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Introduction

‰ ‘Random Sampling’ or ’probabilistic methods’: use of ran-
dom data to solve a given problem.

‰ Eigenvalues, eigenvalue counts, traces, ...

‰ Many well-known algorithms use a form of random sam-
pling: The Lanczos algorithm

‰ Recent work : probabilistic methods - See [Halko, Martins-
son, Tropp, 2010]

‰ Huge interest spurred by ‘big data’

‰ In this talk: A few specific applications of random sampling
in numerical linear algebra
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

‰ Arises in cross validation :
k(I � A(✓))gk2

Tr (I � A(✓))
with A(✓) ⌘ I�D(DTD+✓LLT )�1DT,

D == blurring operator and L is the regularization operator

‰ In [Huntchinson ’90] Tr[Inv[A]] is stochastically estimated

‰ Motivation for the work [Golub & Meurant, “Matrices, Mo-
ments, and Quadrature”, 1993, Book with same title in 2009]
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Problem 2: Compute Tr [ f (A)], f a certain function

Arises in many applications in Physics. Example:

‰ Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15382 (1997)]

‰ Will be covered in detail later in this talk.
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

‰ Harder than just getting the trace

‰ Arises in Dynamic Mean Field Theory [DMFT, motivation for
our work on this topic].

‰ Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

‰ In uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
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Problem 4: Compute diag[ f (A)] ; f = a certain function.

‰ Arises in any density matrix approach in quantum modeling
- for example Density Functional Theory.

‰ Here, f = Fermi-Dirac operator:

f(✏) =
1

1 + exp(✏�µ
kBT

)

Note: when T ! 0
then f ! a step func-
tion.

Note: if f is approximated by a rational function then diag[f(A)]
⇡ a linear combination of terms like diag[(A � �iI)

�1]

‰ Linear-Scaling methods based on approximating f(H) and
Diag(f(H)) – avoid ‘diagonalization’ of H
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‰ Rich litterature on ‘linear scaling’ or ’order n’ methods

‰ The review paper [Benzi, Boito, Razouk, “Decay properties
of Specral Projectors with applications to electronic structure”,
SIAM review, 2013] provides theoretical foundations

‰ Several references on approximating Diag(f(H)) for this
purpose – See e.g., work by L. Lin, C. Yang, E. E [Code: SelInv]

‰ Also: analysis of network graphs [yesterday’s talk by Lothar
Reichel]
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diag(inv(A)) in Dynamic Mean Field Theory (DMFT)

‰ Quantum mechanical studies of highly correlated particles

‰ Equation to be solved (repeatedly) is Dyson’s equation

G(!) = [(! + µ)I � V � ⌃(!) + T ]�1

• ! (frequency) and µ (chemical potential) are real

• V = trap potential = real diagonal

• ⌃(!) == local self-energy - a complex diagonal

• T is the hopping matrix (sparse real).

‰ Interested only in diagonal of G(!) – in addition, equation
must be solved self-consistently and ...

‰ ... must do this for many !’s
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Stochastic Estimator

Notation:

•A = original matrix, B = A�1.
• �(B) = diag(B) [matlab notation]
•D(B) = diagonal matrix with diagonal �(B)

•� and ↵: Elementwise multiplication and
division of vectors

• {vj}: Sequence of s random vectors

Result: �(B) ⇡

2

4
sX

j=1

vj � Bvj

3

5 ↵

2

4
sX

j=1

vj � vj

3

5

Refs: C. Bekas , E. Kokiopoulou & YS (’05); C. Bekas, A.
Curioni, I. Fedulova ’09; ...
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Typical convergence curve for stochastic estimator

‰ Estimating the diagonal of inverse of two sample matrices
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‰ Let Vs = [v1, v2, . . . , vs]. Then, alternative expression:

D(B) ⇡ D(BVsV
>
s )D�1(VsV

>
s )

Question: When is this result exact?

Answer:

• Let Vs 2 Rn⇥s with rows {vj,:}; and B 2 Cn⇥n with
elements {bjk}

• Assume that: hvj,:, vk,:i = 0, 8j 6= k, s.t. bjk 6= 0

Then:
D(B)=D(BVsV

>
s )D�1(VsV

>
s )

‰ Approximation to bij exact when rows i and j of Vs are ?
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Using a sparse V : Probing

Goal:

Find Vs such that (1) s is small and (2) Vs

satisfies Proposition (rows i & j orthgonoal for
any nonzero bij)

Difficulty:

Can work only for sparse matrices but B =
A�1 is usually dense

‰ B can sometimes be approximated by a sparse matrix.

‰ Consider for some ✏ : (B✏)ij =

⇢
bij, |bij| > ✏
0, |bij|  ✏

‰ B✏ will be sparse under certain conditions, e.g., when A is
diagonally dominant

‰ In what follows we assume B✏ is sparse and set B := B✏.

‰ Pattern will be required by standard probing methods.
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Standard probing (e.g. to compute a Jacobian)

‰ Several names for same method: “probing”; “CPR”, “Sparse
Jacobian estimators”,..

Basis of the method: can compute Jacobian if a coloring of
the columns is known so that no two columns of the same
color overlap.

All entries of same color
can be computed with
one matvec.
Example: For all blue

entries multiply B by the
blue vector on right.
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What about Diag(inv(A))?

‰ Define vi - probing vector associated with color i:

[vi]k =

⇢
1 if color(k) == i
0 otherwise

‰ Standard probing satisfies requirement of Proposition but...

‰ ... this coloring is not what is needed! [It is an overkill]

Alternative:

‰ Color the graph of B in the standard graph coloring algo-
rithm [Adjacency graph, not graph of column-overlaps]

Result:

Graph coloring yields a valid set of probing
vectors for D(B).
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Example:

‰ Two colors required for this graph ! two probing vectors

‰ Standard method: 6 colors [graph of BTB]
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Next Issue: Guessing the pattern of B

‰ Recall that we are dealing with B := B✏ [‘pruned’ B]

‰ Assume A diagonally dominant

‰ Write A = D � E , with D = D(A). Then :

A = D(I � F ) with F ⌘ D�1E !

A�1 ⇡ (I + F + F 2 + · · · + Fk)D�1

| {z }
B(k)

‰ When A is D.D. kFkk decreases rapidly.

‰ Can approximate pattern of B by that of B(k) for some k.

‰ Interpretation in terms of paths of length k in graph of A.
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Improvements

‰ Recent work by A. Stathopoulos, J. Laeuchli, and K. Orginos,
on hierarchical probing. Produce approximate k-distance col-
oring of the graph to determine the patterns

‰ Somewhat specific to Lattice QCD

‰ E. Aune, D. P. Simpson, J. Eidsvik [Statistics and Comput-
ing 2012] combine probing with stochastic estimation. Good
improvements reported.
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Eigenvalue counts [with E. Polizzi and E. Di Napoli]

The problem:

‰ Find an estimate of the number of eigenvalues of a matrix
in a given interval [a, b].

Main motivation:

‰ Eigensolvers based on splitting the spectrum intervals and
extracting eigenpairs from each interval independently.

‰ Contour integration-type methods:
• FEAST approach [Polizzi 2011]
• Sakurai-Sigiura method [2002]

‰ Polynomial filtering:
• Schofield, Chelikowsky, YS’2011.
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Eigenvalue counts: Standard approach

‰ Let spectrum of a Hermitnan matrix A be

�1  �2  · · ·  �n

with eigenvectors u1, u2, · · · , un

‰ a, b such that �1  a  b  �n.

‰ Want number µ[a,b] of �i’s 2 [a, b]

‰ Standard method: Use Sylvester inertia theorem

‰ Requires two LDLT factorizations ! can be expensive!
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‰ Alternative: Exploit trace of the eigen-projector:

P =
X

�i 2 [a b]

uiu
T
i .

‰ We know that the trace of P is the wanted number µ[a,b]

‰ Goal: calculate an approximation to :

µ[a,b] = Tr (P ) .

‰ P is not available ... but can be approximated by
• a polynomial in A, or
• a rational function in A.
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Eigenvalue counts: Approximation theory viewpoint

‰ Interpret P as a step function of A, namely:

P = h(A) where h(t) =

⇢
1 if t 2 [a b]
0 otherwise

‰ Hutchinson’s unbiased estimator uses only matrix-vector
products to approximate the trace of a generic matrix A.

‰ Generate random vectors vk, k = 1, .., nv with equally
probable entries ±1. Then:

tr(A) ⇡
n

nv

nvX

k=1

v>
k Avk.

‰ No need to restrict values to ±1
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Polynomial filtering

‰ h(t) ⇡  (t), where  is a polynomial of degree k.

‰ We can estimate the trace of P as:

µ[a,b] ⇡
n

nv

nvX

k=1

v>
k  (A)vk

‰ We use degree p Chebyshev polynomials:

h(t) ⇡  p(t) =

pX

j=0

�jTj(t).
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Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson
approximation of a
function f :

f(x) ⇡
kX

i=0

gk
i �iTi(x)

�i =
2 � �i0

⇡

Z 1

�1

Ti(s)p
1 � s2

f(s)ds �i0 = Kronecker symbol

The gk
i ’s attenuate higher order

terms in the sum.

Attenuation coefficient gk
i for

k=50,100,150 !  0
 0.1
 0.2
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 0.5
 0.6
 0.7
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 0.9

 1

 0  20  40  60  80  100 120 140 160
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Let ↵k =
⇡

k + 2
, then :

gk
i =

⇣
1 � i

k+2

⌘
sin(↵k) cos(i↵k) +

1
k+2

cos(↵k) sin(i↵k)

sin(↵k)

See

Electronic structure calculations in plane-wave codes without
diagonalization. Laurent O. Jay, Hanchul Kim, YS, and James R.
Chelikowsky. Computer Physics Communications, 118:21–30,
1999.
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The expansion coefficients �i

When f(x) is a step function on [a, b] ✓ [�1 1]:

�i =

8
>>>><

>>>>:

1

⇡
(arccos(a) � arccos(b)) : i = 0

2

⇡

✓
sin(i arccos(a)) � sin(i arccos(b))

i

◆
: i > 0

‰ A few examples follow –
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Computing the polynomials: Jackson-Chebyshev

‰ Polynomials of degree 30 for [a, b] = [.3, .6]

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Mid−pass polynom. filter [−1 .3 .6 1]; Degree = 30

 

 

Standard Cheb.
Jackson−Cheb.

SLA14 - 09/12/2014 28



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Mid−pass polynom. filter [−1 .3 .6 1]; Degree = 80

 

 

Standard Cheb.
Jackson−Cheb.

SLA14 - 09/12/2014 29



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Mid−pass polynom. filter [−1 .3 .6 1]; Degree = 200

 

 

Standard Cheb.
Jackson−Cheb.



µ[a,b] = Tr (P ) ⇡
n

nv

nvX

k=1

2

4
pX

j=0

�jv
T
k Tj(A)vk

3

5 .

Easy to compute Tj(A)vk with 3-term recurrence of Cheby-
shev polynomials

wj+1 = 2Awj � wj�1.

(A is transformed so its eigenvalues are in [�1 1])
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Generalized eigenvalue problems

Ax = �Bx

‰ Matrices A and B are symmetric and B is positive definite.

The projector P becomes

P =
X

�i 2 [a b]

uiu
T
i B,

‰ Again: Eigenvalue count == Tr (P )

‰ Exploit relation: inertia(A � �B) = inertia(B�1A � �I)

‰ No need to factor or to solve systems
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An example

‰ Matrix ‘Na5’ from PARSEC [see U. Florida collection]

‰ n = 5832, nnz = 305630 nonzero entries.

‰ Obtain the eigenvalue count when a = (�100 + �101)/2
and b = (�200 + �201)/2 so µ[a,b] = 100.

‰ Use pol. of degree 70.
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Without Jackson Damping
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With Jackson Damping
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An example from FEAST

‰ FEAST developed by Eric Polizzi (Amherst)..

‰ Based on a form of subspace iteration with a rational func-
tion of A

‰ Also works for generalized problems Au = �B.

‰ Example: a small generalized problem (n = 12, 450, nnz =
86, 808).

‰ Result with standard Chebyshev shown. Deg=100, nv =
70.
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‰ A few more comments:

• Method also works with rational approximations ...

• .. and it works for nonsymmetric problems (eigenvalues in-
side a given contour).

• For details see paper:

E. Di Napoli, E, Polizzi, and YS. Efficient estimation of eigen-
value counts in an interval. Preprint – see arXiv: http://arxiv.org/abs/1308.4275.
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Computing Densities of States [with Lin-Lin and Chao Yang]

‰ Formally, the Density Of States (DOS) of a matrix A is

�(t) =
1

n

nX

j=1

�(t � �j),

where
• � is the Dirac �-function or Dirac distribution
• �1  �2  · · ·  �n are the eigenvalues of A

‰ Note: number of eigenvalues in an interval [a, b] is

µ[a,b] =

Z b

a

X

j

�(t � �j) dt ⌘
Z b

a
n�(t)dt .
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‰ �(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

‰ DOS is also referred to as the spectral density

‰ In Solid-State physics, �i’s represent single-particle energy
levels.

‰ So the DOS represents # of levels per unit energy.

‰ Many uses in physics
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Issue: How to deal with Distributions

‰ Highly ‘discontinuous’, not easy to handle numerically

‰ Solution for practical and theoretical purposes: replace � by
a ‘blurred” (continuous) version ��:

��(t) =
1

n

nX

j=1

h�(t � �j),

where h�(t) = any C1 function s.t.:
•

R +1
�1 h�(s)ds = 1

• h� has a peak at zero
‰ An example is the Gaussian:

h�(t) =
1

(2⇡�2)1/2
e�

t2

2�2.
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‰ How to select �? Example for Si2
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The Kernel Polynomial Method

‰ Used by Chemists to calculate the DOS – see Silver and
Röder’94 , Wang ’94, Drabold-Sankey’93, + others

‰ Basic idea: expand DOS into Chebyshev polynomials

‰ Use trace estimators [discovered independently] to get traces
needed in calculations

‰ Assume change of variable done so eigenvalues lie in [�1, 1].

‰ Include the weight function in the expansion so expand:

�̂(t) =
p
1 � t2�(t) =

p
1 � t2 ⇥

1

n

nX

j=1

�(t � �j).

Then, (full) expansion is: �̂(t) =
P1

k=0 µkTk(t).
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‰ Expansion coefficients µk are formally defined by:

µk =
2 � �k0

⇡

Z 1

�1

1
p
1 � t2

Tk(t)�̂(t)dt

=
2 � �k0

⇡

Z 1

�1

1
p
1 � t2

Tk(t)
p
1 � t2�(t)dt

=
2 � �k0

n⇡

nX

j=1

Tk(�j).

‰ Here 2 � �k0 == 1 when k = 0 and == 2 otherwise.

‰ Note:
P

Tk(�i) = Trace[Tk(A)]

‰ Estimate this, e.g., via stochastic estimator

‰ Generate random vectors v(1), v(2), · · · , v(nvec)

‰ Assume normal distribution with zero mean
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‰ Each vector is normalized so that kv(l)k = 1, l = 1, . . . , nvec.

‰ Estimate the trace of Tk(A) with stochastisc estimator:

Trace(Tk(A)) ⇡
1

nvec

nvecX

l=1

⇣
v(l)

⌘T
Tk(A)v(l).

‰ Will lead to the desired estimate:

µk ⇡
2 � �k0

n⇡nvec

nvecX

l=1

⇣
v(l)

⌘T
Tk(A)v(l).

‰ To compute scalars of the form vTTk(A)v, exploit 3-term
recurrence of the Chebyshev polynomial:

Tk+1(A)v = 2ATk(A)v � Tk�1(A)v

so if we let vk ⌘ Tk(A)v, we have

vk+1 = 2Avk � vk�1
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‰ Same Jackson smoothing as before can be used
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An example with degree 80 polynomials
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The Lanczos Spectroscopic approach

‰ Described in Lanczos’ book “Applied Analysis, (1956)” as a
means to compute eigenvalues.

‰ Idea: assimilate �i;s to frequencies and perform Fourrier
analysis to extract them

‰ Also relies on Chebyshev polynomials

‰ Though not emphasized in the description, the method uses
random sampling

‰ Let B a symmetric real matrix with eigevalues in [-1,1]

‰ Let v0 == an initial vector – expand in eigenbasis as

v0 =
nX

j=1

�juj, with �j = uT
j v0
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‰ Let vk = Tk(A)v0, for k = 0, · · · ,M . Then:

vT
0 vk =

nX

j=1

�2
jTk(�j) =

nX

j=1

�2
j cos(k✓j), with �j = cos ✓j.

View vT
0 vk as a discretization of

the periodic function to the right
sampled at t = 0, 1, · · · ,M .

f(t) =
nX

j=1

�2
j cos(t✓j)

‰ Problem: find values of ✓j, for j = 1, · · · , n
‰ Compute cosine transform of f ; For p = 0, · · · ,M :

F (p) =
f(0) + (�1)pf(M)

2
+

M�1X

k=1

f(k) cos
kp⇡

M
,
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‰ If f has an eigenvalue � = cos ✓, then component cos(✓t),
revealed by a peak at the point

p =
l✓

⇡
.

‰ Peak at pj corresponds to eigenvalue �j = cos ✓j with
✓j = (pj/M)⇡, and so,

�j = cos(✓j) = cos(pj⇡/M)

‰ For a sequence of random vectors compute

F̂ (p̂) ⌘ F

✓
M

⇡
arccos p̂

◆
, p̂ = cos(p⇡/M), p = 0 : M.

‰ Average these values ! �(ti) ⇡ Cst ⇥ F̂ (ti)
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The Lanczos Spectroscopic approach: Example

‰ Same example as before
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Recall: How to deal with Distributions

‰ Highly discontinuous nature – not easy to handle

‰ Solution for practical and theoretical purposes: replace � by
a ‘blurred” (continuous) version ��:

��(t) =
1

n

nX

j=1

h�(t � �j),

where h�(t) = any C1 function s.t.:
•

R +1
�1 h�(s)ds = 1

• h� has a peak at zero
‰ An example is the Gaussian:

h�(t) =
1

(2⇡�2)1/2
e�

t2

2�2.
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Delta-Gauss Legendre

‰ Idea: Instead of approximating � directly, first select a rep-
resentative �� of � for a given � and then approximate ��.

‰ �� is a ‘surrogate’ for �. Obtained by replacing �� by :

h�(�� t) =
1

(2⇡�2)1/2
exp

"

�
(�� t)2

2�2

#

.

‰ Goal: to expand into Legendre polynomials Lk(�)

‰ With normalization factor expansion is written as:

h�(�� t) =
1

(2⇡�2)1/2

1X

k=0

✓
k +

1

2

◆
�kLk(�) .

SLA14 - 09/12/2014 54



‰ To determine the �k’s we will also need to compute:

 k =

Z 1

�1
L0

k(s)e
�1

2
((s�t)/�)2ds.

Set ⇣k = e�
1
2
((1�t)/�)2 � (�1)ke�

1
2
((1+t)/�)2.

‰ Then, for k = 0, 1, · · · ,:
(
�k+1 = 2k+1

k+1

⇥
�2( k � ⇣k) + t�k

⇤
� k

k+1
�k�1

 k+1 = (2k + 1)�k +  k�1.

Initiialization: set ��1 =  �1 = 0  1 = �0, and  0 = 0 and:

�0 = �

r
⇡

2


erf

✓
1 � t
p
2�

◆
+ erf

✓
1 + t
p
2�

◆�
,
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Use of the Lanczos Algorithm

‰ Background: The Lanczos algorithm generates an orthonor-
mal basis Vm = [v1, v2, · · · , vm] for the Krylov subspace:

span{v1, Av1, · · · , Am�1v1}

‰ ... such that:
V H
m AVm = Tm - with Tm =

0

BBBBBBB@

↵1 �2

�2 ↵2 �3

�3 ↵3 �4

. . .
. . .
�m ↵m

1

CCCCCCCA

‰ Lanczos builds orthogonal polynomials wrt to dot product:Z
p(t)q(t)dt ⌘ (p(A)v1, q(A)v1)



‰ In theory vi’s defined by 3-term recurrence are orthogonal.

‰ Let ✓i, i = 1 · · · ,m be the eigenvalues of Tm [Ritz values]

‰ yi’s associated eigenvectors; Ritz vectors: {Vmyi}i=1:m

‰ Ritz values approximate eigenvalues [from ‘outside in’]

‰ Could compute ✓i’s then get approximate DOS from these

‰ Problem: ✓i not good enough approximations – especially
inside the spectrum.
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‰ Better idea: exploit relation of Lanczos with (discrete) or-
thogonal polynomials and related Gaussian quadrature:

Z
p(t)dt ⇡

mX

i=1

aip(✓i) ai =
⇥
eT1 yi

⇤2

‰ See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub
and Welsch ’69.

‰ Formula exact when p is a polynomial of degree  2m+1
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‰ Consider now
R
p(t)dt = discrete (Stieljes) integral ⌘

(p(A)v, v) =
P
�2
i p(�i) ⌘< �v, p >

‰ Then h�v, pi ⇡ P
aip(✓i) =

P
ai h�✓i, pi !

�v ⇡
X

ai�✓i

‰ To mimick the effect of �i = 1, 8i, use several vectors v
and average the result of the above formula over them..
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Experiments

‰ Goal: to compare errors for similar number of matrix-vector
products

‰ Example: Kohn-Sham Hamiltonian associated with a ben-
zene molecule generated from PARSEC; size n = 8, 219

‰ In all cases, we use 10 sampling vectors

‰ General observation: DGL, Lanczos, and KPM are best,

‰ Spectroscopic method does OK

‰ Haydock’s method [another method based on the Lanczos
algorithm] not as good
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Method L1 error L2 error L1 error
KPM w/ Jackson, deg=80 2.592e-02 5.032e-03 2.785e-03
KPM w/o Jackson, deg=80 2.634e-02 4.454e-03 2.002e-03
KPM Legendre, deg=80 2.504e-02 3.788e-03 1.174e-03
Spectroscopic, deg=40 5.589e-02 8.652e-03 2.871e-03
Spectroscopic, deg=100 4.624e-02 7.582e-03 2.447e-03
DGL, deg=80 1.998e-02 3.379e-03 1.149e-03
Lanczos, deg=80 2.755e-02 4.178e-03 1.599e-03
Haydock, deg=40 6.951e-01 1.302e-01 6.176e-02
Haydock, deg=100 2.581e-01 4.653e-02 1.420e-02

L1, L2, and L1 error compared with the normalized “surro-
gate” DOS for benzene matrix
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Other matrices

Matrix n �1 �n

Ga10As10H30 113,081 �1.2 1.3 ⇥ 103

PE3K 9,000 8.1 ⇥ 10�6 1.3 ⇥ 102

CFD1 70,656 2.0 ⇥ 10�5 6.8
SHWATER 81,920 5.8 2.0 ⇥ 101

Description of the size and the spectrum range of the test
matrices.
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Matrix Method L1 error L2 error L1 error

Ga10As10H30
DGL 3.937e-03 3.214e-04 4.301e-05

Lanczos 4.828e-03 3.940e-04 5.452e-05

PE3K DGL 4.562e-03 7.368e-04 3.143e-04
Lanczos 5.459e-03 7.372e-04 3.294e-04

CFD1 DGL 2.276e-03 1.299e-03 1.746e-03
Lanczos 2.024e-03 1.286e-03 2.478e-03

SHWATER DGL 3.779e-03 1.282e-03 9.328e-04
Lanczos 3.047e-03 9.829e-04 6.100e-04

L1, L2, and L1 error associated with the approximate spec-
tral densities produced by the DGL and Lanczos methods for
different test matrices.
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Conclusion

‰ Probabilistic algorithms provide powerful tools for solving
various problems: eigenvalue counts, DOS, Diag (f(A))..

‰ Most of the algorithms we discussed rely on estimating trace
of f(A).

Q: Can we do better than random sampling [e.g., probing,..]?

‰ Physicists are interested in modified forms of the density of
states. ! Explore extentions of what we did.
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