UNIVERSITY
 OF Minnesota twin cities

Polynomial and rational filtering for eigenvalue problems and the EVSL project Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

$$
\begin{gathered}
\text { ILASS } 2017 \\
\text { July 25, } 2017
\end{gathered}
$$

Large eigenvalue problems in applications

Challenge in eigenvalue problems: extract large number of eigenvalues \& vectors of very large matrices (quantum physics/ chemistry, ...) - often in the middle of spectrum.
$>$ Example: Excited states involve transitions \rightarrow much more complex computations than for DFT (ground states)
> Large matrices, *many* eigen-pairs to compute
Illustration:
'Hamiltonian of size $n \sim 10^{6}$ get 10% of bands'

Solving large interior eigenvalue problems

Three broad approaches:

1. Shift-invert (real shifts)
2. Polynomial filtering
3. Rational filtering (Cauchy, + others).

Issues with shift-and invert (and related approaches)
> Issue 1: factorization may be too expensive

- Can use iterative methods?
> Issue 2: Iterative techniques often fail -
- Reason: Highly indefinite problems.
> First Alternative: ‘Spectrum slicing’ with Polynomial filtering

"Spectrum Slicing"

$>$ Situation: very large number of eigenvalues to be computed
> Goal: compute spectrum by slices by applying filtering
> Apply Lanczos or Subspace iteration to problem:

$$
\phi(A) u=\mu u
$$

$\phi(t) \equiv$ a polynomial or rational function that enhances wanted eigenvalues

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other :

> Idea: Get the spectrum by 'slices' or 'windows' [e.g., a few hundreds or thousands of pairs at a time]

- Can use polynomial or rational filters

Hypothetical scenario: large A, "many* wanted eigenpairs

$>$ Assume A has size $10 M$
> ... and you want to compute 50,000 eigenvalues/vectors (huge for numerical analysits, not for physicists) ...
> ... in the lower part of the spectrum - or the middle.
> By (any) standard method you will need to orthogonalize at least 50K vectors of size 10M. Then:

- Space needed: $\approx 4 \times 10^{12} \mathrm{~b}=4 \mathrm{~TB}$ *just for the basis*
- Orthogonalization cost: $5 \times 10^{16}=50$ PetaOPS.
- At step k, each orthogonalization step costs $\approx 4 k n$
- This is $\approx 200,000 n$ for k close to 50,000 .

Illustration: All eigenvalues in [0, 1] of a 49^{3} Laplacean

Note: This is a small pb. in a scalar environment. Effect likely much more pronounced in a fully parallel case.

How do I slice my spectrum?

Answer: Use the DOS.

Slice spectrum into 8 with the DOS

$$
\int_{t_{i}}^{t_{i+1}} \phi(t) d t=\frac{1}{n_{\text {slices }}} \int_{a}^{b} \phi(t) d t
$$

Polynomial filtering

> Apply Lanczos or Subspace iteration to:

$$
M=\rho(A)
$$

where $\rho(t)$ is a polynomial
$>$ Each matvec $y=A v$ is replaced by $y=\rho(A) v$.
$>$ Eigenvalues in high part of filter will be computed first.
$>$ Old (forgotten) idea. But new context is *very* favorable

What polynomials?

$>$ LS approximations to δ-Dirac functions
$>$ Obtain the LS approximation to the δ - Dirac function - Centered at some point (TBD) inside the interval.

$>$ W'll express everything in the interval $[-1,1]$

Theory

The Chebyshev expansion of δ_{γ} is

$$
\rho_{k}(t)=\sum_{j=0}^{k} \mu_{j} T_{j}(t) \text { with } \mu_{j}= \begin{cases}\frac{1}{2} & j=0 \\ \cos \left(j \cos ^{-1}(\gamma)\right) & j>0\end{cases}
$$

$>$ Recall: The delta Dirac function is not a function - we can't properly approximate it in least-squares sense. However:

Proposition Let $\hat{\rho}_{k}(t)$ be the polynomial that minimizes $\|r(t)\|_{w}$ over all polynomials r of degree $\leq k$, such that $r(\gamma)=1$, where $\|\cdot\|_{w}$ represents the Chebyshev L^{2}-norm. Then $\hat{\rho}_{k}(t)=\rho_{k}(t) / \rho_{k}(\gamma)$.

A few technical details. Issue \# one: 'balance the filter'

$>$ To facilitate the selection of 'wanted' eigenvalues [Select λ 's such that $\rho(\lambda)>$ bar] we need to...
$>\ldots$ find γ so that $\rho(\xi)==\rho(\eta)$

Procedure: Solve the equation $\rho_{\gamma}(\xi)-\rho_{\gamma}(\eta)=0$ with respect to γ, accurately. Use Newton or eigenvalue formulation.

Issue \# two: | Determine degree \& polynomial (automatically)

Start low then increase degree until value (s) at the boundary (ies) become small enough - Exple for [0.833, 0.907..]

Polynomial filtered Lanczos: No-Restart version

> Use Lanczos with full reorthogonalization on $\rho(A)$. Eigenvalues of $\rho(A): \rho\left(\lambda_{i}\right)$
$>$ Accept if $\rho\left(\boldsymbol{\lambda}_{i}\right) \geq$ bar
$>$ Ignore if $\rho\left(\boldsymbol{\lambda}_{i}\right)<$ bar

Polynomial filtered Lanczos: Thick-Restart version

> PolFilt Thick-Restart Lanczos in a picture:
Pol. of degree 32 approx $\delta(.5)$ in [-1 1]

$>$ Due to locking, no more candidates will show up in wanted area after some point \rightarrow Stop.

TR Lanczos: The 3 types of basis vectors

Basis vectors

Matrix representation

Experiments: Hamiltonian matrices from PARSEC

Matrix	n	$\sim \mathrm{nnz}$	$[a, b]$	$[\xi, \eta]$	$\nu_{[\xi, \eta]}$
$\mathrm{Ge}_{87} \mathrm{H}_{76}$	112,985	$7.9 M$	$[-1.21,32.76]$	$[-0.64,-0.0053]$	212
$\mathrm{Ge}_{99} \mathrm{H}_{100}$	112,985	$8.5 M$	$[-1.22,32.70]$	$[-0.65,-0.0096]$	250
$\mathrm{Si}_{41} \mathrm{Ge}_{41} \mathrm{H}_{72}$	185,639	$15.0 M$	$[-1.12,49.82]$	$[-0.64,-0.0028]$	218
$\mathrm{Si}_{87} \mathrm{H}_{76}$	240,369	$10.6 M$	$[-1.19,43.07]$	$[-0.66,-0.0300]$	213
$\mathrm{Ga}_{41} \mathrm{As}_{41} \mathrm{H}_{72}$	268,096	$18.5 M$	$[-1.25,1301]$	$[-0.64,-0.0000]$	201

Results: (No-Restart Lanczos)

| Matrix | deg | iter | matvec | CPU time (sec) | | | max residual |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| | | | | matvec | orth. | total | |
| $\mathrm{Ge}_{87} \mathrm{H}_{76}$ | 26 | 1,020 | 26,784 | 48.58 | 18.67 | 74.45 | 1.20×10^{-12} |
| $\mathrm{Ge}_{99} \mathrm{H}_{100}$ | 26 | 1,090 | 28,642 | 60.11 | 20.44 | 86.52 | 7.20×10^{-12} |
| $\mathrm{Si}_{41} \mathrm{Ge}_{41} \mathrm{H}_{72}$ | 32 | 950 | 30,682 | 105.05 | 28.25 | 144.19 | 1.20×10^{-10} |
| $\mathrm{Si}_{87} \mathrm{H}_{76}$ | 29 | 1,010 | 29,561 | 76.45 | 39.16 | 128.95 | 4.30×10^{-12} |
| $\mathrm{Ga}_{41} \mathrm{As}_{41} \mathrm{H}_{72}$ | 174 | 910 | 158,889 | 693.5 | 34.16 | 759.99 | 3.70×10^{-12} |

$>$ Demo with $\mathrm{Si10H} 16[n=17,077, n n z(A)=446,500]$

RATIONAL FILTERS

Why use rational filters?

> Consider a spectrum like this one:

> Polynomial filtering utterly ineffective for this case
> Second issue: situation when Matrix-vector products are expensive
> Generalized eigenvalue problems.
$>$ Alternative is to use rational filters:

$$
\phi(z)=\sum_{j} \frac{\alpha_{j}}{z-\sigma_{j}}
$$

$$
\phi(A)=\sum_{j} \alpha_{j}\left(A-\sigma_{j} I\right)^{-1}
$$

We now need to solve linear systems
> Tool: Cauchy integral representations of spectral projectors

$$
P=\frac{-1}{2 i \pi} \int_{\Gamma}(A-s I)^{-1} d s
$$

- Numer. integr. $\boldsymbol{P} \rightarrow \tilde{\boldsymbol{P}}$
- Use Krylov or S.I. on \tilde{P}
> Sakurai-Sugiura approach [Krylov]
> FEAST [Subs. iter.] (E. Polizzi)

What makes a good filter

> Assume subspace iteration is used with above filters. Which filter will give better convergence?
> Simplest and best indicator of performance of a filter is the magnitude of its derivative at -1 (or 1)

The Gauss viewpoint: Least-squares rational filters

$>$ Given: poles $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}$
$>$ Related basis functions $\phi_{j}(z)=\frac{1}{z-\sigma_{j}}$
Find $\phi(z)=\sum_{j=1}^{p} \alpha_{j} \phi_{j}(z)$ that minimizes

$$
\int_{-\infty}^{\infty} w(t)|h(t)-\phi(t)|^{2} d t
$$

$>h(t)=$ step function $\chi_{[-1,1]}$.
$>w(t)=$ weight function.
For example $a=10$, $\beta=0.1$

$$
w(t)=\left\{\begin{array}{lll}
0 & \text { if } & |t|>a \\
\beta & \text { if } & |t| \leq 1 \\
1 & \text { else } &
\end{array}\right.
$$

> Advantages:

- Can select poles far away from real axis \rightarrow faster iterative solvers
- Very flexible - can be adapted to many situations
- Can repeat poles (!)
> Implemented in EVSL.. [Interfaced to SuiteSparse as a solver]

Spectrum Slicing and the EVSL project

> Newly released EVSL uses polynomial and rational filters
$>$ Each can be appealing in different situations.
Spectrum slicing: cut the overall interval containing the spectrum into small sub-intervals and compute eigenpairs in each sub-interval independently.

Levels of parallelism

The two main levels of parallelism in EVSL

Yousef Saad - SOFTWARE \times EVSL web-page

E V L : EigenValues Slicing Library -- (Version 1.0)

This version dated : Thu Jan 26 15:24:02 CST 2017 New version to be posted (~ July 2017)

E.V.S.L.

Abstract

Welcome to the first release of EVSL (the EigenValues Slicing Library). EVSL provides routines for computing eigenvalues located in a given interval, and their associated eigenvectors, of a real symmetric matrix. It also provides tools for spectrum slicing, i.e., the technique of subdividing a given interval into p smaller subintervals and computing the eigenvalues in each subinterval independently. EVSL implements a polynomial filtered Lanczos (thick restart, no restart) a rational filtered Lanczos (thick restart, no restart), and a polynomial filtered subspace iteration. The technical reports listed below provide details on the techniques used in the package. Online documentation (based on Doxygen) is now available - see below. The package will see frequent updates. We are currently working on various interfaces to Fortran. Note: A new version of EVSL - with much added functionality - will be released in the next few weeks (Some time at the end of May/early June'17).

http://www.cs.umn.edu/~saad/software

Related publications

- Ruipeng Li, Yuanzhe Xi, Eugene Vecharynski, Chao Yang, and Yousef Saad.
A Thick-Restart Lanczos algorithm with polynomial filtering for Hermitian eigenvalue problems. SIAM J. Sci. Comput., 38 (2016), pp. A2512-A2534 Prenrint vs-2015-6 Dent Comnuter Science and Fncrineerina na............ mnel

Download EVSL

Before you download read the COPYRIGHT statement

gVSL Main Contributors (version 1.1.0) + support

- Ruipeng Li

LLNL

- Yuanzhe Xi

Post-doc (UMN)

- Luke Erlandson

UG Intern (UMN)
> Work supported by DOE [ending this summer] ...
... and by NSF [going forward]

EVSL: current status \& plans

Version_1.0 Released in Sept. 2016

- Matrices in CSR format (only)
- Standard Hermitian problems (no generalized)
- Spectrum slicing with KPM (Kernel Polynomial Meth.)
- Trivial parallelism across slices with OpenMP
- Methods:
- Non-restart Lanczos - polynomial \& rational filters
- Thick-Restart Lanczos - polynomial \& rational filters
- Subspace iteration - polynomial \& rational filters

Version_1.1.x $V_{\text {_1.1.0 }}$ Due for release end of July

- general matvec [passed as function pointer]
- $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{B x}$
- Fortran (03) interface.
- Spectrum slicing by Lanczos and KPM
- Efficient Spectrum slicing for $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{B} \boldsymbol{x}$ (no solves with B).

Version_1.2.x V_1.2.0 Early 2018 (?)

- Fully parallel version [MPI + openMP]
- Challenge application in earth sciences [in progress]

Conclusion

> Polynomial Filtering appealing when \# of eigenpairs to be computed is large and Matvecs are not too expensive
> Somewhat costly for generalized eigenvalue problems
$>$ Will not work well for spectra with large outliers.
> Alternative: Rational filtering -
> Both approaches implemented in EVSL
> Current focus: provide as many interfaces as possible.
> EVSL code available here:

```
www.cs.umn.edu/~saad/software/EVSL
```

$>$ EVSL Also on github (development)

