2}, \cdots, x_{n}$. Would like to 'cluster' them, i.e., group them so that each group or cluster contains items that are similar in some sense.
> Example: materials

> Example: Digits

> Refer to each group as a 'cluster' or a 'class'
> 'Unsupervised learning' : Methods do not exploit labeled data

Example: Community Detection

> Communities modeled by an 'affinity' graph [e.g., 'user \boldsymbol{A} sends frequent e-mails to user $\left.B^{\prime}\right]$

- Adjacency Graph represented by a sparse matrix

\leftarrow	Original
matrix	
Goal:	Find
ordering	so
blocks	are
as dense as	
possible \rightarrow	

> Use 'blocking' techniques for sparse matrices

- Advantage of this viewpoint: need not know \# of clusters.
[data: www-personal.umich.edu/~mejn/netdata/]

A basic clustering method: K-means (Background)

- A basic algorithm that uses Euclidean distance

1. Select p initial centers: $c_{1}, c_{2}, \ldots, c_{p}$ for classes

$$
1,2, \cdots, p
$$

2. For each x_{i} do: determine class of x_{i} as $\operatorname{argmin}_{k}\left\|x_{i}-c_{k}\right\|$
3. Redefine each c_{k} to be the centroid of class k
4. Repeat until convergence

- Simple algorithm
- Works well but can be slow
- Performance depends on initialization

Spectral clustering: General approach

1. Given: Collection of data samples $\left\{x_{1}, x_{2}, \cdots, x_{n}\right\}$
2. Build a similarity graph between items
3. Compute (smallest) \boldsymbol{d} eigenvectors of resulting graph Laplacian [this 'embeds' graph to \mathbb{R}^{d}]
4. Use k-means on eigenvector (s) of Laplacean

GRAPH EMBEDDINGS

Graph embeddings

- In Similarity Graphs: we build a graph to represent data
- Graph embedding: We do the opposite, i.e., map a graph to vectors

Vertex embedding: map every vertex $\boldsymbol{x}_{\boldsymbol{i}}$ to a vector $\boldsymbol{y}_{i} \in \mathbb{R}^{d}$

$\longrightarrow \quad$ Data: $\boldsymbol{Y}=\left[\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \cdots, \boldsymbol{y}_{n}\right]$ in \mathbb{R}^{d}
> Trivial use: visualize a graph $(d=2)$
Graph embedding: map whole graph \boldsymbol{G} to a vector $\boldsymbol{y}_{G} \in \mathbb{R}^{d}$
> Many applications [clustering, finding missing link, semisupervised learning, community detection, ...]
> Embeddings are central to Graph Neural Networks (GNNs)

- Graph built to captures similarities in data
- Goal of the embedding is to preserve these similarities.
- Done via the Graph (e.g., Laplacian)

> Many methods do this. Examples:
Eigenmaps, Isomap, LLE
> Used in earlier illustration with Frey dataset

Graph-based dimension reduction

- A class of methods that exploit graphs to perform dimensionality reduction [eigenmaps, LLE, isomap, LLP, ..]

SUPERVISED LEARNING

Supervised learning

Now: data is 'labeled'

- Example: (health sciences) 'malignant'- 'non malignant'
- Example: (materials) 'photovoltaic', 'hard', 'conductor', ...
- Example: (Digit recognition) Digits '0', '1',, '9'

Supervised learning

We now have data that is 'labeled'

- Example: (health sciences) 'malignant'- 'non malignant'
- Example: (materials) 'photovoltaic', 'hard', 'conductor', ...
- Example: (Digit recognition) Digits '0', '1',, '9'

Supervised learning: classification

- Example: written digits recognition

Given:	a set of
labeled	samples
(training	set),
and an (unlabeled)	test
image.	
Problem:	find
label of test image	

> Roughly speaking: we seek dimension reduction so that recognition is 'more effective' in low-dim. space

Basic method: K-nearest neighbors (KNN) classification

> Idea of a voting system: get distances between test sample and training samples
> Get the k nearest neighbors (here $k=8$)
> Predominant class among these k items is assigned to the test sample ("*" here)

Supervised learning: Linear classification

Linear classifiers: Find a hyperplane that best separates data in two classes. Examples:

- Fisher's Linear Discriminant Analysis (LDA)
- Support Vector Machines (SVM)

> Note: The world in non-linear. Often this is combined with Kernels - amounts to changing the inner product

A harder case:

> Use kernels to transform

Transformed data with a Gaussian Kernel

DEMO

A few words on Deep Neural Networks (DNNs)

> Ideas of neural networks goes back to the 1960s - were popularized in early 1990s - then laid dormant until recently.
> Training a neural network amounts to approximating a function ϕ which is defined via sets ('layers') of parameters:

Problem:

Find sets of parameters such that $\phi(x) \approx y$

Input: x, Output: y

Set: $z_{0}=x$
For $l=1: \mathrm{L}+1$ Do:

$$
z_{l}=\sigma\left(W_{l}^{T} z_{l-1}+b_{l}\right)
$$

End
Set: $y=\phi(x):=z_{L+1}$

- layer \# 0 = input layer
- layer \# $(L+1)$ = output layer

$>$ Matrix W_{l} associated with layer l for $l=1,2, \cdots, L+1$
> Problem:
Find ϕ (i.e., matrices W_{l}) s.t. $\phi(x) \approx y$

DNN (continued)

■ Problem is not convex and it is highly over-parameterized

- Main method used: Stochastic gradient descent [basic]

■ It all works like alchemy... but great results for certain applications

- Training is still quite expensive - GPUs can help
- *Very* active area of research

FOCUS: GRAPH COARSENING

Graph Coarsening in scientific computing

> Goal : exploit coarse representation of problem

> Fewer nodes so: cheaper
> Can be used recursively

Example: Multilevel ILU [D. Osei-Kuffuor, R. Li, YS, '15]

Goal: Form of ILU preconditioning with improved robustness
$>$ To define coarse nodes: traverse edges $(i, j) \in \boldsymbol{N z}(A)$ in decreasing order of the weights:

$$
\begin{aligned}
w_{i j} & =\min \left\{\frac{\left|a_{i j}\right|}{\delta_{r}(i)}, \frac{\left|a_{i j}\right|}{\delta_{c}(j)}\right\} \text { where: } \\
\delta_{r}(i) & =\frac{\left\|A_{i,:}\right\|_{1}}{n z\left(A_{i,:}\right)} \text { and } \delta_{c}(j)=\frac{\left\|A_{:, j}\right\|_{1}}{n z\left(A_{:, j}\right)}
\end{aligned}
$$

$>$ Select i as 'coarse' if $\sigma_{i}>\sigma_{j}$ and j otherwise, where \rightarrow

$$
\sigma_{k}=\frac{\left|a_{k k}\right|}{\delta_{r}(k) \delta_{c}(k)}
$$

> (Matlab) Test with matrix Raefsky3 ${ }^{1}$
> 4 levels of coarsening. Then reorder matrix and:
> Solve with ILUT- GMRES(50) or BSOR - GMRES(50)

Coarsening approaches by matching: Pairwise aggregation

1. Visit edges (i, j) in decreasing value of their weight $\boldsymbol{w}_{i, j}$
2. If both i and j have no parents yet (left), create a new coarse node ('new'). Set parents of \boldsymbol{i} and \boldsymbol{j} to be $\boldsymbol{n e w}$.
3. When loop is completed deal with unassigned nodes: Either (middle) add as a coarse nodes if disconnected ("singleton") or (right) lump as a child to an existing coarse node
> We will refer to this as: Heavy Edge Matching (HEM)

Coarsening by independent sets

Recall: An independent set $\mathcal{S} \subseteq V$ consists of vertices that are not adjacent to each other: $i, j \in \mathcal{S} \Longrightarrow a_{i j}=0$
$>\mathcal{S}$ is maximal if it cannot be augmented into another IS
$>$ Can take $V_{c}=\mathcal{S}$ as a coarse set. Need to define edges.
$>$ Let $L=$ reordered graph Laplacian ($\boldsymbol{n}_{\boldsymbol{c}}$ vertices of $\boldsymbol{V}_{\boldsymbol{c}}$ listed first): (note: \boldsymbol{D}_{c} is diagonal)

$$
L=\left(\begin{array}{cc}
\boldsymbol{D}_{c} & -\boldsymbol{F} \\
-\boldsymbol{F}^{T} & \boldsymbol{B}
\end{array}\right)
$$

$>$ Replace B by $D_{f}=\boldsymbol{F}^{T} \mathbb{1}$ and define $G_{c}=$ graph of $S_{c} \rightarrow$

$$
S_{c}=D_{c}-F D_{f}^{-1} F^{T}
$$

Property: $\boldsymbol{S}_{\boldsymbol{c}}=$ Graph Laplacian of coarse graph $\boldsymbol{G}_{\boldsymbol{c}}$

Coarsening by 'algebraic distance'

> Motivated by "bootstrap algebraic multigrid" (BAMG) [Brandt'01]
$>$ In BAMG notion of closeness (used for coarsening) defined from a few steps of Gauss-Seidel for solving $\boldsymbol{A x}=0$
> Speed of convergence of the iterate determines an 'algebraic distance' between variables.
> Exploited to aggregate the unknowns and define restriction and interpolation operators. Analysis in [Chen-Safro'11]

Coarsening by 'kron' decomposition

> Kron reduction of networks proposed back in 1939 by Kron
> Revived by Dorfler and Bullo(2013) and Shuman et al. (2016)

Main idea:

- Select a coarse set V_{1} : Shuman-al use eigenvectors
- Reorder matrix so that nodes of V_{1} come 1st. Laplacean becomes \rightarrow

$$
L=\left[\begin{array}{ll}
L_{11} & L_{12} \\
L_{12}^{T} & L_{22}
\end{array}\right]
$$

- Kron reduction of L defined as the Schur complement:

$$
L\left(V_{1}\right)=L_{11}-L_{12} L_{22}^{-1} L_{12}^{T}
$$

Property $\boldsymbol{L}\left(\boldsymbol{V}_{1}\right)==$ graph Laplacian of \boldsymbol{V}_{1} [Dorfler-Bullo]

Example:

| D_{I} $-F$
 $-F^{T}$ B |
| :---: | :---: |
| \qquad | | D_{I} | $-F$ |
| :---: | :---: |
| $-F^{T}$ | D_{f} |

$L_{c}=D_{I}-F B^{-1} F^{T}$
$L_{c}=D_{I}-F D_{f}^{-1} F^{T}$
 Independent
set coarsening Independent
set coarsening

Two ways of using independent sets for coarsening.

Kron coarsening
Q. 1: How to deal with 'denser' graph?

A Sparsify - using spectral sparsificaition
Q. 2: How to select V_{1} ?

A Use signs of largest eigenvector of original Laplacian L
$>$ If $u_{1}=\left[\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right]^{T}=$ the largest eigenvector.
$>$ Define $V_{+}=\left\{i \mid \xi_{i} \geq 0\right\}$ and $V_{-}=\left\{i \mid \xi_{i}<0\right\}$
$>$ Then select one of V_{+}, V_{-}as V_{1}.
> Opposite of what is done in spectral graph partitioning

Left side: spectral graph partitioning. Right: Coarsening withlargest eigenvector
> Easy to show: (under mild condition on eigenvector) Each node of V_{+}(resp. V_{-}) must have at least one nearest neighbor node from V_{-}(resp. \boldsymbol{V}_{+}).

GRAPH COARSENING IN MACHINE LEARNING

Multilevel Dimension Reduction

Idea:

Coarsen for a few levels. Use resulting data set \hat{X} to find a projector \boldsymbol{P} from \mathbb{R}^{m} to \mathbb{R}^{d}. Use this \boldsymbol{P} to project data items.

> Gain: Dimension reduction is done with a much smaller set.
> Wish: not much loss compared to using whole data

Multilevel Dimension Reduction (for sparse data- e.g., text)

> Use Hypergraph Coarsening with column matching - similar to a common one used in graph partitioning
$>$ Compute the non-zero inner product $\left\langle a^{(i)}, a^{(j)}\right\rangle$ between two vertices i and j, i.e., the i th and j th columns of \boldsymbol{A}.
$>$ Note: $\left\langle a^{(i)}, a^{(j)}\right\rangle=\left\|a^{(i)}\right\|\left\|a^{(j)}\right\| \cos \theta_{i j}$
Modif. 1: Parameter: $0<\epsilon<1$. Match

```
```

tan}\mp@subsup{0}{ij}{}\leq

```
```

```
```

tan}\mp@subsup{0}{ij}{}\leq

```
``` columns \(i \& j\) only if angle satisfies:

Modif. 2: Re-Scale. If \(i\) and \(j\) match and \(\left\|\boldsymbol{a}^{(i)}\right\|_{0} \geq\left\|\boldsymbol{a}^{(j)}\right\|_{0}\)
\[
c^{(\ell)}=\left(1+\cos ^{2} \theta_{i j}\right)^{\frac{1}{2}} a^{(i)}
\] replace \(\boldsymbol{a}^{(i)}\) and \(\boldsymbol{a}^{(j)}\) by
- Call \(C\) the coarsened matrix obtained from \(\boldsymbol{A}\) using the approach just described

Lemma: Let \(C \in \mathbb{R}^{m \times c}\) be the coarsened matrix of \(A\) obtained by one level of coarsening of \(\boldsymbol{A} \in \mathbb{R}^{m \times n}\), with columns \(\boldsymbol{a}^{(i)}\) and \(\boldsymbol{a}^{(j)}\) matched if \(\tan \theta_{i} \leq \epsilon\). Then
\[
\left|x^{T} A A^{T} x-x^{T} C C^{T} x\right| \leq 3 \epsilon\|A\|_{F}^{2},
\]
for any \(x \in \mathbb{R}^{m}\) with \(\|x\|_{2}=1\).
\(>\) Very simple bound for Rayleigh quotients for any \(\boldsymbol{x}\).
- Implies some bounds on singular values and norms - skipped.
> See details + experiments in [Ubaru-YS '19]

\section*{Graph coarsening for graph embeddings: HARP and MILE}
> Vertex embedding: Given \(G=(\boldsymbol{V}, \boldsymbol{E})\) find mapping \(\Phi\) :
\[
\Phi: v \in V \longrightarrow \Phi(v) \in \mathbb{R}^{d} \quad d \text { is small: } d \ll n
\]

Hierarchical Representation Learning for Networks (HARP): (Chen et al. '18) coarsen for a few levels. Find embedding \(\Phi^{(\ell)}\) for coarsest graph (level \(\ell\)). Then a succession of expansions to higher level + refinement.

> Gain: Embedding done with a much smaller set.
> MILE approach [Liang et al. '18] very similar (difference in refinement).

Experiment to evaluate the effectiveness of HARP.
> Baseline. Three embedding algorithms: DeepWalk [Perozzial'14], LINE [Tang-al'15] and Node2vec [Grover-Leskovec'16]
> Combined with Coarsening methods:
1. Heavy Edge Matching (HEM) - sketched earlier
2. Algebraic distance (ALG) - sketched earlier
3. Leverage Score Coarsening (LESC) - variant of HEM
> Problem: Multilabel classification with dataset Citeseer
[Citation network. Publications in computer science consisting of 3.3 K nodes and 4.5 K edges. Label (zeros and ones) indicates research areas to which a paper belongs.]

Multi-label classification results. \(x\)-axis \(==\) portion of nodes randomly sampled for training. \(y\)-axis \(==\) Macro \(F_{1}\) score

\section*{Coarsening with eigenvectors}
- It is possible to coarsen a graph with the goal of exactly preserving a few eigenvectors.
- This has turned out not to be too useful in practice.
- Instead we use eigenvectors to define 'importance of nodes' for the graph traversal

\section*{Leverage Scores}
> \(\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}(\) ran \((\boldsymbol{A})=\operatorname{ran}(\boldsymbol{U}))\)
\[
\eta_{i}=\left\|U_{i,:}\right\|_{2}^{2}
\]
\(>\) Leverage score of \(i\)-th row \(\rightarrow\)
- Used to measure importance of row \(i\) in random sampling methods [e.g. El-Aloui \& Mahonney '15]
- Let \(\boldsymbol{A}\) now be a graph Laplacian and \(\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Lambda} \boldsymbol{U}^{T}\) with \(\boldsymbol{\lambda}_{1} \leq\) \(\lambda_{2} \leq \cdots \leq \lambda_{n}\)

In Leverage-score coarsening (LESC)
\[
\boldsymbol{\eta}_{i}=\sum_{k=1}^{r}\left(e^{-\tau \lambda_{k}} \boldsymbol{U}_{i k}\right)^{2}
\]
- Use \(\boldsymbol{\eta}_{\boldsymbol{i}}\) to decide order of traversal in coarsening algorithm
- Slightly different way of handling left-over nodes (‘singletons’)
- Next: visualization with 5 different coarsening methods on a graph with \(n=312\) nodes and \(n e=761\) edges

ALG, \(n e=327\)

1. Local Variation (Loukas'2019)

HEM ne \(=340\)
\(L V^{1}, n e=321\)

LESC, \(n e=362\)

Consider case when \(\boldsymbol{r}=\boldsymbol{n}\) (or simply \(\boldsymbol{r}\) is large)
\[
\boldsymbol{\eta}_{i}=\sum_{k=1}^{n}\left(e^{-\tau \lambda_{k}} U_{i k}\right)^{2}=\sum_{k=1}^{n} e^{-2 \tau \lambda_{k}}\left|U_{i k}\right|^{2}=e_{i}^{T} e^{-2 \tau L} e_{i}
\]
\(>\eta_{i}\) equals the \(i\)-th diagonal entry of the matrix \(H \equiv \exp (-2 \tau L)\)

\section*{Alternative definition}
> We consider the following alternative - related to \(L^{\dagger}\)
\[
\eta_{i}=\sum_{j=2}^{n}\left(\frac{1}{\sqrt{\lambda_{j}}} U_{i j}\right)^{2} \rightarrow \eta_{i} \approx \sum_{j=2}^{r}\left(\frac{1}{\sqrt{\lambda_{j}}} U_{i j}\right)^{2}
\]

Property:
\[
L_{i i}^{\dagger}=\sum_{j=2}^{n} \frac{U_{i j}}{\sqrt{\lambda_{j}}} \frac{U_{i j}}{\sqrt{\lambda_{j}}}=\eta_{i}
\]

Traversal order: HEM (left) and LESC (right) on a small graph.

\section*{Analysis}
> \(L^{\dagger}\) has long been used to define node importance
> The nonzero entries of \(L^{\dagger}\) define resistance distance. Its trace is the Effective graph resistance. Related to betweenness centrality measure... + many other links.
> Important fact: \(\eta\) helps measure the change in \(L^{\dagger}\)
Let the graph be connected. The magnitude of the difference between \(L^{\dagger}\) and \(L_{\infty}^{\dagger}\) caused by assigning the \(+\infty\) edge weight to an edge \(e(i, j)\) is bounded by
\[
\left\|\Delta L^{\dagger}\right\|_{F}^{2} \leq \kappa(L)\left(L_{i i}^{\dagger}+L_{j j}^{\dagger}\right)
\]
where \(\kappa \equiv\) effective condition number.
[Adapted from a result of Hermsdorff and Gunderson'19]

\section*{Application: Graph classification}

Problem: determine the label of a graph [e.g., graph of a molecule in chemistry applications].

\section*{Method: Graph Neural Networks [GNN]}
\(>\) GNNs find an embedding of a graph by using several 'pooling' layers of a neural network. We use:
1. SortPool
2. DiffPool
3. TopKPool
4. SAGPool

\section*{What are these 'pooling' methods?}

Aim: generalize the convolution and subsampling layers of Convolutional Neural Networks to graphs:

CNN
> End result: embedding of a graph.

\section*{Datasets:}

D\&D protein data set (predict protein functions from structure) REDDIT-BINARY (REBI) and

REDDIT-MULTI-5K (RE5K) social network data sets from the discussion forum Reddit [Graph: discussion threads]

\section*{Stats.}
\begin{tabular}{cccc}
\hline & DD & REBI & RE5K \\
\hline \#GRAPHS & 1178 & 2000 & 4999 \\
\#CLASSES & 2 & 2 & 5 \\
AVG.\#NODES & 284.32 & 429.63 & 508.52 \\
AVG.\#EDGES & 715.66 & 497.75 & 594.87 \\
\hline
\end{tabular}
> Method: preprocess (coarsen) each graph prior to using it.

Relative times vs. original (No coarsening). Percentates on right of each figure: gain (loss) in accuracy

\section*{Conclusion}
- *Many* interesting new matrix problems in areas that involve the effective exploitation of data
- Many online resources available
- Huge potential in scientific areas like materials science
- To a researcher in computational linear algebra : Tsunami of change on types or problems, algorithms, frameworks, culture,..
■ But change should be welcome :
> From "Who Moved My Cheese?" [Spencer Johnson '02]:
"The quicker you let go of old cheese, the sooner you find new cheese."
"If you do not change, you can become extinct!"

\section*{Thank you!}
> Visit my web-site at www.cs.umn.edu/~saad```

