
Dimension reduction methods: Algorithms
and Applications

Yousef Saad
Department of Computer Science

and Engineering

University of Minnesota

NASCA – 2018, Kalamata
July 6, 2018



Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful
information or patterns from data. Very broad area – in-
cludes: data analysis, machine learning, pattern recognition,
information retrieval, ...

ä Main tools used: linear algebra; graph theory; approximation
theory; optimization; ...

ä In this talk: emphasis on dimension reduction techniques
and the interrelations between techniques

Kalamata 07/06/18 p. 2



Introduction: a few factoids

ä We live in an era increasingly shaped by ‘DATA’

• ≈ 2.5× 1018 bytes of data created in 2015

• 90 % of data on internet created since 2016

• 3.8 Billion internet users in 2017.

• 3.6 Million Google searches worldwide / minute (5.2 B/day)

• 15.2 Million text messages worldwide / minute

ä Mixed blessing: Opportunities & big challenges.

ä Trend is re-shaping & energizing many research areas ...

ä ... including : numerical linear algebra
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A huge potential: Health sciences
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Recommending books or movies: recommender systems
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A few sample (classes of) problems:

ä Classification: ’Benign – Malignant’, ’Dangerous-Safe’, Face
recognition, digit recognition,

ä Matrix completion: Recommender systems

ä Projection type methods: PCA, LSI, Clustering, Eigenmaps,
LLE, Isomap, ...

ä Problems for graphs/ networks: Pagerank, analysis of graphs
(node centrality, ...)

ä Problems from computational statistics [Trace (inv(Cov)),
Log det (A), Log Likelyhood, ...]
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A common tool: Dimension reduction
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Major tool of Data Mining: Dimension reduction

ä Goal is not as much to reduce size (& cost) but to:

• Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

• Discover important ‘features’ or ‘paramaters’

The problem: Given: X = [x1, · · · , xn] ∈ Rm×n, find a

low-dimens. representation Y = [y1, · · · , yn] ∈ Rd×n of X

ä Achieved by a mapping Φ : x ∈ Rm −→ y ∈ Rd so:

φ(xi) = yi, i = 1, · · · , n
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ä Φ may be linear : yj = W>xj, ∀j, or, Y = W>X

ä ... or nonlinear (implicit).

ä Mapping Φ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Basics: Principal Component Analysis (PCA)

In Principal Component Analysis W is computed to maxi-
mize variance of projected data:

max
W∈Rm×d;W>W=I

n∑
i=1

∥∥∥∥∥∥yi − 1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn
i=1xi

ä SolutionW = { dominant eigenvectors } of the covariance
matrix≡ Set of left singular vectors of X̄ = X − µe>
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SVD:

X̄ = UΣV >, U>U = I, V >V = I, Σ = Diag

ä Optimal W = Ud ≡ matrix of first d columns of U

ä Solution W also minimizes ‘reconstruction error’ ..

∑
i

‖xi −WW Txi‖2 =
∑
i

‖xi −Wyi‖2

ä In some methods recentering to zero is not done, i.e., X̄
replaced by X.
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Unsupervised learning

“Unsupervised learning” : meth-
ods do not exploit labeled data
ä Example of digits: perform a 2-D
projection
ä Images of same digit tend to
cluster (more or less)
ä Such 2-D representations are
popular for visualization
ä Can also try to find natural clus-
ters in data, e.g., in materials
ä Basic clusterning technique: K-
means
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Example: Digit images (a random sample of 30)
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2-D ’reductions’:
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DIMENSION REDUCTION EXAMPLE: INFORMATION RETRIEVAL



Application: Information Retrieval

ä Given: collection of doc-
uments (columns of a matrix
A) and a query vector q.
ä Representation: m × n
term by document matrix

ä A query q is a (sparse) vector in Rm (‘pseudo-document’)

Problem: find a column of A that best matches q

ä Vector space model: use cos〈(A(:, j), q), j = 1 : n

ä Requires the computation of ATq

ä Literal Matching→ ineffective
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Common approach: Dimension reduction (SVD)

ä LSI: replace A by a low rank approximation [from SVD]

A = UΣV T → Ak = UkΣkV
T
k

ä Replace similarity vector: s = ATq by sk = AT
kq

ä Main issues: 1) computational cost 2) Updates

Idea: ReplaceAk byAφ(ATA), where φ == a filter function

Consider the step-
function (Heaviside):

φ(x) =

{
0, 0 ≤ x ≤ σ2

k

1, σ2
k ≤ x ≤ σ2

1

ä Would yield the same result as TSVD but not practical
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Use of polynomial filters

ä Solution : use a polynomial approximation to φ

ä Note: sT = qTAφ(ATA) , requires only Mat-Vec’s

ä Ideal for situations where data must be explored once or a
small number of times only –

ä Details skipped – see:

E. Kokiopoulou and YS, Polynomial Filtering in Latent Semantic
Indexing for Information Retrieval, ACM-SIGIR, 2004.
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IR: Use of the Lanczos algorithm (J. Chen, YS ’09)

ä Lanczos algorithm = Projection method on Krylov subspace
Span{v,Av, · · · , Am−1v}

ä Can get singular vectors with Lanczos, & use them in LSI

ä Better: Use the Lanczos vectors directly for the projection

ä K. Blom and A. Ruhe [SIMAX, vol. 26, 2005] perform a
Lanczos run for each query [expensive].

ä Proposed: One Lanczos run- random initial vector. Then
use Lanczos vectors in place of singular vectors.

In summary: Results comparable to those of SVD at a much
lower cost.
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Supervised learning

ä We now have data that is ‘labeled’

• Example: (health sciences) ‘malignant’- ’non malignant’

• Example: (materials) ’photovoltaic’, ’hard’, ’conductor’, ...

• Example: (Digit recognition) Digits ’0’, ’1’, ...., ’9’
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Supervised learning

We now have data that is ‘labeled’

• Example: (health sciences) ‘malignant’- ’non malignant’

• Example: (materials) ’photovoltaic’, ’hard’, ’conductor’, ...
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Supervised learning: classification

ä Best illustration: written digits recognition example

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.
Problem: find

label of test image
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ä Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space

Kalamata 07/06/18 p. 22



Basic method: K-nearest neighbors (KNN) classification

ä Idea of a voting system: get
distances between test sample
and training samples

ä Get the k nearest neighbors
(here k = 8)

ä Predominant class among
these k items is assigned to the
test sample (“∗” here)
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Supervised learning: Linear classification

Linear classifiers: Find
a hyperplane which best
separates the data in
classes A and B.
ä Example of applica-
tion: Distinguish between
SPAM and non-SPAM e-
mails Linear

classifier

ä Note: The world in non-linear. Often this is combined with
Kernels – amounts to changing the inner product

Kalamata 07/06/18 p. 24



A harder case:
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GRAPH-BASED TECHNIQUES



Graph-based methods

ä Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)
Want: Perform a projection which pre-

serves the graph in some sense

ä Define a graph Laplacean:

L = D −W

x

x
j

i

e.g.,: wij =

{
1 if j ∈ Adj(i)
0 else D = diag

dii =
∑
j 6=i

wij


with Adj(i) = neighborhood of i (excluding i)
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A side note: Graph partitioning

If x is a vector of signs (±1) then

x>Lx = 4× (’number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used for partitioning graphs, or ‘clus-
tering’ [take p = sign(u2), where u2 = 2nd smallest eigenvec-
tor..]
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A few properties of graph Laplacean matrices

ä Let L = any matrix s.t. L = D −W , with:

D = diag(di), wij ≥ 0, di =
∑
j 6=iwij

Property 1: for any x ∈ Rn :

x>Lx =
1

2

∑
i,j

wij|xi − xj|2

Property 2: (generalization) for any Y ∈ Rd×n :

Tr [Y LY >] =
1

2

∑
i,j

wij‖yi − yj‖2
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Property 3: For the particular L = I − 1
n

11>

XLX> = X̄X̄> == n× [Sample Covariance matrix]

[Proof: 1) L is a projector: L>L = L2 = L, and 2) XL = X̄]

→ PCA equivalent to maximizing
∑
ij ‖yi − yj‖2

Property 4: (Graph partitioning) If x is a vector of signs (±1)
and an edge-cut = pair (i, j) with xi 6= xj then

x>Lx = 4× (’number of edge cuts’)

ä Can be used for partitioning graphs, or for ‘clustering’ [take
p = sign(u2), where u2 = 2nd smallest eigenvector..]
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Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y ) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi − xj‖ is small
(orig. data), we want ‖yi − yj‖ to be
also small (low-Dim. data)
ä Original data used indirectly
through its graph
ä Leads to n× n sparse eigenvalue
problem [In ‘sample’ space]

x

x
j

i

y
i

y
j
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ä Problem translates to:

min Y ∈ Rd×n
Y D Y > = I

Tr
[
Y (D −W )Y >

]
.

ä Solution (sort eigenvalues increasingly):

(D −W )ui = λiDui ; yi = u>i ; i = 1, · · · , d

ä Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I −W )ui = λiui ; yi = u>i ; i = 1, · · · , d
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Why smallest eigenvalues vs largest for PCA?

Intuition:

Graph Laplacean and ‘unit’ Laplacean are very different: one
involves a sparse graph (More like a discr. differential operator).
The other involves a dense graph. (More like a discr. integral
operator). They should be treated as the inverses of each other.

ä Viewpoint confirmed by what we learn from Kernel approach
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Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed.

1. Graph: Each xi is written as a
convex combination of its k nearest
neighbors:
xi ≈ Σwijxj,

∑
j∈Ni

wij = 1
ä Optimal weights computed (’local
calculation’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i
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2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s 

Minimize:∑
i

∥∥∥∥∥∥yi −
∑
j

wijyj

∥∥∥∥∥∥
2

subject to: Y 1 = 0, Y Y > = I

Solution:

(I −W>)(I −W )ui = λiui; yi = u>i .

ä (I−W>)(I−W ) replaces the graph Laplacean of eigen-
maps
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Locally Preserving Projections (He-Niyogi-03)

ä LPP is a linear dimensionality reduction technique

ä Recall the setting:
Want V ∈ Rm×d; Y = V >X

v T
d

m

m

d

n

n

X

Y

x

y

i

i

ä Starts with the same neighborhood graph as Eigenmaps:
L ≡ D−W = graph ‘Laplacean’; with D ≡ diag({Σiwij}).
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ä Optimization problem is to solve

min
Y ∈Rd×n, Y DY >=I

Σi,jwij ‖yi − yj‖2 , Y = V >X.

ä Difference with eigenmaps: Y is a projection of X data

ä Solution (sort eigenvalues increasingly)

XLX>vi = λiXDX
>vi yi,: = v>i X

ä Note: essentially same method in [Koren-Carmel’04] called
‘weighted PCA’ [viewed from the angle of improving PCA]
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ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y
in the form Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph
(as in LEE) *but* with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W )X>V

]
s.t. V TV = I

ä In LLE replace V >X by Y
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Implicit vs explicit mappings

ä In PCA the mapping Φ from high-dimensional space (Rm)
to low-dimensional space (Rd) is explicitly known:

y = Φ(x) ≡ V Tx

ä In Eigenmaps and LLE we only know

yi = φ(xi), i = 1, · · · , n

ä Mapping φ is complex, i.e.,

ä Difficult to get φ(x) for an arbitrary x not in the sample.

ä Inconvenient for classification

ä “The out-of-sample extension” problem
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K-nearest neighbor graphs

ä Nearest Neighbor graphs needed in: data mining, manifold
learning, robot motion planning, computer graphics, ....

ä Given: a set of n data points X = {x1, . . . , xn} →
vertices

ä Given: a proximity measure between two data points xi and
xj – as measured by a quantity ρ(xi, xj)

ä Want: For each point xi a list of the ‘nearest neighbors’ of
xi (edges between xi and these nodes).

(wll make the definition less vague shortly)
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Building a nearest neighbor graph

ä Problem: Build a nearest-neighbor graph from given data
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Graph

ä Will demonstrate the power of the Lanczos algorithm com-
bined with a divide a conquer approach.
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Two types of nearest neighbor graph often used:

ε-graph: Edges consist of pairs (xi, xj) such that
ρ(xi, xj) ≤ ε

kNN graph: Nodes adjacent to xi are those nodes x` with
the k with smallest distances ρ(xi, x`).

ä ε-graph is undirected and is geometrically motivated. Is-
sues: 1) may result in disconnected components 2) what ε?

ä kNN graphs are directed in general (can be trivially fixed).

ä kNN graphs especially useful in practice.
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Divide and conquer KNN: key ingredient

ä Key ingredient is Spectral bisection

ä Let the data matrix X = [x1, . . . , xn] ∈ Rd×n

ä Each column == a data point.

ä Center the data: X̂ = [x̂1, . . . , x̂n] = X − ceT
where c == centroid; e = ones(d, 1) (matlab)

Goal: Split X̂ into halves using a hyperplane.

Method: Principal Direction Divisive Partitioning D. Boley, ’98.

Idea: Use the (σ, u, v) = largest singular triplet of X̂ with:

uTX̂ = σvT .

Kalamata 07/06/18 p. 45



ä Hyperplane is defined as 〈u, x〉 = 0, i.e., it splits the set of
data points into two subsets:

X+ = {xi | uT x̂i ≥ 0} and X− = {xi | uT x̂i < 0}.

●

● + SIDE

− SIDE 
Hyperplane

u

ä Note that uT x̂i = uTX̂ei = σvTei→



X+ = {xi | vi ≥ 0} and X− = {xi | vi < 0},

where vi is the i-th entry of v.

ä In practice: replace above criterion by

X+ = {xi | vi ≥ med(v)} & X− = {xi | vi < med(v)}

where med(v) == median of the entries of v.

ä For largest singular triplet (σ, u, v) of X̂ : use Golub-
Kahan-Lanczos algorithm or Lanczos applied to X̂X̂T or X̂TX̂

ä Cost (assuming s Lanczos steps) : O(n×d× s) ; Usually:
d very small
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Two divide and conquer algorithms

Overlap method: divide current set into two overlapping sub-
sets X1, X2

Glue method: divide current set into two disjoint subsetsX1, X2

plus a third set X3 called gluing set.

hyperplane

X1 X2

hyperplane

X1 X2X3
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The Overlap Method

ä Divide current set X into two overlapping subsets:

X1 = {xi | vi ≥ −hα(Sv)} and X2 = {xi | vi < hα(Sv)},

• where Sv = {|vi| | i = 1, 2, . . . , n}.

• and hα(·) is a function that returns an element larger than
(100α)% of those in Sv.

ä Rationale: to ensure that the two subsets overlap (100α)%
of the data, i.e.,

|X1 ∩X2| = dα|X|e .
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The Glue Method

Divide the set X into two disjoint subsets X1 and X2 with a
gluing subset X3:

X1∪X2 = X, X1∩X2 = ∅, X1∩X3 6= ∅, X2∩X3 6= ∅.

Criterion used for splitting:

X1 = {xi | vi ≥ 0}, X2 = {xi | vi < 0},
X3 = {xi | −hα(Sv) ≤ vi < hα(Sv)}.

Note: gluing subset X3 here is just the intersection of the sets
X1, X2 of the overlap method.
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Approximate kNN Graph Construction: The Overlap Method

1: function G = kNN-OVERLAP(X, k, α)
2: if |X| < nk then
3: G← kNN-BRUTEFORCE(X, k)
4: else
5: (X1, X2)← DIVIDE-OVERLAP(X, α)
6: G1← kNN-OVERLAP(X1, k, α)
7: G2← kNN-OVERLAP(X2, k, α)
8: G← CONQUER(G1, G2)
9: REFINE(G)

10: end if
11: end function

Kalamata 07/06/18 p. 51



Approximate kNN Graph Construction: The Glue Method

1: function G = kNN-GLUE(X, k, α)
2: if |X| < nk then
3: G← kNN-BRUTEFORCE(X, k)
4: else
5: (X1, X2, X3)← DIVIDE-GLUE(X, α)
6: G1← kNN-GLUE(X1, k, α)
7: G2← kNN-GLUE(X2, k, α)
8: G3← kNN-GLUE(X3, k, α)
9: G← CONQUER(G1, G2, G3)

10: REFINE(G)
11: end if
12: end function

Kalamata 07/06/18 p. 52



Theorem The time complexity for the overlap method is

To(n) = Θ(dnto), (1)

where
to = log2/(1+α) 2 =

1

1− log2(1 + α)
. (2)

Theorem The time complexity for the glue method is

Tg(n) = Θ(dntg/α), (3)

where tg is the solution to the equation: 2
2t

+ αt = 1.

Example: When α = 0.1, then to = 1.16 while tg = 1.12.
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Multilevel techniques in brief

ä Divide and conquer paradigms as well as multilevel methods
in the sense of ‘domain decomposition’

ä Main principle: very costly to do an SVD [or Lanczos] on
the whole set. Why not find a smaller set on which to do the
analysis – without too much loss?

ä Tools used: graph coarsening, divide and conquer –

ä For text data we use hypergraphs
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Multilevel Dimension Reduction

Main Idea: coarsen for
a few levels. Use the
resulting data set X̂ to
find a projector P from
Rm to Rd. P can be used
to project original data or
new data
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ä Gain: Dimension reduction is done with a much smaller set.
Hope: not much loss compared to using whole data
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Making it work: Use of Hypergraphs for sparse data

1 2 3 4 5 6 7 8 9
* * * * a

* * * * b
A = * * * * c

* * * d
* * e
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Left: a (sparse) data set of n entries in Rm represented by a
matrix A ∈ Rm×n

Right: corresponding hypergraph H = (V,E) with vertex set
V representing to the columns of A.
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ä Hypergraph Coarsening uses column matching – similar to
a common one used in graph partitioning

ä Compute the non-zero inner product 〈a(i), a(j)〉 between
two vertices i and j, i.e., the ith and jth columns of A.

ä Note: 〈a(i), a(j)〉 = ‖a(i)‖‖a(j)‖ cos θij.

Modif. 1: Parameter: 0 < ε < 1. Match two vertices, i.e.,
columns, only if angle between the vertices satisfies:

tan θij ≤ ε

Modif. 2: Scale coarsened columns. If i and j matched and
if ‖a(i)‖0 ≥ ‖a(j)‖0 replace a(i) and a(j) by

c(`) =

(√
1 + cos2 θij

)
a(i)
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ä Call C the coarsened matrix obtained from A using the
approach just described

Lemma: Let C ∈ Rm×c be the coarsened matrix of A
obtained by one level of coarsening of A ∈ Rm×n, with
columns a(i) and a(j) matched if tan θi ≤ ε. Then

|xTAATx− xTCCTx| ≤ 3ε‖A‖2
F ,

for any x ∈ Rm with ‖x‖2 = 1.

ä Very simple bound for Rayleigh quotients for any x.

ä Implies some bounds on singular values and norms - skipped.
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Tests: Comparing singular values
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Results for the datasets CRANFIELD (left), MEDLINE (middle),
and TIME (right).
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Low rank approximation: Coarsening, random sampling, and
rand+coarsening. Err1 = ‖A−HkH

T
kA‖F ; Err2= 1

k

∑
k
|σ̂i−σi|
σi

Dataset n k c Coarsen Rand Sampl

Err1 Err2 Err1 Err2

Kohonen 4470 50 1256 86.26 0.366 93.07 0.434

aft01 8205 50 1040 913.3 0.299 1006.2 0.614

FA 10617 30 1504 27.79 0.131 28.63 0.410

chipcool0 20082 30 2533 6.091 0.313 6.199 0.360

brainpc2 27607 30 865 2357.5 0.579 2825.0 0.603

scfxm1-2b 33047 25 2567 2326.1 – 2328.8 –

thermomechTC 102158 30 6286 2063.2 – 2079.7 –

Webbase-1M 1000005 25 15625 – – 3564.5 –
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Conclusion

ä *Many* interesting new matrix problems in areas that involve
the effective mining of data

ä Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

ä Many online resources available

ä Huge potential in areas like materials science though inertia
has to be overcome

ä To a researcher in computational linear algebra : Tsunami of
change on types or problems, algorithms, frameworks, culture,..

ä But change should be welcome



When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

ä In the words of Lao Tzu:

If you do not change directions, you may end-up where you
are heading

Thank you !

ä Visit my web-site at www.cs.umn.edu/~saad
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