OF MINNESOTA TWIN CITIES

Polynomial and rational filtering for eigenvalue problems and the EVSL project *Yousef Saad*

Department of Computer Science and Engineering

University of Minnesota

ILAS 2017 July 25, 2017

Large eigenvalue problems in applications

Challenge in eigenvalue problems: extract large number of eigenvalues & vectors of very large matrices (quantum physics/ chemistry, ...) - often in the middle of spectrum.

> Example: *Excited states* involve transitions \rightarrow much more complex computations than for DFT (ground states)

Large matrices, *many* eigen-pairs to compute

Illustration:

'Hamiltonian of size $n \sim 10^6$ get 10% of bands'

Solving large interior eigenvalue problems

Three broad approaches:

- 1. Shift-invert (real shifts)
- 2. Polynomial filtering
- 3. Rational filtering (Cauchy, + others).

Issues with shift-and invert (and related approaches)

- Issue 1: factorization may be too expensive
 - Can use iterative methods?
- Issue 2: Iterative techniques often fail
 - Reason: Highly indefinite problems.

First Alternative: 'Spectrum slicing' with Polynomial filtering

"Spectrum Slicing"

- Situation: very large number of eigenvalues to be computed
- Goal: compute spectrum by slices by applying filtering

Apply Lanczos or Subspace iteration to problem:

 $\phi(A)u=\mu u$

 $\phi(t) \equiv$ a polynomial or rational function that enhances wanted eigenvalues

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other :

Idea: Get the spectrum by 'slices' or 'windows' [e.g., a few hundreds or thousands of pairs at a time]

Can use polynomial or rational filters

Hypothetical scenario: large A, *many* wanted eigenpairs

 \blacktriangleright Assume A has size 10M

And you want to compute 50,000 eigenvalues/vectors (huge for numerical analysits, not for physicists) ...

in the lower part of the spectrum - or the middle.

► By (any) standard method you will need to orthogonalize at least 50K vectors of size 10M. Then:

- Space needed: $\approx 4 \times 10^{12}$ b = 4TB *just for the basis*
- Orthogonalization cost: $5 \times 10^{16} = 50$ PetaOPS.
- At step k, each orthogonalization step costs $\approx 4kn$
- This is $\approx 200,000n$ for k close to 50,000.

Illustration: All eigenvalues in [0, 1] of a 49³ Laplacean

Note: This is a small pb. in a scalar environment. Effect likely much more pronounced in a fully parallel case.

7

ILAS 2017 - July 25, 2017

How do I slice my spectrum?

ILAS 2017 - July 25, 2017

Polynomial filtering

- Apply Lanczos or Subspace iteration to: $M = \rho(A)$ where $\rho(t)$ is a polynomial
- ► Each matvec y = Av is replaced by $y = \rho(A)v$.
- Eigenvalues in high part of filter will be computed first.
- Old (forgotten) idea. But new context is *very* favorable

What polynomials?

> LS approximations to δ -Dirac functions

► Obtain the LS approximation to the δ – Dirac function – Centered at some point (TBD) inside the interval.

> W'll express everything in the interval [-1, 1]

The Chebyshev expansion of δ_{γ} is $ho_k(t) = \sum_{j=0}^k \mu_j T_j(t)$ with $\mu_j = \left\{ egin{array}{c} rac{1}{2} & j=0 \ \cos(j\cos^{-1}(\gamma)) & j>0 \end{array}
ight.$

Recall: The delta Dirac function is not a function – we can't properly approximate it in least-squares sense. However:

Proposition Let $\hat{\rho}_k(t)$ be the polynomial that minimizes $\|r(t)\|_w$ over all polynomials r of degree $\leq k$, such that $r(\gamma) = 1$, where $\|.\|_w$ represents the Chebyshev L^2 -norm. Then $\hat{\rho}_k(t) = \rho_k(t)/\rho_k(\gamma)$.

11

A few technical details. Issue # one: 'balance the filter'

To facilitate the selection of *'wanted'* eigenvalues [Select λ 's such that $\rho(\lambda) > bar$] we need to ...

> ... find γ so that $\rho(\xi) == \rho(\eta)$

Procedure: Solve the equation $\rho_{\gamma}(\xi) - \rho_{\gamma}(\eta) = 0$ with respect to γ , accurately. Use Newton or eigenvalue formulation.

ILAS 2017 - July 25, 2017

Issue # two: Determine degree & polynomial (automatically)

Start low then increase degree until value (s) at the boundary (ies) become small enough - Exple for [0.833, 0.907..]

Polynomial filtered Lanczos: No-Restart version

Polynomial filtered Lanczos: Thick-Restart version

PolFilt Thick-Restart Lanczos in a picture:

> Due to locking, no more candidates will show up in wanted area after some point \rightarrow Stop.

TR Lanczos: The 3 types of basis vectors

Basis vectors

Matrix representation

Experiments: Hamiltonian matrices from PARSEC

Matrix	n	\sim nnz	[a,b]	$[m{\xi},m{\eta}]$	$ u_{[\xi,\eta]}$
$\mathrm{Ge}_{87}\mathrm{H}_{76}$	112,985	7.9M	[-1.21, 32.76]	[-0.64, -0.0053]	212
$\mathrm{Ge}_{99}\mathrm{H}_{100}$	112,985	8.5M	[-1.22, 32.70]	[-0.65, -0.0096]	250
$\mathbf{Si}_{41}\mathbf{Ge}_{41}\mathbf{H}_{72}$	185,639	15.0M	[-1.12, 49.82]	[-0.64, -0.0028]	218
$\mathbf{Si}_{87}\mathbf{H}_{76}$	240, 369	10.6M	[-1.19, 43.07]	[-0.66, -0.0300]	213
$\mathbf{Ga}_{41}\mathbf{As}_{41}\mathbf{H}_{72}$	268,096	18.5M	$\left[-1.25,1301\right]$	[-0.64, -0.0000]	201

Results: (No-Restart Lanczos)

Matrix	deg	iter	matvec	CPU	time (max residual	
				matvec	orth.	total	max residual
$\mathrm{Ge_{87}H_{76}}$	26	1,020	26,784	48.58	18.67	74.45	$1.20 imes 10^{-12}$
$\mathrm{Ge}_{99}\mathrm{H}_{100}$	26	1,090	28,642	60.11	20.44	86.52	$7.20 imes 10^{-12}$
$\mathbf{Si}_{41}\mathbf{Ge}_{41}\mathbf{H}_{72}$	32	950	30,682	105.05	28.25	144.19	$1.20 imes 10^{-10}$
$\mathbf{Si}_{87}\mathbf{H}_{76}$	29	1,010	29,561	76.45	39.16	128.95	$4.30 imes 10^{-12}$
$\mathbf{Ga}_{41}\mathbf{As}_{41}\mathbf{H}_{72}$	174	910	158,889	693.5	34.16	759.99	$3.70 imes 10^{-12}$

> Demo with Si10H16 [n = 17,077, nnz(A) = 446,500]

RATIONAL FILTERS

Why use rational filters?

Consider a spectrum like this one:

Polynomial filtering utterly ineffective for this case

Second issue: situation when Matrix-vector products are expensive

Generalized eigenvalue problems.

Alternative is to use rational filters: $\phi(z) = \sum_j \frac{\alpha_j}{z - \sigma_j}$

$$\phi(A) = \sum_j lpha_j (A - \sigma_j I)^{-1}$$

We now need to solve linear systems

Tool: Cauchy integral representations of spectral projectors

 \rightarrow

$$P=rac{-1}{2i\pi}\int_{\Gamma}(A-sI)^{-1}ds$$
 .

• Numer. integr.
$$P
ightarrow P_{\sim}$$

Sakurai-Sugiura approach [Krylov]

FEAST [Subs. iter.] (E. Polizzi)

What makes a good filter

Assume subspace iteration is used with above filters. Which filter will give better convergence?

► Simplest and best indicator of performance of a filter is the magnitude of its derivative at -1 (or 1)

The Gauss viewpoint: Least-squares rational filters

$$\blacktriangleright$$
 Given: poles $\sigma_1, \sigma_2, \cdots, \sigma_p$

> Related basis functions
$$\phi_j(z) = \frac{1}{z - \sigma_j}$$

Find $\phi(z) = \sum_{j=1}^p lpha_j \phi_j(z)$ that minimizes $\int_{-\infty}^\infty w(t) |h(t) - \phi(t)|^2 dt$

>
$$h(t)$$
 = step function $\chi_{[-1,1]}$

• w(t)= weight function. For example a = 10, $\beta = 0.1$

$$w(t) = egin{cases} 0 ext{ if } & |t| > a \ eta ext{ if } & |t| \leq 1 \ 1 ext{ else } \end{cases}$$

ILAS 2017 - July 25, 2017

> Advantages:

- Can select poles far away from real axis \rightarrow faster iterative solvers
- Very flexible can be adapted to many situations
- Can repeat poles (!)

Implemented in EVSL. [Interfaced to SuiteSparse as a solver]

Spectrum Slicing and the **EVSL** project

- Newly released EVSL uses polynomial and rational filters
- Each can be appealing in different situations.

Spectrum slicing: cut the overall interval containing the spectrum into small sub-intervals and compute eigenpairs in each sub-interval independently.

The two main levels of parallelism in EVSL

🕲 🖨 💷 EVSL web-page - Mozilla Firefox										
Yousef Saad – SOFTWARE × EVSL web-page	× +									
() www-users.cs. umn.edu /~saad/software/EVSL/inde	ex.html	E 90% C	🔒 🔍 Ruipeng L	i >	Ŧ	^	☆ 自			≡
🛅 Most Visited 🔻 🛞 UoM Mail 💝 Home - Dropbox 🗳 Res	search.gov - User L	G Gmail 📕 OneStop : Welcome t	G Google Account	s 🕅 Live Statistics Re	volv	🗎 Se	tting up a	a repos	itor	
		(3.7	· 10	`						

E V S L : EigenValues Slicing Library -- (Version 1.0)

This version dated : Thu Jan 26 15:24:02 CST 2017 New version to be posted (~ July 2017)

E.V.S.L.

Welcome to the first release of EVSL (the EigenValues Slicing Library). EVSL provides routines for computing eigenvalues located in a given interval, and their associated eigenvectors, of a real symmetric matrix. It also provides tools for spectrum slicing, i.e., the technique of subdividing a given interval into p smaller subintervals and computing the eigenvalues in each subinterval independently. EVSL implements a polynomial filtered Lanczos (thick restart, no restart) a rational filtered Lanczos (thick restart, no restart).

The technical reports listed below provide details on the techniques used in the package. **Online documentation** (based on Doxygen) is now available - see below. The package will see frequent updates. We are currently working on various **interfaces to Fortran**.

Note: A new version of EVSL - with much added functionality - will be released in the next few weeks (Some time at the end of May/early June'17).

http://www.cs.umn.edu/~saad/software

Related publications

• Ruipeng Li, Yuanzhe Xi, Eugene Vecharynski, Chao Yang, and Yousef Saad.

A Thick-Restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci. Comput., 38 (2016), pp. A2512-A2534. Preprint vs-2015-6 Dent. Computer Science and Engineering December 4. (DDEL Download EVSL

Before you download read the <u>COPYRIGHT statement</u>

Download: EVSL version 1.0 (EVSL_1.0.zip)

EVSL Main Contributors (version 1.1.0) + support

Yuanzhe Xi
 Post-doc (UMN)

• Luke Erlandson UG Intern (UMN)

Work supported by DOE [ending this summer] ...
... and by NSF [going forward]

EVSL: current status & plans

Version_1.0 Released in Sept. 2016

- Matrices in CSR format (only)
- Standard Hermitian problems (no generalized)
- Spectrum slicing with KPM (Kernel Polynomial Meth.)
- Trivial parallelism across slices with OpenMP
- Methods:
 - Non-restart Lanczos polynomial & rational filters
 - Thick-Restart Lanczos polynomial & rational filters
 - Subspace iteration polynomial & rational filters

*Version*_1.1.x V_1.1.0 Due for release end of July

- general matvec [passed as function pointer]
- $Ax = \lambda Bx$
- Fortran (03) interface.
- Spectrum slicing by Lanczos and KPM
- Efficient Spectrum slicing for $Ax = \lambda Bx$ (no solves with B).

*Version*_1.2.x V_1.2.0 Early 2018 (?)

- Fully parallel version [MPI + openMP]
- Challenge application in earth sciences [in progress]

Conclusion

Polynomial Filtering appealing when # of eigenpairs to be computed is large and Matvecs are not too expensive

- Somewhat costly for generalized eigenvalue problems
- Will not work well for spectra with large outliers.
- Alternative: Rational filtering –
- Both approaches implemented in EVSL
- Current focus: provide as many interfaces as possible.
- > EVSL code available here:

www.cs.umn.edu/~saad/software/EVSL

EVSL Also on github (development)

ILAS 2017 - July 25, 2017