Efficient Linear Algebra methods for Data Mining
Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

NUMAN-08 Kalamata, 2008

Team members involved in this work - Support

Past:

- Efi Kokiopoulou [Now at the U. of Lausanne]

Current:

- Jie Chen [grad student]
- Sofia Sakellaridi [grad student]
- Haw-Ren Fang [Post-Doc]

Support:

- National Science Foundation

Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful information or patterns from data. Very broad area - includes: data analysis, machine learning, pattern recognition, information retrieval, ...
> Main tools used: linear algebra; graph theory; approximation theory; optimization; ...
> In this talk: emphasis on dimension reduction techniques and the interrelations between techniques
$>$ Focus on two main problems

- Information retrieval
- Face recognition
$>$ and 3 types of dimension reduction methods
- Standard subspace methods [SVD, Lanczos]
- Graph-based methods
- multilevel methods

The problem

$>$ Given $d \ll m$ find a mapping $\Phi: x \in \mathbb{R}^{m} \longrightarrow y \in \mathbb{R}^{d}$
> Mapping may be explicit (e.g., $\left.y=V^{T} x\right)$
> Or implicit (nonlinear)

Practically:

Given $\boldsymbol{X} \in \mathbb{R}^{m \times n}$, we want to find a low-dimensional representation $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$ of \boldsymbol{X}
> Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

Example 1: The 'Swill-Roll' (2000 points in 3-D)

Original Data in 3-D

Kalamata, 09-05-2008

2-D ‘reductions':

Eigenmaps

ONPP

Kalamata, 09-05-2008

Example 2: Digit images (a sample of 30)

2-D 'reductions':

Projection-based Dimensionality Reduction

Given: a data set $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and d the dimension of the desired reduced space \boldsymbol{Y}.
Want: a linear transformation from X to \boldsymbol{Y}

$$
\begin{aligned}
& \boldsymbol{X} \in \mathbb{R}^{m \times n} \\
& V \in \mathbb{R}^{m \times d} \\
& \boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X} \\
& \rightarrow \quad \boldsymbol{Y} \in \mathbb{R}^{d \times n}
\end{aligned}
$$

$>m$-dimens. objects $\left(x_{i}\right)$ 'flattened' to d-dimens. space $\left(y_{i}\right)$
Constraint: The y_{i} 's must satisfy certain properties
> Optimization problem

Linear Dimensionality Reduction: PCA

> In PCA projected data must have maximum variance, i.e., we need to maximize over all orthogonal $m \times d$ matrices V :

$$
\sum_{i}\left\|\boldsymbol{y}_{i}-\frac{1}{n} \sum_{j} \boldsymbol{y}_{j}\right\|_{2}^{2}=\cdots=\operatorname{Tr}\left[\boldsymbol{V}^{\top} \overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{\top} \boldsymbol{V}\right]
$$

Where: $\bar{X}=X\left(I-\frac{1}{n} 11^{T}\right)==$ origin-recentered version of X
$>$ Solution $V=\{$ dominant eigenvectors $\}$ of the covariance matrix == Set of left singular vectors of \bar{X}
$>$ Solution V also minimizes 'reconstruction error' ..

$$
\sum_{i}\left\|x_{i}-V V^{T} x_{i}\right\|^{2}=\sum_{i}\left\|x_{i}-V y_{i}\right\|^{2}
$$

$>.$. and it also maximizes [Korel and Carmel 04] $\sum_{i, j}\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|^{2}$

Information Retrieval: Vector Space Model

Given: 1) set of documents (columns of a matrix A); 2) a query vector q. Entry $a_{i j}$ of $A=$ frequency of term i in document $j+$ weighting.

> Queries ('pseudo-documents') q represented similarly to columns
Problem: find columns of A that best match q

Vector Space Model and the Truncated SVD

$>$ Similarity metric: angle between column $\boldsymbol{A}_{j,:}$ and query q

Use Cosines:

$$
\frac{\left|\boldsymbol{q}^{T} \boldsymbol{A}_{:, j}\right|}{\left\|\boldsymbol{A}_{:, j}\right\|_{2}\|\boldsymbol{q}\|_{2}}
$$

$>$ To rank all documents compute the similarity vector:

$$
s=\boldsymbol{A}^{T} \boldsymbol{q}
$$

> Not very effective. Problems : polysemy, synonymy, ...
$>$ LSI: replace matrix \boldsymbol{A} by low rank approximation

$$
A=U \Sigma V^{T} \quad \rightarrow \quad A_{k}=U_{k} \Sigma_{k} V_{k}^{T} \quad \rightarrow \quad s_{k}=A_{k}^{T} q
$$

$>U_{k}$: term space, V_{k} : document space.
$>$ Called TSVD - Expensive, hard to update, ..

New similarity vector:

$$
s_{k}=A_{k}^{T} \boldsymbol{q}=V_{k} \Sigma_{k} U_{k}^{T}
$$

$>$ How to select k ?
Issues: $>$ Computational cost (memory + computation)
$>$ Problem with updates
$>$ Alternative: SDD; Less memory but cost still an issue.
$>$ Alternative: polynomial approximation. $s_{k} \approx \phi_{k}\left(A^{T} A\right) A^{T} q$ where $\phi_{k}=$ deg. k polynom.
> Yet another alternative: use Lanczos vectors instead of singular vectors [Ruhe and Blom, 2005]

IR: Use of the Lanczos algorithm

* Joint work with Jie Chen
> Lanczos is good at catching large (and small) eigenvalues: can compute singular vectors with Lanczos, \& use them in LSI
> Can do better: Use the Lanczos vectors directly for the projection..
> First advocated by: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005]. Use Lanczos bidiagonalization.
$>$ Use a similar approach - But directly with $\boldsymbol{A} \boldsymbol{A}^{T}$ or $\boldsymbol{A}^{T} \boldsymbol{A}$.

IR: Use of the Lanczos algorithm (1)

$>$ Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. Apply the Lanczos procedure to $M=\boldsymbol{A} \boldsymbol{A}^{T}$. Result:

$$
Q_{k}^{T} A A^{T} Q_{k}=T_{k}
$$

with Q_{k} orthogonal, T_{k} tridiagonal.
$>$ Define $s_{i} \equiv$ orth. projection of $A b$ on subspace span $\left\{Q_{i}\right\}$

$$
s_{i}:=Q_{i} Q_{i}^{T} A b
$$

$>s_{i}$ can be easily updated from s_{i-1} :

$$
s_{i}=s_{i-1}+q_{i} \boldsymbol{q}_{i}^{T} A b
$$

IR: Use of the Lanczos algorithm (2)

$>$ If $n<m$ it may be more economial to apply Lanczos to $M=$ $\boldsymbol{A}^{T} \boldsymbol{A}$ which is $n \times n$. Result:

$$
\bar{Q}_{k}^{T} A^{T} A \bar{Q}_{k}=\bar{T}_{k}
$$

> Define:

$$
t_{i}:=A \bar{Q}_{i} \bar{Q}_{i}^{T} b
$$

$>$ Project b first before applying \boldsymbol{A} to result.

Why does this work?

$>$ First, recall a result on Lanczos algorithm [YS 83]
Let $\left\{\lambda_{j}, u_{j}\right\}=j$-th eigen-pair of M (label \downarrow)

$$
\frac{\left\|\left(I-Q_{k} Q_{k}^{T}\right) u_{j}\right\|}{\left\|Q_{k} Q_{k}^{T} u_{j}\right\|} \leq \frac{K_{j}}{T_{k-j}\left(\gamma_{j}\right)} \frac{\left\|\left(I-Q_{1} Q_{1}^{T}\right) u_{j}\right\|}{\left\|Q_{1} Q_{1}^{T} u_{j}\right\|}
$$

where

$$
\gamma_{j}=1+2 \frac{\lambda_{j}-\lambda_{j+1}}{\lambda_{j+1}-\lambda_{n}}, \quad K_{j}=\left\{\begin{array}{ll}
1 & j=1 \\
\prod_{i=1}^{j-1} \frac{\lambda_{i}-\lambda_{n}}{\lambda_{i}-\lambda_{j}} & j \neq 1
\end{array},\right.
$$

and $T_{l}(x)=$ Chebyshev polynomial of 1 st kind of degree l.
This has the form

$$
\left\|\left(I-Q_{k} Q_{k}^{T}\right) u_{j}\right\| \leq c_{j} / T_{k-j}\left(\gamma_{j}\right)
$$

where $\boldsymbol{c}_{j}=$ constant independent of k
$>$ Result: Distance between unit eigenvector u_{j} and Krylov subspace $\operatorname{span}\left(Q_{k}\right)$ decays fast (for small j)
$>$ Consider component of difference between $A b-s_{k}$ along left singular directions of \boldsymbol{A}. If $\boldsymbol{A}=\boldsymbol{U} \Sigma \boldsymbol{V}^{T}$, then \boldsymbol{u}_{j} 's (columns of \boldsymbol{U}) are eigenvectors of $M=\boldsymbol{A} \boldsymbol{A}^{T}$. So:

$$
\begin{aligned}
\left|\left\langle A b-s_{k}, u_{j}\right\rangle\right| & =\left|\left\langle\left(I-Q_{k} Q_{k}^{T}\right) A b, u_{j}\right\rangle\right| \\
& =\left|\left\langle\left(I-Q_{k} Q_{k}^{T}\right) u_{j}, A b\right\rangle\right| \\
& \leq\left\|\left(I-Q_{k} Q_{k}^{T}\right) u_{j}\right\|\|A b\| \\
& \leq c_{j}\|A b\| T_{k-j}^{-1}\left(\gamma_{j}\right)
\end{aligned}
$$

$>\left\{s_{i}\right\}$ converges rapidly to $\boldsymbol{A b}$ in directions of the major left singular vectors of \boldsymbol{A}.
$>$ Similar result for left projection sequence t_{j}
$>$ Here is a typical distribution of eigenvalues of M : [Matrix of size 1398×1398]

> Convergence toward first few singular vectors very fast -

Advantages of Lanczos over polynomial filters:
(1) No need for eigenvalue estimates
(2) Mat-vecs performed only in preprocessing

Disadvantages:
(1) Need to store Lanczos vectors;
(2) Preprocessing must be redone when \boldsymbol{A} changes.
(3) Need for reorthogonalization - expensive for large k.

Tests: IR

Information
retrieval
datasets

	\# Terms	\# Docs	\# queries	sparsity
MED	7,014	1,033	30	0.735
CRAN	3,763	1,398	225	1.412

Med dataset.

Cran dataset.

Kalamata, 09-05-2008

Average query times

Med dataset

Cran dataset.

Average retrieval precision

Med dataset

Cran dataset

Retrieval precision comparisons

In summary:

> Results comparable to those of SVD ...
> .. at a much lower cost. [However not for the same dimension k]

Thanks:

> Helpful tools and datasets widely available. We used TMG [developed at the U. of Patras (D. Zeimpekis, E. Gallopoulos)]

Problem 2: Face Recognition - background

Problem: We are given a database of images: [arrays of pixel values]. And a test (new) image.

Question: Does this new image correspond to one of those in the database?

Difficulty

$>$ Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces - Principal Component Analysis technique

Example: Occlusion. See recent paper by John Wright et al.

Right: 50\% pixels randomly changed

Eigenfaces

- Consider each picture as a one-dimensional colum of all pixels
- Put together into an array A of size \#_pixels $\times \#$ _images .

- Do an SVD of \boldsymbol{A} and perform comparison with any test image in low-dim. space
- Similar to LSI in spirit - but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)

Tests: Face Recognition

Tests with 2 well-known data sets:
ORL 40 subjects, 10 sample images each - example:

\# of pixels: 112×92 TOT. \# images : 400
AR set 126 subjects - 4 facial expressions selected for each [natural, smiling, angry, screaming] - example:

\# of pixels: 112×92 \# TOT. \# images: 504

Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset

AR dataset

Vertical axis shows average error rate. Horizontal = Subspace dimension

GRAPH-BASED TECHNIQUES

Laplacean Eigenmaps (Belkin-Niyogi-02)

$>$ Not a linear (projection) method but a Nonlinear method
$>$ Starts with k-nearest-neighors graph
> Defines the graph Laplacean $L=D-$ W. Simplest:
$D=\operatorname{diag}(\operatorname{deg}(i)) ; \quad w_{i j}= \begin{cases}1 & \text { if } j \in N_{i} \\ 0 & \text { else }\end{cases}$
with $N_{i}=$ neighborhood of $i(\operatorname{excl} . i) ; \operatorname{deg}(i)=\left|N_{i}\right|$

A few properties of graph Laplacean matrices

$>$ Let $L=$ any matrix s.t. $L=D-W$, with $D=\operatorname{diag}\left(d_{i}\right)$ and

$$
w_{i j} \geq 0, \quad d_{i}=\sum_{j \neq i} w_{i j}
$$

Property 1: for any $x \in \mathbb{R}^{n}$:

$$
x^{\top} \boldsymbol{L} x=\frac{1}{2} \sum_{i, j} w_{i j}\left|x_{i}-x_{j}\right|^{2}
$$

Property 2: (generalization) for any $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$:

$$
\operatorname{Tr}\left[Y L Y^{\top}\right]=\frac{1}{2} \sum_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}
$$

Property 3: For the particular $L=I-\frac{1}{n} \mathbf{1 1}^{\top}$

$$
\boldsymbol{X} \boldsymbol{L} \boldsymbol{X}^{\top}=\overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{\top}==n \times \text { Covariance matrix }
$$

[Proof: 1) L is a projector: $L^{\top} L=L^{2}=L$, and 2) $\boldsymbol{X} L=\overline{\boldsymbol{X}}$]
$>$ Consequence-1: PCA equivalent to maximizing $\sum_{i j}\left\|y_{i}-y_{j}\right\|^{2}$
$>$ Consequence-2: what about replacing trivial L with something else? [viewpoint in Koren-Carmel'04]

Property 4: (Graph partitioning) If x is a vector of signs (± 1) then

$$
x^{\top} \boldsymbol{L} x=4 \times(\text { 'number of edge cuts') }
$$

edge-cut $=$ pair (i, j) with $x_{i} \neq x_{j}$
> Consequence: Can be used for partitioning graphs, or 'clustering' [take $p=\operatorname{sign}\left(u_{2}\right)$, where $u_{2}=2$ nd smallest eigenvector..]

Return to Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

$$
\mathcal{F}_{E M}(\boldsymbol{Y})=\sum_{i, j=1}^{n} w_{i j}\left\|y_{i}-y_{j}\right\|^{2} \quad \text { subject to } \quad Y D Y^{\top}=I
$$

Notes:

1. Motivation: if $\left\|x_{i}-x_{j}\right\|$ is small (orig. data), we want $\left\|y_{i}-y_{j}\right\|$ to be also small (low-D data)
2. Note Min instead of Max as in PCA [counter-intuitive]
3. Above problem uses original data indirectly through its graph
$>$ Problem translates to:

$$
\left\{\begin{array}{c}
\min _{\boldsymbol{Y} \in \mathbb{R}^{d \times n}} \operatorname{Tr}\left[\boldsymbol{Y}(\boldsymbol{D}-\boldsymbol{W}) \boldsymbol{Y}^{\top}\right] . \\
\boldsymbol{Y} \boldsymbol{D} \boldsymbol{Y}^{\top}=\boldsymbol{I}
\end{array}\right.
$$

$>$ Solution (sort eigenvalues increasingly):

$$
(D-W) u_{i}=\lambda_{i} D u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

$>$ Note: an $n \times n$ sparse eigenvalue problem [In 'sample' space]
$>$ Note: can assume $D=I$. Amounts to rescaling data. Problem becomes

$$
(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

Intuition:
Graph Laplacean and 'unit' Laplacean are very different: one involves a sparse graph (More like a discr. differential operator). The other involves a dense graph. (More like a discr. integral operator).
They should be treated as the inverses of each other.
> Viewpoint confirmed by what we learn from Kernel approach

Locally Linear Embedding (Roweis-Saul-00)

> LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an 'affinity' graph
2) Objective function is changed: want to preserve graph
1. Graph: Each x_{i} is written as a convex combination of its k nearest neighbors:
$x_{i} \approx \Sigma w_{i j} x_{j}, \quad \sum_{j \in N_{i}} w_{i j}=1$
$>$ Optimal weights computed ('local calculation') by minimizing

$$
\left\|x_{i}-\Sigma w_{i j} x_{j}\right\| \quad \text { for } \quad i=1, \cdots, n
$$

2. Mapping:

The y_{i} 's should obey the same 'affinity' as x_{i} 's \rightsquigarrow
Minimize:

$$
\sum_{i}\left\|y_{i}-\sum_{j} w_{i j} y_{j}\right\|^{2} \quad \text { subject to: } \quad Y \mathbf{1}=0, \quad Y Y^{\top}=I
$$

Solution:

$$
\left(I-W^{\top}\right)(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top}
$$

$>\left(I-W^{\top}\right)(I-W)$ replaces the graph Laplacean of eigenmaps

Locally Preserving Projections (He-Niyogi-03)

- LPP is a linear dimensionality reduction technique
> Recall the setting:
Want $\boldsymbol{V} \in \mathbb{R}^{m \times d} ; \boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$

$>$ Starts with the same neighborhood graph as Eigenmaps: $L \equiv$ $D-W=$ graph 'Laplacean'; with $D \equiv \operatorname{diag}\left(\left\{\Sigma_{i} w_{i j}\right\}\right)$.
$>$ Optimization problem is to solve

$$
\min _{Y \in \mathbb{R}^{d \times n}, Y D Y^{\top}=I} \Sigma_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}, \quad Y=V^{\top} X .
$$

$>$ Difference with eigenmaps: \boldsymbol{Y} is a projection of \boldsymbol{X} data
$>$ Solution (sort eigenvalues increasingly)

$$
\boldsymbol{X} L \boldsymbol{X}^{\top} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\top} \boldsymbol{v}_{i} \quad \boldsymbol{y}_{i,:}=\boldsymbol{v}_{i}^{\top} \boldsymbol{X}
$$

$>$ Note: essentially same method in [Koren-Carmel'04] called 'weighted PCA' [viewed from the angle of improving PCA]

ONPP (Kokiopoulou and YS '05)

> Orthogonal Neighborhood Preserving Projections
> Can be viewed as a linear version of LLE
> Uses the same graph as LLE. Objective: preserve the affinity graph (as in LEE) *but* by means of an orthogonal projection
$>$ Objective function

$$
\Phi(\boldsymbol{Y})=\Sigma_{i}\left\|y_{i}-\Sigma_{j} w_{i j} y_{j}\right\|^{2} \quad \text { Constraint: } \boldsymbol{Y}=V^{\top} \boldsymbol{X}, V^{\top} \boldsymbol{V}=\boldsymbol{I}
$$

$>$ Notice that

$$
\Phi(\boldsymbol{Y})=\left\|\boldsymbol{Y}-\boldsymbol{Y} W^{\top}\right\|_{F}^{2}=\cdots=\operatorname{Tr}\left[V^{\top} \boldsymbol{X}\left(\boldsymbol{I}-\boldsymbol{W}^{\top}\right)(I-W) \boldsymbol{X}^{\top} V\right]
$$

Resulting problem:

$$
\min _{\substack{\mathcal{\mathbb { P } ^ { m \times d _ { j } }} \\ V^{\top} V=I}} \operatorname{Tr}[V^{\top} \underbrace{X\left(I-W^{\top}\right)(I-W) X^{\top}}_{M} V]
$$

Solution: Columns of $V=$ eigenvectors of M associated with smallest d eigenvalues
$>$ Can be computed as d lowest left singular vectors of

$$
\boldsymbol{X}\left(I-W^{\top}\right)
$$

A unified view

Method	Object. (min)	Constraint
PCA/MDS	$\operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}\left(-\boldsymbol{I}+e e^{\top}\right) \boldsymbol{X}^{\top} \boldsymbol{V}\right]$	$\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}$
LLE	$\operatorname{Tr}\left[\boldsymbol{Y}\left(\boldsymbol{I}-W^{\top}\right)(\boldsymbol{I}-W) \boldsymbol{Y}^{\top}\right]$	$\boldsymbol{Y} \boldsymbol{Y}^{\top}=\boldsymbol{I}$
Eigenmaps	$\operatorname{Tr}\left[\boldsymbol{Y}(\boldsymbol{I}-W) \boldsymbol{V}^{\top}\right]$	$\boldsymbol{Y} \boldsymbol{Y}^{\top}=\boldsymbol{I}$
LPP	$\operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}(\boldsymbol{I}-W) \boldsymbol{X}^{\top} \boldsymbol{V}\right]$	$\boldsymbol{V}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{V}=\boldsymbol{I}$
ONPP	$\operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}\left(\boldsymbol{I}-W^{\top}\right)(\boldsymbol{I}-W) \boldsymbol{X}^{\top} \boldsymbol{V}\right]$	$\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}$
LDA	$\operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{X}^{\top} \boldsymbol{V}\right]$	$\boldsymbol{V}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{V}=\boldsymbol{I}$

$>$ Let $M=I-W=$ a Laplacean matrix $\left(-I+e e^{\top}\right.$ for PCA/MDS); or the LLE matrix $(\boldsymbol{I}-W)\left(I-W^{\top}\right)$, or geodesic distance matrix (ISOMAP).
> All techniques lead to one of two types of problems

$$
\operatorname{Tr}\left[\boldsymbol{Y} M Y^{\top}\right]
$$

$>$ First type is:

$$
\begin{aligned}
& \min ^{\prime} \in \mathbb{R}^{d \times n} \\
& \boldsymbol{Y}^{\top}=I
\end{aligned}
$$

> \boldsymbol{Y} obtained from solving an eigenvalue problem
$>$ LLE, Eigenmaps (normalized), ..

$>G$ is either the identity matrix or $\boldsymbol{X D} \boldsymbol{X}^{\top}$ or $\boldsymbol{X} \boldsymbol{X}^{\top}$.
$>$ Low-Dim. data: $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
Important observation: 2nd is just a projected version of the 1st, i.e., approximate eigenvectors are sought in Span $\{\boldsymbol{X}\}$ [RayleighRitz procedure]
$>$ Problem is of dim. m (dim. of data) not n (\# of samples).
> This difference can be mitigated by resorting to Kernels..

Graph-based methods in a supervised setting

> Subjects of training set are known (labeled). Q: given a test image (say) find its label.

Question: Find label (best match) for test image.

Methods can be adapted to supervised mode by building the graph to take into account class labels. Idea is simple: Build G so that nodes in the same class are neighbors. If $c=\#$ classes, G will consist of c cliques.
> Matrix W will be block-diagonal

$$
W=\operatorname{diag}\left(W_{1}, W_{2}, \cdots, W_{c}\right)
$$

$>$ Easy to see that $\operatorname{rank}(W)=n-c$.
$>$ Can be used for LPP, ONPP, etc..

TIME FOR A MATLAB DEMO

Supervised learning experiments: digit recognition

$>$ Set of 390 images of digits (39 of each digit)

$>$ Each picture has $20 \times 16=320$ pixels.

$>$ Select any one of the digits
 and try to recognize it among the 389 remaining images

> Methods: KNN, PCA, LPP, ONPP

One word about KNN-classifiers

$>$ Simple idea of 'vote' - get k nearest neighbors.
$>$ Assigned label = 'most common label among these neibhbors'

MULTILEVEL METHODS

Multilevel techniques

> Divide and conquer paradigms as well as multilevel methods in the sense of 'domain decomposition'
> Main principle: very costly to do an SVD [or Lanczos] on the whole set. Why not find a smaller set on which to do the analysis without too much loss?
$>$ Tools used: graph coarsening, divide and conquer -

Multilevel techniques: Hypergraphs to the rescue

General idea: Given $\boldsymbol{X}=\left[x_{1}, \cdots, x_{n}\right] \in \mathbb{R}^{m \times n}$ find another set ('coarsened set') $\hat{X}=\left[\hat{x}_{1}, \cdots, \hat{x}_{k}\right] \in \mathbb{R}^{m \times k}$
$>\hat{X}$ should be a good representative of $\boldsymbol{X}-$
$>$ then find projector from \mathbb{R}^{m} to \mathbb{R}^{d} based on this subset
$>$ Main tool used: graph coarsening.
$>$ We will describe hypergraph-based techniques

Hypergraphs

A hypergraph $\boldsymbol{H}=(\boldsymbol{V}, \boldsymbol{E})$ is a generalizaition of a graph
> $V=$ set of vertices V
$\boldsymbol{\nabla} \boldsymbol{E}=$ set of hyperedges. Each $e \in \boldsymbol{E}$ is a nonempty subset of V
$>$ Standard undirected graphs: each e consists of two vertices.
$>$ degree of $e=|e|$
$>$ degree of a vertex $v=$ number of hyperedges e s.t. $x \in e$.
$>$ Two vertices are neighbors if there is a hyperedge connecting them

> Canonical hypergraph representation for sparse data (e.g. text)

Hypergraph Coarsening

> Coarsening a hypergraph $\boldsymbol{H}=(\boldsymbol{V}, \boldsymbol{E})$ means finding a 'coarse' approximation $\hat{H}=(\hat{\boldsymbol{V}}, \hat{\boldsymbol{E}})$ to \boldsymbol{H} with $|\hat{\boldsymbol{V}}|<|\boldsymbol{V}|$, which tries to retain as much as possible of the structure of the original hypergraph
> Idea: repeat coarsening recursively.
> Result: succession of smaller hypergraphs which approximate the original graph.
> Several methods exist. We use 'matching', which successively merges pairs of vertices
> Used in most graph partitioning methods: hMETIS, Patoh, zoltan,
> Algorithm successively selects pairs of vertices to merge - based on measure of similarity of the vertices.

Application: Multilevel Dimension Reduction

Main Idea:

to a certain level. Then use the resulting data set \hat{X} to find projector from \mathbb{R}^{m} to \mathbb{R}^{d}. This projector can be used to project the original data or any new data.

> Main gain: Dimension reduction is done with a much smaller set. Hope: not much loss compared to using whole data

Application to text mining

> Recall common approach:

1. Scale data [e.g. TF-IDF scaling:]
2. Perform a (partial) SVD on resulting matrix $X \approx \boldsymbol{U}_{d} \Sigma_{d} V_{d}^{T}$
3. Process query by same scaling (e.g. TF-IDF)
4. Compute similarities in d-dimensional space: $s_{i}=\left\langle\hat{q}, \hat{x}_{i}\right\rangle /\|\hat{q}\|\left\|\hat{x}_{i}\right\|$ where $\left[\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{n}\right]=V_{d}^{T} \in \mathbb{R}^{d \times n} ; \quad \hat{q}=\Sigma_{d}^{-1} U_{d}^{T} \bar{q} \in \mathbb{R}^{d}$
> Multilevel approach: replace SVD (or any other dim. reduction) by dimension reduction on coarse set. Only difference: TF-IDF done on the coarse set not original set.

Tests

Three public data sets used for experiments: Medline, Cran and NPL (cs.cornell.edu)
$>$ Coarsening to a max. of 4 levels.

Data set	Medline	Cran	NPL
\# documents	1033	1398	11429
\# terms	7014	3763	7491
sparsity (\%)	0.74%	1.41%	0.27%
\# queries	30	225	93
avg. \# rel./query	23.2	8.2	22.4

Results with NPL

Statistics

Level	coarsen. time	\# doc.	optimal	
	optimal avg.			
precision				

Precision-Recall curves

CPU times for preprocessing (Dim. reduction part)

Conclusion

> So how is this related to intitial title of "efficient algorithms in data mining"?
> Answer: All these eigenvalue problems are not cheap to solve..
> .. and cost issue does not seem to bother practitioners too much for now..
$>$ Ingredients that will become mandatory:
1 Avoid the SVD
2 Fast algorithms that do not sacrifice quality.
3 In particullar: Multilevel approaches
4 Multilinear algebra [tensors]

