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Large eigenvalue problems in applications

ä Challenge in eigenvalue problems: extract large number of
eigenvalues & vectors of very large matrices (quantum physics/
chemistry, ...) - often in the middle of spectrum.

ä Example: Excited states involve transitions→ much more
complex computations than for DFT (ground states)

ä Large matrices, *many* eigen-pairs to compute

Illustration:

‘Hamiltonian of size n ∼ 106 get 10% of bands’
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Solving large interior eigenvalue problems

Three broad
approaches:

1. Shift-invert (real shifts)
2. Polynomial filtering
3. Rational filtering (Cauchy, + others).

Issues with shift-and invert (and related approaches)

ä Issue 1: factorization may be too expensive

• Can use iterative methods?

ä Issue 2: Iterative techniques often fail –

• Reason: Highly indefinite problems.

ä First Alternative: ‘Spectrum slicing’ with Polynomial filtering
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“Spectrum Slicing”

ä Situation: very large number of eigenvalues to be computed

ä Goal: compute spectrum by slices by applying filtering

ä Apply Lanczos or Sub-
space iteration to problem:

φ(A)u = µu

φ(t) ≡ a polynomial or
rational function that en-
hances wanted eigenvalues
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Rationale. Eigenvectors on both ends of wanted spectrum
need not be orthogonalized against each other :

ä Idea: Get the spectrum by ‘slices’ or ’windows’ [e.g., a few
hundreds or thousands of pairs at a time]

ä Can use polynomial or rational filters
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Hypothetical scenario: large A, *many* wanted eigenpairs

ä Assume A has size 10M

ä ... and you want to compute 50,000 eigenvalues/vectors
(huge for numerical analysits, not for physicists) ...

ä ... in the lower part of the spectrum - or the middle.

ä By (any) standard method you will need to orthogonalize at
least 50K vectors of size 10M. Then:

Space needed: ≈ 4×1012 b = 4TB *just for the basis*

Orthogonalization cost: 5× 1016 = 50 PetaOPS.

At step k, each orthogonalization step costs≈ 4kn

This is≈ 200, 000n for k close to 50, 000.
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Illustration: All eigenvalues in [0, 1] of a 493 Laplacean
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Note: This is a small pb. in a scalar environment. Effect likely
much more pronounced in a fully parallel case.
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How do I slice my spectrum?

Answer: Use the DOS.
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Polynomial filtering

ä Apply Lanczos or Sub-
space iteration to:

M = ρ(A) where ρ(t) is
a polynomial

ä Each matvec y = Av is replaced by y = ρ(A)v.

ä Eigenvalues in high part of filter will be computed first.

ä Old (forgotten) idea. But new context is *very* favorable
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What polynomials?

ä LS approximations to δ-Dirac functions

ä Obtain the LS approxi-
mation to the δ− Dirac func-
tion – Centered at some
point (TBD) inside the inter-
val. −→
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ä W’ll express everything in the interval [−1, 1]
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Theory

The Chebyshev expansion of δγ is

ρk(t) =
k∑
j=0

µjTj(t) with µj =

{ 1
2

j = 0
cos(j cos−1(γ)) j > 0

ä Recall: The delta Dirac function is not a function – we can’t
properly approximate it in least-squares sense. However:

Proposition Let ρ̂k(t) be the polynomial that minimizes
‖r(t)‖w over all polynomials r of degree ≤ k, such that
r(γ) = 1, where ‖.‖w represents the Chebyshev L2-norm.
Then ρ̂k(t) = ρk(t)/ρk(γ).
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A few technical details. Issue # one: ‘balance the filter’

ä To facilitate the selection of ‘wanted’ eigenvalues [Select λ’s
such that ρ(λ) > bar] we need to ...

ä ... find γ so that ρ(ξ) == ρ(η)
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Procedure: Solve the equation ργ(ξ) − ργ(η) = 0 with re-
spect to γ, accurately. Use Newton or eigenvalue formulation.
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Issue # two: Determine degree & polynomial (automatically)

Start low then increase degree until value (s) at the boundary
(ies) become small enough - Exple for [0.833, 0.907..]
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Polynomial filtered Lanczos: No-Restart version
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ä Use Lanczos with full reortho-
gonalization on ρ(A). Eigenval-
ues of ρ(A): ρ(λi)

ä Accept if ρ(λi) ≥ bar

ä Ignore if ρ(λi) < bar
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Polynomial filtered Lanczos: Thick-Restart version

ä PolFilt Thick-Restart Lanczos in a picture:
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If accurate then lock

else add to Thick 

Restart set.

Reject

ä Due to locking, no more candidates will show up in wanted
area after some point→ Stop.
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TR Lanczos: The 3 types of basis vectors

Basis vectors Matrix representation
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Experiments: Hamiltonian matrices from PARSEC

Matrix n ∼ nnz [a, b] [ξ, η] ν[ξ,η]

Ge87H76 112, 985 7.9M [−1.21, 32.76] [−0.64,−0.0053] 212

Ge99H100 112, 985 8.5M [−1.22, 32.70] [−0.65,−0.0096] 250

Si41Ge41H72 185, 639 15.0M [−1.12, 49.82] [−0.64,−0.0028] 218

Si87H76 240, 369 10.6M [−1.19, 43.07] [−0.66,−0.0300] 213

Ga41As41H72 268, 096 18.5M [−1.25, 1301] [−0.64,−0.0000] 201
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Results: (No-Restart Lanczos)

Matrix deg iter matvec
CPU time (sec)

max residual
matvec orth. total

Ge87H76 26 1,020 26,784 48.58 18.67 74.45 1.20×10−12

Ge99H100 26 1,090 28,642 60.11 20.44 86.52 7.20×10−12

Si41Ge41H72 32 950 30,682 105.05 28.25 144.19 1.20×10−10

Si87H76 29 1,010 29,561 76.45 39.16 128.95 4.30×10−12

Ga41As41H72 174 910 158,889 693.5 34.16 759.99 3.70×10−12

ä Demo with Si10H16 [n = 17, 077, nnz(A) = 446, 500]
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RATIONAL FILTERS



Why use rational filters?

ä Consider a spectrum like this one:

10
9

ä Polynomial filtering utterly ineffective for this case

ä Second issue: situation when Matrix-vector products are
expensive

ä Generalized eigenvalue problems.
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ä Alternative is to
use rational filters:

φ(z) =
∑
j

αj
z−σj

φ(A) =
∑
j αj(A− σjI)−1 → We now need to solve

linear systems

ä Tool: Cauchy integral representations of spectral projectors

P = −1
2iπ

∫
Γ(A− sI)−1ds

• Numer. integr. P → P̃
• Use Krylov or S.I. on P̃

ä Sakurai-Sugiura approach [Krylov]

ä FEAST [Subs. iter.] (E. Polizzi)
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What makes a good filter
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ä Assume subspace iteration is used with above filters. Which
filter will give better convergence?

ä Simplest and best indicator of performance of a filter is the
magnitude of its derivative at -1 (or 1)
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The Gauss viewpoint: Least-squares rational filters

ä Given: poles σ1, σ2, · · · , σp

ä Related basis functions φj(z) = 1
z−σj

Find φ(z) =
∑p
j=1αjφj(z) that minimizes∫∞
−∞w(t)|h(t)− φ(t)|2dt

ä h(t) = step function χ[−1,1].

ä w(t)= weight function.
For example a = 10,
β = 0.1

w(t) =


0 if |t| > a
β if |t| ≤ 1
1 else
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ä Advantages:

• Can select poles far away from real axis→ faster iterative
solvers

• Very flexible – can be adapted to many situations

• Can repeat poles (!)

ä Implemented in EVSL.. [Interfaced to SuiteSparse as a
solver]
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Spectrum Slicing and the EVSL project

ä Newly released EVSL uses polynomial and rational filters

ä Each can be appealing in different situations.

Spectrum slicing: cut the overall interval containing the spec-
trum into small sub-intervals and compute eigenpairs in each
sub-interval independently.
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Levels of parallelism
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EVSL Main Contributors (version 1.1.0) + support

• Ruipeng Li
LLNL

• Yuanzhe Xi
Post-doc (UMN)

• Luke Erlandson
UG Intern (UMN)

ä Work supported by DOE [ending this summer] ...

... and by NSF [going forward]
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EVSL: current status & plans

Version _1.0 Released in Sept. 2016

Matrices in CSR format (only)

Standard Hermitian problems (no generalized)

Spectrum slicing with KPM (Kernel Polynomial Meth.)

Trivial parallelism across slices with OpenMP

Methods:
• Non-restart Lanczos – polynomial & rational filters
• Thick-Restart Lanczos – polynomial & rational filters
• Subspace iteration – polynomial & rational filters
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Version _1.1.x V_1.1.0 Due for release end of July

general matvec [passed as function pointer]

Ax = λBx

Fortran (03) interface.

Spectrum slicing by Lanczos and KPM

Efficient Spectrum slicing for Ax = λBx (no solves
with B).

Version _1.2.x V_1.2.0 Early 2018 (?)

Fully parallel version [MPI + openMP]

Challenge application in earth sciences [in progress]
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Conclusion

ä Polynomial Filtering appealing when # of eigenpairs to be
computed is large and Matvecs are not too expensive

ä Somewhat costly for generalized eigenvalue problems

ä Will not work well for spectra with large outliers.

ä Alternative: Rational filtering –

ä Both approaches implemented in EVSL

ä Current focus: provide as many interfaces as possible.

ä EVSL code available here:
www.cs.umn.edu/~saad/software/EVSL

ä EVSL Also on github (development)
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