
A tutorial on:
Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota
Computer Science and Engineering

CRM Montreal - April 30, 2008

Outline

Part 1

• Sparse matrices and sparsity

• Basic iterative techniques

• Projection methods

• Krylov subspace methods

Part 2

• Preconditioned iterations

• Preconditioning techniques

Part 3

• Parallel implementations

• Multigrid methods

Part 4

• Eigenvalue problems

• Applications

CRM April 30, 2008 2

INTRODUCTION TO SPARSE MATRICES

Typical Problem:

Physical Model

↓

Nonlinear PDEs

↓

Discretization

↓

Linearization (Newton)

↓

Sequence of Sparse Linear Systems Ax = b

CRM April 30, 2008 4

Introduction: Linear System Solvers

ä Problem considered: Linear systems

Ax = b

ä Can view the problem from somewhat different angles:

• Discretized problem coming from a PDE

• An algebraic system of equations [ignore origin]

• Sometimes a system of equations where A is not explicitly avail-

able

CRM April 30, 2008 5

General
Purpose

 Specialized

Direct sparse
Solvers

Iterative

A x = b
∆ u = f− + bc

Methods
Preconditioned Krylov

Fast Poisson
Solvers

Multigrid
Methods

CRM April 30, 2008 6

Introduction: Linear System Solvers

ä Much of recent work on solvers has focussed on:

(1) Parallel implementation – scalable performance

(2) Improving Robustness, developing more general precondition-

ers

CRM April 30, 2008 7

A few observations

ä Problems are getting harder for Sparse Direct methods

(more 3-D models, much bigger problems,..)

ä Problems are also getting difficult for iterative methods Cause:

more complex models - away from Poisson

ä Researchers in iterative methods are borrowing techniques from

direct methods: → preconditioners

ä The inverse is also happening: Direct methods are being adapted

for use as preconditioners

CRM April 30, 2008 8

What are sparse matrices?

Common definition: “..matrices that allow special techniques to

take advantage of the large number of zero elements and the

structure.”

A few applications of sparse matrices: Structural Engineering, Reser-

voir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A−1 is usually dense, but L and U in the LU factor-

ization may be reasonably sparse (if a good technique is used).

CRM April 30, 2008 9

Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974 SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

PORES3: Unsymmetric MATRIX FROM PORES BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP

CRM April 30, 2008 11

ä Two types of matrices: structured (e.g. Sherman5) and unstruc-

tured (e.g. BP 1000)

ä Main goal of Sparse Matrix Techniques: To perform standard

matrix computations economically i.e., without storing the zeros

of the matrix.

ä Example: To add two square dense matrices of size n requires

O(n2) operations. To add two sparse matrices A and B requires

O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero ele-

ments of a matrix X.

ä For typical Finite Element /Finite difference matrices, number of

nonzero elements is O(n).

CRM April 30, 2008 12

Graph Representations of Sparse Matrices

ä Graph theory is a fundamental tool in sparse matrix techniques.

Graph G = (V, E) of an n × n matrix A defined by

Vertices V = {1, 2,, N}.

Edges E = {(i, j)|aij 6= 0}.

ä Graph is undirected if matrix has symmetric structure: aij 6= 0

iff aji 6= 0.

CRM April 30, 2008 13

CRM April 30, 2008 14

Example: Adjacency graph of:

A =

? ? ?
? ? ? ?

? ?
? ?

? ? ? ?
? ? ?

 .

Example: For any matrix A, what is the graph of A2? [interpret

in terms of paths in the graph of A]

CRM April 30, 2008 15

Direct versus iterative methods

Background. Two types of methods:

ä Direct methods : based on sparse Gaussian eimination, sparse

Cholesky,..

ä Iterative methods: compute a sequence of iterates which con-

verge to the solution - preconditioned Krylov methods..

Remark: These two classes of methods have always been in

competition.

ä 40 years ago solving a system with n = 10, 000 was a challenge

ä Now you can solve this in < 1 sec. on a laptop.

CRM April 30, 2008 16

ä Sparse direct methods made huge gains in efficiency. As a

result they are very competitive for 2-D problems.

ä 3-D problems lead to more challenging systems [inherent to the

underlying graph]

ä Problems with many unknowns per grid point similar to 3-D

problems

Remarks: • No robust ‘black-box’ iterative solvers.

• Robustness often conflicts with efficiency

• However, situation improved in last ≈ decade

• Line between direct and iterative solvers blur-

ring

CRM April 30, 2008 17

Direct Sparse Matrix Techniques

Principle of sparse matrix techniques: Store only the nonzero el-

ements of A. Try to minimize computations and (perhaps more

importantly) storage.

ä Difficulty in Gaussian elimination: Fill-in

Trivial Example:

A =

+ + + + + +
+ +
+ +
+ +
+ +
+ +

CRM April 30, 2008 18

ä Reorder equations and

unknowns in order N, N −

1, ..., 1

ä A stays sparse during

Gaussian eliminatin – i.e., no

fill-in.

A =

+ +

+ +
+ +

+ +
+ +

+ + + + + +

ä Finding the best ordering to minimize fill-in is NP-complete.

ä A number of heuristics developed. Among the best known:

• Minimum degree ordering (Tinney Scheme 2)

• Nested Dissection Ordering.

• Approximate Minimal Degree ...

CRM April 30, 2008 19

Reorderings and graphs

ä Let π = {i1, · · · , in} a permutation

ä Aπ,∗ =
{
aπ(i),j

}
i,j=1,...,n

= matrix A with its i-th row replaced by

row number π(i).

ä A∗,π = matrix A with its j-th column replaced by column π(j).

ä Define Pπ = Iπ,∗ = “Permutation matrix” – Then:

(1) Each row (column) of Pπ consists of zeros and exactly one “1”

(2) Aπ,∗ = PπA

(3) PπP T
π = I

(4) A∗,π = AP T
π

CRM April 30, 2008 20

Consider now: A′ = Aπ,π = PπAP T
π

ä Entry (i, j) in matrix A′ is exactly entry in position (π(i), π(j))

in A, i.e., (a′
ij = aπ(i),π(j))

(i, j) ∈ EA′ ⇐⇒ (π(i), π(j)) ∈ EA

General picture :

i j

iπ π j

CRM April 30, 2008 21

Example A 9 × 9 ’arrow’ matrix and its adjacency graph.

���
1

���
2

���
3

���
4

���
5

���
6

���
7

���
8

���
9

�
�

�
�

�
�

�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

CRM April 30, 2008 22

Graph and matrix after permuting the nodes in reverse order.

���
1

���
2

���
3

���
4

���
5

���
6

���
7

���
8

���
9

�
�

�
�

�
�

�

@
@

@
@

@
@

@

�
�

�
�

�
�

�

@
@

@
@

@
@

@

CRM April 30, 2008 23

Cuthill-McKee & reverse Cuthill-McKee

ä A class of reordering techniques proceeds by levels in the graph.

ä Related to Breadth First Search (BFS) traversal in graph theory.

ä Idea of BFS is to visit the nodes by ‘levels’. Level 0 = level of

starting node.

ä Start with a node, visit its neighbors, then the (unmarked) neigh-

bors of its neighbors, etc...

CRM April 30, 2008 24

Example:

A B H I
-------------*-------*
| | | /
| | | /
| | | /
| | | / BFS from node A:
| | | / Level 0: A
C*--------* D | / Level 1: B, C;
| \ |/ Level 2: E, D, H;
| \ * K Level 3: I, K, E, F, G, H.
| F \

E *-------*----* G
\ /
\ /
\ /
* H

CRM April 30, 2008 25

Implementation using levels

Algorithm BFS(G, v) – by level sets –

• Initialize S = {v}, seen = 1; Mark v;

• While seen < n Do

– Snew = ∅;

– For each node v in S do

∗ For each unmarked w in adj(v) do

· Add w to Snew;

· Mark w;

· seen + +;

– S := Snew

CRM April 30, 2008 26

A few properties of Breadth-First-Search

ä If G is a connected undirected graph then each vertex will be

visited once each edge will be inspected at least once

ä Therefore, for a connected undirected graph,

The cost of BFS is O(|V | + |E|)

ä Distance = level number; ä For each node v we have:

min dist(s, v) = level number(v) = depthT (v)

ä Several reordering algorithms are based on variants of Breadth-

First-Search

CRM April 30, 2008 27

Cuthill McKee ordering

Algorithm proceeds by levels. Same as BFS except: in each level,

nodes are ordered by increasing degree

Example

A
B

C

D

E

F

G

Level Nodes Deg. Order

0 A 2 A

1 B, C 4, 3 C, B

2 D, E, F 3, 4, 2 F, D, E

3 G 2 G
CRM April 30, 2008 28

ALGORITHM : 1 Cuthill Mc Kee ordering

0. Find an intial node for the traversal

1. Initialize S = {v}, seen = 1, π(seen) = v; Mark v;

2. While seen < n Do

3. Snew = ∅;

4. For each node v, going from lowest to highest degree, Do:

5. π(+ + seen) = v;

6. For each unmarked w in adj(v) do

7. Add w to Snew;

8. Mark w;

9. EndDo

10. S := Snew

11. EndDo

12. EndWhile
CRM April 30, 2008 29

Reverse Cuthill McKee ordering

ä The Cuthill - Mc Kee ordering has a tendency to create small

arrow matrices (going the wrong way):

Origimal matrix

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377

CM ordering

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377 CRM April 30, 2008 30

ä Idea: Take the reverse ordering

RCM ordering

0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 377

ä Reverse Cuthill M Kee ordering (RCM).

CRM April 30, 2008 31

Nested Dissection ordering

ä The idea of divide and conquer – recursively divide graph in two

using a separator.

1
2

6

7

4
3

5

CRM April 30, 2008 32

Nested dissection for a small mesh

Original Grid
First dissection

Second Dissection Third Dissection

CRM April 30, 2008 34

Nested dissection: cost for a regular mesh

ä In 2-D consider an n × n problem, N = n2

ä In 3-D consider an n × n × n problem, N = n3

2-D 3-D

space (fill) O(N log N) O(N4/3)

time (flops) O(N3/2) O(N2)

ä Significant difference in complexity between 2-D and 3-D

CRM April 30, 2008 35

Ordering techniques for direct methods in practice

ä In practice: Nested dissection (+ variants) is preferred for paral-

lel processing

ä Good implementations of Min. Degree algorithm work well in

practice. Currently AMD and AMF are best known implementa-

tions/variants/

ä Best practical reordering algorithms usually combine Nested

dissection and min. degree algorithms.

CRM April 30, 2008 36

BASIC RELAXATION METHODS

Basic Relaxation Schemes

Relaxation schemes: based on the decomposition A = D − E − F

@
@

@
@

@
@

@

@
@

@
@

@
@

@

D
- F

- E

D = diag(A), −E = strict lower

part of A and −F its strict

upper part.

Gauss-Seidel iteration for solving Ax = b:

(D − E)x(k+1) = Fx(k) + b

→ idea: correct the j-th component of the current approximate

solution, j = 1, 2, ..n, to zero the j − th component of residual.

CRM April 30, 2008 38

Can also define a backward Gauss-Seidel Iteration:

(D − F)x(k+1) = Ex(k) + b

and a Symmetric Gauss-Seidel Iteration: forward sweep followed

by backward sweep.

Over-relaxation is based on the decomposition:

ωA = (D − ωE) − (ωF + (1 − ω)D)

→ successive overrelaxation, (SOR):

(D − ωE)x(k+1) = [ωF + (1 − ω)D]x(k) + ωb

CRM April 30, 2008 39

Iteration matrices

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

x(k+1) = Mx(k) + f

• MJac = D−1(E + F) = I − D−1A

• MGS(A) = (D − E)−1F == I − (D − E)−1A

• MSOR(A) = (D−ωE)−1(ωF +(1−ω)D) = I −(ω−1D−E)−1A

• MSSOR(A) = I − (2ω−1 − 1)(ω−1D − F)−1D(ω−1D − E)−1A

= I − ω(2ω − 1)(D − ωF)−1D(D − ωE)−1A

CRM April 30, 2008 40

General convergence result

Consider the iteration: x(k+1) = Gx(k) + f

(1) Assume that ρ(A) < 1. Then I − G is non-singular and G has a

fixed point. Iteration converges to a fixed point for any f and x(0).

(2) If iteration converges for any f and x(0) then ρ(G) < 1.

Example: Richardson’s iteration x(k+1) = x(k) + α(b − A(k))

♦Assume Λ(A) ⊂ R. When does the iteration converge?

ä Jacobi and Gauss-Seidel converge for diagonal dominant A

ä SOR converges for 0 < ω < 2 for SPD matrices

CRM April 30, 2008 41

An observation. Introduction to Preconditioning

ä The iteration x(k+1) = Mx(k) + f is attempting to solve (I −

M)x = f . Since M is of the form M = I − P −1A this system can

be rewritten as

P −1Ax = P −1b

where for SSOR, we have

PSSOR = (D − ωE)D−1(D − ωF)

referred to as the SSOR ‘preconditioning’ matrix.

In other words:

Relaxation Scheme ⇐⇒ Preconditioned Fixed Point Iteration

CRM April 30, 2008 42

