A tutorial on:

Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota
 Computer Science and Engineering

CRM Montreal - April 30, 2008

Outline

Part 1

Part 2

- Sparse matrices and sparsity
- Preconditioned iterations
- Basic iterative techniques
- Preconditioning techniques
- Projection methods
- Krylov subspace methods

Part 3

- Parallel implementations
- Multigrid methods

Part 4

- Eigenvalue problems
- Applications

INTRODUCTION TO SPARSE MATRICES

Typical Problem:

Physical Model
\downarrow
Nonlinear PDEs
\downarrow

Discretization

\downarrow
Linearization (Newton)
\downarrow
Sequence of Sparse Linear Systems $A x=b$

Introduction: Linear System Solvers

> Problem considered: Linear systems

$$
A x=b
$$

> Can view the problem from somewhat different angles:

- Discretized problem coming from a PDE
- An algebraic system of equations [ignore origin]
- Sometimes a system of equations where A is not explicitly available

Introduction: Linear System Solvers

> Much of recent work on solvers has focussed on:
(1) Parallel implementation - scalable performance
(2) Improving Robustness, developing more general preconditioners

A few observations

> Problems are getting harder for Sparse Direct methods (more 3-D models, much bigger problems,..)
> Problems are also getting difficult for iterative methods Cause: more complex models - away from Poisson
> Researchers in iterative methods are borrowing techniques from direct methods: \rightarrow preconditioners
$>$ The inverse is also happening: Direct methods are being adapted for use as preconditioners

What are sparse matrices?

Common definition: "..matrices that allow special techniques to take advantage of the large number of zero elements and the structure."

A few applications of sparse matrices: Structural Engineering, Reservoir simulation, Electrical Networks, optimization problems, ...

Goals: |Much less storage and work than dense computations.
Observation: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used).

Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974

SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

PORES3: Unsymmetric MATRIX FROM PORES

BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP
> Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g. BP_1000)
> Main goal of Sparse Matrix Techniques: To perform standard matrix computations economically i.e., without storing the zeros of the matrix.
> Example: To add two square dense matrices of size n requires $O\left(n^{2}\right)$ operations. To add two sparse matrices A and B requires $O(n n z(A)+n n z(B))$ where $n n z(X)=$ number of nonzero elements of a matrix X.
> For typical Finite Element/Finite difference matrices, number of nonzero elements is $O(n)$.

Graph Representations of Sparse Matrices

> Graph theory is a fundamental tool in sparse matrix techniques.
Graph $G=(V, E)$ of an $n \times n$ matrix A defined by
Vertices $V=\{1,2, \ldots ., N\}$.
Edges $E=\left\{(i, j) \mid a_{i j} \neq 0\right\}$.
$>$ Graph is undirected if matrix has symmetric structure: $a_{i j} \neq 0$ iff $a_{j i} \neq 0$.

x	x		x
x	x	x	
	x	x	x
X		x	x

Example: Adjacency graph of:

$$
A=\left(\begin{array}{lllll}
\star & \star & & & \star \\
\star & \star & \star & & \\
& \star \\
& \star & \star & & \\
& & & \star & \star \\
& & & \star & \star \\
& & \star \\
& \star & & & \star
\end{array}\right) .
$$

Example: For any matrix A, what is the graph of A^{2} ? [interpret in terms of paths in the graph of A]

Direct versus iterative methods

Background. Two types of methods:
> Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..
> Iterative methods: compute a sequence of iterates which converge to the solution - preconditioned Krylov methods..

Remark: These two classes of methods have always been in competition.
>40 years ago solving a system with $n=10,000$ was a challenge
$>$ Now you can solve this in <1 sec. on a laptop.
$>$ Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems.
> 3-D problems lead to more challenging systems [inherent to the underlying graph]
> Problems with many unknowns per grid point similar to 3-D problems

Remarks: • No robust 'black-box' iterative solvers.

- Robustness often conflicts with efficiency
- However, situation improved in last \approx decade
- Line between direct and iterative solvers blurring

Direct Sparse Matrix Techniques

Principle of sparse matrix techniques: Store only the nonzero elements of A. Try to minimize computations and (perhaps more importantly) storage.
> Difficulty in Gaussian elimination: Fill-in
Trivial Example:

$$
\boldsymbol{A}=\left(\begin{array}{lllll}
+ & + & + & + & + \\
+ & + & & \\
+ & & & & \\
+ & & & \\
+ & & + & & \\
+ & & & + & \\
+ & & & +
\end{array}\right)
$$

$>$ Reorder equations and unknowns in order N, N $1, \ldots, 1$
$>A$ stays sparse during Gaussian eliminatin - i.e., no

$$
A=\left(\begin{array}{llll}
+ & & & + \\
& & & \\
& & & + \\
& & & + \\
& & + & + \\
& & + & + \\
+ & + & + & +
\end{array}\right)
$$

fill-in.
$>$ Finding the best ordering to minimize fill-in is NP-complete.
$>$ A number of heuristics developed. Among the best known:

- Minimum degree ordering (Tinney Scheme 2)
- Nested Dissection Ordering.
- Approximate Minimal Degree ...

Reorderings and graphs

$>$ Let $\pi=\left\{i_{1}, \cdots, i_{n}\right\}$ a permutation
$>A_{\pi, *}=\left\{a_{\pi(i), j}\right\}_{i, j=1, \ldots, n}=$ matrix \boldsymbol{A} with its \boldsymbol{i}-th row replaced by row number $\pi(i)$.
$>A_{*, \pi}=$ matrix A with its j-th column replaced by column $\pi(j)$.
$>$ Define $P_{\pi}=I_{\pi, *}=$ "Permutation matrix" - Then:
(1) Each row (column) of P_{π} consists of zeros and exactly one " 1 "
(2) $A_{\pi, *}=P_{\pi} A$
(3) $P_{\pi} P_{\pi}^{T}=I$
(4) $\boldsymbol{A}_{*, \pi}=A P_{\pi}^{T}$

Consider now:
 $$
A^{\prime}=A_{\pi, \pi}=P_{\pi} A P_{\pi}^{T}
$$

$>$ Entry (i, j) in matrix A^{\prime} is exactly entry in position $(\pi(i), \pi(j))$ in A, i.e., $\left(a_{i j}^{\prime}=a_{\pi(i), \pi(j)}\right)$

$$
(i, j) \in E_{A^{\prime}} \quad \Longleftrightarrow \quad(\pi(i), \pi(j)) \in E_{A}
$$

General picture :

Graph and matrix after permuting the nodes in reverse order.

Cuthill-McKee \& reverse Cuthill-McKee

- A class of reordering techniques proceeds by levels in the graph.
> Related to Breadth First Search (BFS) traversal in graph theory.
$>$ Idea of BFS is to visit the nodes by 'levels'. Level $0=$ level of starting node.
> Start with a node, visit its neighbors, then the (unmarked) neighbors of its neighbors, etc...

Example:

BFS from node A:
Level 0: A
Level 1: B, C;
Level 2: E, D, H;
Level 3: I, K, E, F, G, H.

Implementation using levels

Algorithm $\operatorname{BFS}(G, v)$ - by level sets -

- Initialize $S=\{v\}$, seen $=1$; Mark v;
- While seen $<n$ Do
$-S_{\text {new }}=\emptyset ;$
- For each node v in S do
* For each unmarked w in $\operatorname{adj}(v)$ do
- Add w to $S_{\text {new }}$;
- Mark w;
- seen + +;
$-S:=S_{\text {new }}$

A few properties of Breadth-First-Search

$>$ If G is a connected undirected graph then each vertex will be visited once each edge will be inspected at least once
> Therefore, for a connected undirected graph, The cost of BFS is $O(|V|+|E|)$
$>$ Distance $=$ level number; $>$ For each node v we have:

$$
\min \operatorname{dist}(s, v)=\text { level_number }(v)=\operatorname{depth}_{T}(v)
$$

> Several reordering algorithms are based on variants of Breadth-First-Search

Cuthill McKee ordering

Algorithm proceeds by levels. Same as BFS except: in each level, nodes are ordered by increasing degree

Example

Level	Nodes	Deg.	Order
0	A	2	A
1	B, C	4,3	C, B
2	D, E, F	$3,4,2$	F, D, E
3	G	2	G

ALGORITHM: 1. Cuthill Mc Kee ordering

0 . Find an intial node for the traversal

1. Initialize $S=\{v\}$, seen $=1, \pi($ seen $)=v$; Mark v;
2. While seen $<n$ Do
3. $S_{\text {new }}=\emptyset$;
4. For each node v, going from lowest to highest degree, Do:
5.

$$
\pi(++ \text { seen })=v
$$

6.

For each unmarked w in adj(v) do
Add w to $S_{\text {new }}$;
8.

Mark w;
9.

EndDo
$S:=S_{\text {new }}$
11.

EndDo
12. EndWhile

Reverse Cuthill McKee ordering

> The Cuthill - Mc Kee ordering has a tendency to create small arrow matrices (going the wrong way):

Origimal matrix

CM ordering

Idea: Take the reverse ordering
RCM ordering

$>$ Reverse Cuthill M Kee ordering (RCM).

Nested Dissection ordering

> The idea of divide and conquer - recursively divide graph in two using a separator.

Nested dissection for a small mesh

Original Grid

First dissection

Second Dissection

Third Dissection

Nested dissection: cost for a regular mesh

$>$ In 2-D consider an $n \times n$ problem, $N=n^{2}$
$>$ In 3-D consider an $n \times n \times n$ problem, $N=n^{3}$

	2-D	3-D
space (fill)	$O(N \log N)$	$O\left(N^{4 / 3}\right)$
time (flops)	$O\left(N^{3 / 2}\right)$	$O\left(N^{2}\right)$

> Significant difference in complexity between 2-D and 3-D

Ordering techniques for direct methods in practice

> In practice: Nested dissection (+ variants) is preferred for parallel processing
> Good implementations of Min. Degree algorithm work well in practice. Currently AMD and AMF are best known implementations/variants/
> Best practical reordering algorithms usually combine Nested dissection and min. degree algorithms.

BASIC RELAXATION METHODS

Basic Relaxation Schemes

Relaxation schemes: based on the decomposition $A=D-E-F$

$$
\begin{aligned}
& D=\operatorname{diag}(A),-E=\text { strict lower } \\
& \text { part of } A \text { and }-F \text { its strict } \\
& \text { upper part. }
\end{aligned}
$$

Gauss-Seidel iteration for solving $A x=b$:

$$
(D-E) x^{(k+1)}=F x^{(k)}+b
$$

\rightarrow idea: correct the j-th component of the current approximate solution, $j=1,2, . . n$, to zero the j - th component of residual.

Can also define a backward Gauss-Seidel Iteration:

$$
(D-F) \boldsymbol{x}^{(k+1)}=E \boldsymbol{x}^{(k)}+\boldsymbol{b}
$$

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the decomposition:

$$
\omega A=(D-\omega E)-(\omega F+(1-\omega) D)
$$

\rightarrow successive overrelaxation, (SOR):

$$
(D-\omega E) x^{(k+1)}=[\omega F+(1-\omega) D] x^{(k)}+\omega b
$$

Iteration matrices

Jacobi, Gauss-Seidel, SOR, \& SSOR iterations are of the form

$$
\boldsymbol{x}^{(k+1)}=M \boldsymbol{x}^{(k)}+\boldsymbol{f}
$$

- $M_{J a c}=D^{-1}(E+F)=I-D^{-1} A$
- $M_{G S}(A)=(D-E)^{-1} F==I-(D-E)^{-1} A$
- $M_{S O R}(A)=(D-\omega E)^{-1}(\omega F+(1-\omega) D)=I-\left(\omega^{-1} D-E\right)^{-1} A$
- $M_{S S O R}(A)=I-\left(2 \omega^{-1}-1\right)\left(\omega^{-1} D-F\right)^{-1} D\left(\omega^{-1} D-E\right)^{-1} A$

$$
=I-\omega(2 \omega-1)(D-\omega F)^{-1} D(D-\omega E)^{-1} A
$$

General convergence result

Consider the iteration: $\quad x^{(k+1)}=G x^{(k)}+f$
(1) Assume that $\rho(A)<1$. Then $I-G$ is non-singular and G has a fixed point. Iteration converges to a fixed point for any f and $x^{(0)}$.
(2) If iteration converges for any f and $x^{(0)}$ then $\rho(G)<1$.

Example: Richardson's iteration $\quad x^{(k+1)}=x^{(k)}+\alpha\left(b-A^{(k)}\right)$
\diamond Assume $\Lambda(A) \subset R$. When does the iteration converge?
$>$ Jacobi and Gauss-Seidel converge for diagonal dominant A
$>$ SOR converges for $0<\omega<2$ for SPD matrices

An observation. Introduction to Preconditioning

$>$ The iteration $x^{(k+1)}=M x^{(k)}+f$ is attempting to solve ($I-$ $M) x=f$. Since M is of the form $M=I-P^{-1} A$ this system can be rewritten as

$$
P^{-1} A x=P^{-1} b
$$

where for SSOR, we have

$$
P_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

referred to as the SSOR 'preconditioning' matrix.
In other words:

Relaxation Scheme \Longleftrightarrow Preconditioned Fixed Point Iteration

