OF MINNESOTA TWIN CITIES

A tutorial on: Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota Computer Science and Engineering

CRM Montreal - April 30, 2008

Outline

Part 1

- Sparse matrices and sparsity
- **Basic iterative techniques**
- **Projection methods**
- Krylov subspace methods

Part 3

- **Parallel implementations**
- **Multigrid methods**

Part 4

Eigenvalue problems

Preconditioning techniques

Applications

Part 2

INTRODUCTION TO SPARSE MATRICES

Introduction: Linear System Solvers

Problem considered: Linear systems

Ax = b

- Can view the problem from somewhat different angles:
- Discretized problem coming from a PDE
- An algebraic system of equations [ignore origin]
- Sometimes a system of equations where A is not explicitly available

Introduction: Linear System Solvers

- Much of recent work on solvers has focussed on:
- (1) Parallel implementation scalable performance
- (2) Improving Robustness, developing more general preconditioners

Problems are getting harder for Sparse Direct methods (more 3-D models, much bigger problems,...)

Problems are also getting difficult for iterative methods Cause: more complex models - away from Poisson

➤ Researchers in iterative methods are borrowing techniques from direct methods: → preconditioners

The inverse is also happening: Direct methods are being adapted for use as preconditioners Common definition: "..matrices that allow special techniques to take advantage of the large number of zero elements and the structure."

A few applications of sparse matrices: Structural Engineering, Reservoir simulation, Electrical Networks, optimization problems, ...

Goals: Much less storage and work than dense computations.

Observation: A^{-1} is usually dense, but L and U in the LU factorization may be reasonably sparse (if a good technique is used).

Nonzero patterns of a few sparse matrices

ARC130: Unsymmetric matrix from laser problem. a.r.curtis, oct 1974

SHERMAN5: fully implicit black oil simulator 16 by 23 by 3 grid, 3 unk

PORES3: Unsymmetric MATRIX FROM PORES

BP_1000: UNSYMMETRIC BASIS FROM LP PROBLEM BP

Two types of matrices: structured (e.g. Sherman5) and unstructured (e.g. BP_1000)

Main goal of Sparse Matrix Techniques: To perform standard matrix computations economically i.e., without storing the zeros of the matrix.

Example: To add two square dense matrices of size n requires $O(n^2)$ operations. To add two sparse matrices A and B requires O(nnz(A) + nnz(B)) where nnz(X) = number of nonzero elements of a matrix X.

For typical Finite Element /Finite difference matrices, number of nonzero elements is O(n).

Graph Representations of Sparse Matrices

Graph theory is a fundamental tool in sparse matrix techniques.

Graph G = (V, E) of an $n \times n$ matrix A defined by

Vertices $V = \{1, 2, ..., N\}$.

Edges $E = \{(i, j) | a_{ij} \neq 0\}.$

► Graph is undirected if matrix has symmetric structure: $a_{ij} \neq 0$ iff $a_{ji} \neq 0$.

Example: Adjacency graph of:

Example: For any matrix A, what is the graph of A^2 ? [interpret in terms of paths in the graph of A]

Background. Two types of methods:

Direct methods : based on sparse Gaussian eimination, sparse Cholesky,..

Iterative methods: compute a sequence of iterates which converge to the solution - preconditioned Krylov methods..

Remark: These two classes of methods have always been in competition.

> 40 years ago solving a system with n = 10,000 was a challenge

> Now you can solve this in < 1 sec. on a laptop.

Sparse direct methods made huge gains in efficiency. As a result they are very competitive for 2-D problems.

3-D problems lead to more challenging systems [inherent to the underlying graph]

Problems with many unknowns per grid point similar to 3-D problems

Remarks: • No robust 'black-box' iterative solvers.

- Robustness often conflicts with efficiency
- \bullet However, situation improved in last \approx decade
- Line between direct and iterative solvers blurring

Direct Sparse Matrix Techniques

Principle of sparse matrix techniques: Store only the nonzero elements of *A*. Try to minimize computations and (perhaps more importantly) storage.

Difficulty in Gaussian elimination: Fill-in

Trivial Example:

Reorder equations and unknowns in order N, N –
1, ..., 1
A stays sparse during
Gaussian eliminatin – i.e., no

Finding the best ordering to minimize fill-in is NP-complete.

> A number of heuristics developed. Among the best known:

- Minimum degree ordering (Tinney Scheme 2)
- Nested Dissection Ordering.
- Approximate Minimal Degree ...

Reorderings and graphs

► Let $\pi = \{i_1, \cdots, i_n\}$ a permutation

► $A_{\pi,*} = \{a_{\pi(i),j}\}_{i,j=1,...,n}$ = matrix A with its i-th row replaced by row number $\pi(i)$.

> $A_{*,\pi}$ = matrix A with its *j*-th column replaced by column $\pi(j)$.

> Define $P_{\pi} = I_{\pi,*}$ = "Permutation matrix" – Then:

(1) Each row (column) of P_{π} consists of zeros and exactly one "1"

(2) $A_{\pi,*} = P_{\pi}A$ (3) $P_{\pi}P_{\pi}^T = I$

(4) $A_{*,\pi} = A P_{\pi}^{T}$

Consider now:

$$A'=A_{\pi,\pi}=P_{\pi}AP_{\pi}^{T}$$

 $\begin{array}{l} \blacktriangleright \quad \text{Entry } (i,j) \text{ in matrix } A' \text{ is exactly entry in position } (\pi(i),\pi(j)) \\ \text{in } A, \text{i.e., } (a'_{ij} = a_{\pi(i),\pi(j)}) \\ (i,j) \in E_{A'} \quad \Longleftrightarrow \quad (\pi(i),\pi(j)) \ \in E_A \end{array}$

Example A 9 \times 9 'arrow' matrix and its adjacency graph.

Graph and matrix after permuting the nodes in reverse order.

Cuthill-McKee & reverse Cuthill-McKee

> A class of reordering techniques proceeds by levels in the graph.

Related to Breadth First Search (BFS) traversal in graph theory.

Idea of BFS is to visit the nodes by 'levels'. Level 0 = level of starting node.

Start with a node, visit its neighbors, then the (unmarked) neighbors of its neighbors, etc...

Example:

BFS from node A: Level 0: A Level 1: B, C; Level 2: E, D, H; Level 3: I, K, E, F, G, H.

Implementation using levels

Algorithm BFS(G, v) – by level sets –

- Initialize $S = \{v\}$, seen = 1; Mark v;
- ullet While seen < n Do
 - $-S_{new} = \emptyset;$
 - For each node \boldsymbol{v} in \boldsymbol{S} do
 - * For each unmarked w in adj(v) do
 - \cdot Add w to S_{new} ;
 - \cdot Mark w;
 - \cdot seen ++;

 $-S := S_{new}$

A few properties of Breadth-First-Search

► If G is a connected undirected graph then each vertex will be visited once each edge will be inspected at least once

Therefore, for a connected undirected graph,

The cost of BFS is O(|V| + |E|)

> Distance = level number; **>** For each node v we have:

 $min_dist(s,v) = level_number(v) = depth_T(v)$

Several reordering algorithms are based on variants of Breadth-First-Search

Cuthill McKee ordering

Algorithm proceeds by levels. Same as BFS except: in each level, nodes are ordered by increasing degree

Level	Nodes	Deg.	Order
0	Α	2	Α
1	B , C	4, 3	С, В
2	D , E , F	3, 4, 2	F, D, E
3	G	2	G

ALGORITHM : 1 . Cuthill Mc Kee ordering

- 0. Find an intial node for the traversal
- 1. Initialize $S = \{v\}$, see n = 1, $\pi(see n) = v$; Mark v;
- 2. While seen < n Do
- 3. $S_{new} = \emptyset;$
- 4. For each node v, going from lowest to highest degree, Do:
- 5. $\pi(++seen) = v;$
- 6. For each unmarked w in adj(v) do
- 7. Add w to S_{new} ;
- 8. Mark w;
- 9. EndDo
- $S := S_{new}$
- 11. EndDo
- 12. EndWhile

Reverse Cuthill McKee ordering

► The Cuthill - Mc Kee ordering has a tendency to create small arrow matrices (going the wrong way):

Idea: Take the reverse ordering

RCM ordering

Reverse Cuthill M Kee ordering (RCM).

The idea of divide and conquer – recursively divide graph in two using a separator.

Nested dissection for a small mesh

Original Grid

First dissection

Third Dissection

Nested dissection: cost for a regular mesh

- > In 2-D consider an $n \times n$ problem, $N = n^2$
- > In 3-D consider an $n \times n \times n$ problem, $N = n^3$

	2-D	3-D	
space (fill)	$O(N \log N)$	$O(N^{4/3})$	
time (flops)	$O(N^{3/2})$	$O(N^2)$	

Significant difference in complexity between 2-D and 3-D

Ordering techniques for direct methods in practice

In practice: Nested dissection (+ variants) is preferred for parallel processing

➤ Good implementations of Min. Degree algorithm work well in practice. Currently AMD and AMF are best known implementations/variants/

Best practical reordering algorithms usually combine Nested dissection and min. degree algorithms.

BASIC RELAXATION METHODS

Relaxation schemes: based on the decomposition A = D - E - F

D = diag(A), -E = strict lowerpart of A and -F its strict upper part.

Gauss-Seidel iteration for solving Ax = b:

$$(D-E)x^{(k+1)} = Fx^{(k)} + b$$

 \rightarrow idea: correct the *j*-th component of the current approximate solution, j = 1, 2, ...n, to zero the j - th component of residual.

Can also define a <u>backward</u> Gauss-Seidel Iteration:

$$(D-F)x^{(k+1)} = Ex^{(k)} + b$$

and a Symmetric Gauss-Seidel Iteration: forward sweep followed by backward sweep.

Over-relaxation is based on the decomposition:

$$\omega A = (D - \omega E) - (\omega F + (1 - \omega)D)$$

 \rightarrow successive overrelaxation, (SOR):

$$(D-\omega E)x^{(k+1)}=[\omega F+(1-\omega)D]x^{(k)}+\omega b$$

Jacobi, Gauss-Seidel, SOR, & SSOR iterations are of the form

 $x^{(k+1)} = M x^{(k)} + f$

- $M_{Jac} = D^{-1}(E+F) = I D^{-1}A$
- $M_{GS}(A) = (D-E)^{-1}F == I (D-E)^{-1}A$
- $M_{SOR}(A) = (D \omega E)^{-1}(\omega F + (1 \omega)D) = I (\omega^{-1}D E)^{-1}A$
- $ullet M_{SSOR}(A) = I (2\omega^{-1} 1)(\omega^{-1}D F)^{-1}D(\omega^{-1}D E)^{-1}A$ $= I - \omega(2\omega - 1)(D - \omega F)^{-1}D(D - \omega E)^{-1}A$

General convergence result

Consider the iteration: $x^{(k+1)} = G x^{(k)} + f$

(1) Assume that $\rho(A) < 1$. Then I - G is non-singular and G has a fixed point. Iteration converges to a fixed point for any f and $x^{(0)}$.

(2) If iteration converges for any f and $x^{(0)}$ then ho(G) < 1.

Example: Richardson's iteration $x^{(k+1)} = x^{(k)} + lpha(b-A^{(k)})$

 \Diamond Assume $\Lambda(A) \subset \mathbb{R}$. When does the iteration converge?

- Jacobi and Gauss-Seidel converge for diagonal dominant A
- **SOR converges for** $0 < \omega < 2$ for SPD matrices

An observation. Introduction to Preconditioning

The iteration $x^{(k+1)} = Mx^{(k)} + f$ is attempting to solve (I - M)x = f. Since M is of the form $M = I - P^{-1}A$ this system can be rewritten as

$$P^{-1}Ax = P^{-1}b$$

where for SSOR, we have

$$P_{SSOR} = (D-\omega E)D^{-1}(D-\omega F)$$

referred to as the SSOR 'preconditioning' matrix.

In other words:

Relaxation Scheme \iff **Preconditioned Fixed Point Iteration**