A tutorial on:

Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota
 Computer Science and Engineering

CRM Montreal - May 3, 2008

Outline

Part 1

Part 2

- Sparse matrices and sparsity
- Preconditioned iterations
- Basic iterative techniques
- Preconditioning techniques
- Projection methods
- Krylov subspace methods

Part 3

- Parallel implementations
- Multigrid methods

Part 4

- Eigenvalue problems
- Applications

PROJECTION METHODS

One-dimensional projection processes

Steepest descent - Problem: $A x=b$, with A SPD

$>$ Define: $f(x)=\frac{1}{2}\left\|x-x^{*}\right\|_{A}^{2}=\frac{1}{2}\left(A\left(x-x^{*}\right),\left(x-x^{*}\right)\right)$
Note:

1. $f(x)=\frac{1}{2}(A x, x)-(b, x)+$ constant
2. $\nabla f(x)=A x-b \rightarrow$ 'descent' direction $=b-A x \equiv r$

Idea: take a step of the form $x_{\text {new }}=x+\alpha r$ which minimizes $f(x)$. Best $\alpha=(r, r) /(A r, r)$.

$$
\text { Iteration: } \begin{array}{l|l}
r \leftarrow b-A x \\
\alpha \leftarrow(r, r) /(A r, r) \\
x \leftarrow x+\alpha r
\end{array}
$$

$>$ Can show: convergence guaranteed if A is SPD.

Residual norm steepest descent:
 Now A is arbitrary

$>$ Minimize instead: $f(x)=\frac{1}{2}\|b-A x\|_{2}^{2}$ in direction $-\nabla f$.
$-\nabla f(x)=A^{T}(b-A x)=A^{T} r$.

$$
\text { Iteration: } \begin{aligned}
& r \leftarrow b-A x, d=A^{T} r \\
& \alpha \leftarrow\|d\|_{2}^{2} /\|A d\|_{2}^{2} \\
& x \leftarrow x+\alpha d \\
& \hline
\end{aligned}
$$

> Important Note: equivalent to usual steepest descent applied to normal equations $A^{T} A x=A^{T} b$.
> Converges under the condition that A is nonsingular.
> But convergence can be very slow

Minimal residual iteration: Assume A is positive definite $\left(A+A^{T}\right.$

 is SPD).$>$ The objective function is still $\frac{1}{2}\|b-A x\|_{2}^{2}$, but the direction of search is $r=b-A x$ instead of $-\nabla f(x)$

$$
\text { Iteration: } \begin{aligned}
& r \leftarrow b-A x, \\
& \alpha \leftarrow(A r, r) /(A r, A r) \\
& x \leftarrow x+\alpha r
\end{aligned}
$$

$>$ Each step minimizes $f(x)=\|b-A x\|_{2}^{2}$ in direction r.
$>$ Converges under the condition that $A+A^{T}$ is SPD.
$>$ Common feature of these techniques: $x_{n e w}=x+\alpha d$, where d = a certain direction.
$>\alpha$ is defined to optimize a certain quadratic function.
$>$ Equivalent to determining α by an orthogonality constraint.

Example	In MR:
$x(\alpha)=x+\alpha d$, with $d=b-A x$.	
$\min _{\alpha}\\|b-A x(\alpha)\\|_{2}$ reached iff $b-A x(\alpha) \perp r$	

> One-dimensional projection methods - can we generalize to m dimensional techniques?

General Projection Methods

Initial Problem:

$$
b-A x=0
$$

Given two subspaces K and L of \mathbb{R}^{N} define the approximate problem:

Find $\tilde{x} \in K$ such that $b-A \tilde{x} \perp L$
> Leads to a small linear system ('projected problems') This is a basic projection step. Typically: sequence of such steps are applied
$>$ With a nonzero initial guess x_{0}, the approximate problem is
Find $\quad \tilde{x} \in x_{0}+K$ such that $b-A \tilde{x} \perp L$
Write $\tilde{x}=x_{0}+\delta$ and $r_{0}=b-A x_{0}$. Leads to a system for δ :
Find $\delta \in K$ such that $r_{0}-A \delta \perp L$

Matrix representation:

- $V=\left[v_{1}, \ldots, v_{m}\right]$ a basis of $K \&$

Let

- $W=\left[w_{1}, \ldots, w_{m}\right]$ a basis of L

Then letting x be the approximate solution $\tilde{x}=x_{0}+\delta \equiv x_{0}+V y$ where y is a vector of \mathbb{R}^{m}, the Petrov-Galerkin condition yields,

$$
W^{T}\left(r_{0}-A V \boldsymbol{y}\right)=0
$$

and therefore

$$
\tilde{x}=x_{0}+V\left[W^{T} A V\right]^{-1} W^{T} r_{0}
$$

Remark: In practice $W^{T} A V$ is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

Prototype Projection Method

Until Convergence Do:

1. Select a pair of subspaces K, and L;
2. Choose bases $V=\left[v_{1}, \ldots, v_{m}\right]$ for K and $W=\left[w_{1}, \ldots, w_{m}\right]$ for L.
3. Compute

$$
\begin{aligned}
& r \leftarrow b-A x \\
& y \leftarrow\left(W^{T} A V\right)^{-1} W^{T} r \\
& x \leftarrow x+V y
\end{aligned}
$$

Two important particular cases.

1. $L=A K$. then $\|b-A \tilde{x}\|_{2}=\min _{z \in K}\|b-A z\|_{2}$
\rightarrow class of minimal residual methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...
2. $L=K \rightarrow$ class of Galerkin or orthogonal projection methods. When A is SPD then

$$
\left\|x^{*}-\tilde{x}\right\|_{A}=\min _{z \in K}\left\|x^{*}-z\right\|_{A}
$$

One-dimensional projection processes

$$
\begin{aligned}
K & =\operatorname{span}\{d\} \\
& \text { and } \\
L & =\operatorname{span}\{e\}
\end{aligned}
$$

Then $\tilde{x} \leftarrow x+\alpha d$ and Petrov-Galerkin condition $r-A \delta \perp e$ yields

$$
\alpha=\frac{(r, e)}{(\boldsymbol{A d}, e)}
$$

(I) Steepest descent: $K=\operatorname{span}(r), L=K$
(II) Residual norm steepest descent: $K=\operatorname{span}\left(A^{T} r\right), L=A K$
(III) Minimal residual iteration: $K=\operatorname{span}(r), L=A K$

Krylov Subspace Methods

Principle: |Projection methods on Krylov subspaces:

$$
K_{m}\left(A, v_{1}\right)=\operatorname{span}\left\{v_{1}, A v_{1}, \cdots, A^{m-1} v_{1}\right\}
$$

- probably the most important class of iterative methods.
- many variants exist depending on the subspace L.

Simple properties of K_{m}. Let $\mu=$ deg. of minimal polynomial of v

- $K_{m}=\{p(A) v \mid p=$ polynomial of degree $\leq m-1\}$
- $K_{m}=K_{\mu}$ for all $m \geq \mu$. Moreover, K_{μ} is invariant under A.
- $\operatorname{dim}\left(K_{m}\right)=m$ iff $\mu \geq m$.

Arnoldi's Algorithm

$>$ Goal: to compute an orthogonal basis of K_{m}.
$>$ Input: Initial vector v_{1}, with $\left\|v_{1}\right\|_{2}=1$ and m.

For $j=1, \ldots, m$ do

- Compute $w:=A v_{j}$
- for $i=1, \ldots, j$, do $\quad\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right.$
- $h_{j+1, j}=\|w\|_{2}$ and $v_{j+1}=w / h_{j+1, j}$

Result of orthogonalization process

1. $V_{m}=\left[v_{1}, v_{2}, \ldots, v_{m}\right]$ orthonormal basis of K_{m}.
2. $\boldsymbol{A} \boldsymbol{V}_{m}=\boldsymbol{V}_{m+1} \overline{\boldsymbol{H}}_{m}$
3. $V_{m}^{T} A V_{m}=H_{m} \equiv \bar{H}_{m}$ - last row.

Arnoldi's Method $\left(L_{m}=K_{m}\right)$

$>$ Petrov-Galerkin condition when $L_{m}=K_{m}$, shows:

$$
x_{m}=x_{0}+V_{m} H_{m}^{-1} V_{m}^{T} r_{0}
$$

$>$ Select $v_{1}=r_{0} /\left\|r_{0}\right\|_{2} \equiv r_{0} / \beta$ in Arnoldi's algorithm, then:

$$
x_{m}=x_{0}+\beta V_{m} H_{m}^{-1} e_{1}
$$

Equivalent
algorithms:

* FOM [YS, 1981] (above formulation)
* Young and Jea's ORTHORES [1982].
* Axelsson's projection method [1981].

Minimal residual methods $\left(L_{m}=A K_{m}\right)$

$>$ When $L_{m}=A K_{m}$, we let $W_{m} \equiv A V_{m}$ and obtain:

$$
x_{m}=x_{0}+V_{m}\left[W_{m}^{T} A V_{m}\right]^{-1} W_{m}^{T} r_{0}
$$

$>$ Use again $v_{1}:=r_{0} /\left(\beta:=\left\|r_{0}\right\|_{2}\right)$ and: $A V_{m}=V_{m+1} \bar{H}_{m}$

$$
x_{m}=x_{0}+V_{m}\left[\overline{\boldsymbol{H}}_{m}^{T} \overline{\boldsymbol{H}}_{m}\right]^{-1} \overline{\boldsymbol{H}}_{m}^{T} \boldsymbol{\beta} e_{1}=x_{0}+\boldsymbol{V}_{m} \boldsymbol{y}_{m}
$$

where y_{m} minimizes $\left\|\beta e_{1}-\bar{H}_{m} y\right\|_{2}$ over $y \in \mathbb{R}^{m}$. Hence, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

$$
x_{m}=x_{0}+V_{m} y_{m} \quad \text { where } \quad y_{m}: \min _{y}\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} y\right\|_{2}
$$

Equivalent methods:

- Axelsson's CGLS • Orthomin (1980)
- Orthodir
- GCR

Restarting and Truncating

Difficulty: As m increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 1. Restarted GMRES (resp. Arnoldi)

1. Start/Restart: Compute $r_{0}=b-A x_{0}$, and $v_{1}=r_{0} /\left(\beta:=\left\|r_{0}\right\|_{2}\right)$.
2. Arnoldi Process: generate \bar{H}_{m} and V_{m}.
3. Compute $y_{m}=H_{m}^{-1} \beta e_{1}$ (FOM), or

$$
y_{m}=\operatorname{argmin}\left\|\beta e_{1}-\bar{H}_{m} y\right\|_{2} \text { (GMRES) }
$$

4. $x_{m}=x_{0}+V_{m} y_{m}$
5. If $\left\|r_{m}\right\|_{2} \leq \epsilon\left\|r_{0}\right\|_{2}$ stop else set $x_{0}:=x_{m}$ and go to 1 .

Second remedy: Truncate the orthogonalization

The formula for v_{j+1} is replaced by

$$
h_{j+1, j} v_{j+1}=A v_{j}-\sum_{i=j-k+1}^{j} h_{i j} v_{i}
$$

\rightarrow each v_{j} is made orthogonal to the previous $k v_{i}$'s.
$\rightarrow x_{m}$ still computed as $x_{m}=x_{0}+V_{m} H_{m}^{-1} \beta e_{1}$.
\rightarrow It can be shown that this is again an oblique projection process.
> IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

The direct version of IOM [DIOM]:

Writing the LU decomposition of H_{m} as $H_{m}=L_{m} U_{m}$ we get
$x_{m}=x_{0}+V_{m} U_{m}^{-1} \quad L_{m}^{-1} \beta e_{1} \equiv x_{0}+P_{m} z_{m}$
$>$ Structure of L_{m}, U_{m} when $k=3$

$$
\begin{aligned}
& L_{m}=\left(\begin{array}{llllllll}
1 & & & & & & \\
x & 1 & & & & & \\
& x & 1 & & & & \\
& & x & 1 & & & \\
& & & x & 1 & & \\
& & & & x & 1 & \\
& & & & & x & 1
\end{array}\right) \quad U_{m}=\left(\begin{array}{llllllll}
x & x & x & & & & & \\
& x & x & x & & & \\
& & x & x & x & & \\
& & & x & x & x & \\
& & & & x & x & x \\
& & & & & x & x \\
& & & & & & x
\end{array}\right) \\
& p_{m}=u_{m m}^{-1}\left[v_{m}-\sum_{i=m-k+1}^{m-1} u_{i m} p_{i}\right] \quad z_{m}=\left[\begin{array}{c}
z_{m-1} \\
\zeta_{m}
\end{array}\right]
\end{aligned}
$$

Result: Can update x_{m} at each step:

$$
x_{m}=x_{m-1}+\zeta_{m} \boldsymbol{p}_{m}
$$

Note: | Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the H_{m} matrix
> CG-like formulation of IOM called DIOM [Saad, 1982]
> ORTHORES(k) [Young \& Jea '82] equivalent to DIOM(k)
$>$ SYMMLQ [Paige and Saunders, '77] uses LQ factorization of \boldsymbol{H}_{m}.
$>$ Can add partial pivoting to LU factorization of H_{m}

The Symmetric Case: Observation

Observe: When A is real symmetric then in Arnoldi's method:

$$
H_{m}=V_{m}^{T} A V_{m}
$$

must be symmetric. Therefore
THEOREM. When Arnoldi's algorithm is applied to a (real) symmetric matrix then the matrix H_{m} is symmetric tridiagonal. In other words:

1) $h_{i j}=0$ for $|i-j|>1$
2) $h_{j, j+1}=h_{j+1, j}, \quad j=1, \ldots, m$
$>$ We can write

$$
H_{m}=\left(\begin{array}{ccccccc}
\alpha_{1} & \beta_{2} & & & & \tag{1}\\
\boldsymbol{\beta}_{2} & \alpha_{2} & \beta_{3} & & & \\
& \beta_{3} & \alpha_{3} & \boldsymbol{\beta}_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & & & \\
& & & & \cdot & \cdot \\
& & & & \beta_{m} & \alpha_{m}
\end{array}\right)
$$

The v_{i} 's satisfy a three-term recurrence [Lanczos Algorithm]:

$$
\boldsymbol{\beta}_{j+1} v_{j+1}=A v_{j}-\alpha_{j} v_{j}-\boldsymbol{\beta}_{j} v_{j-1}
$$

\rightarrow simplified version of Arnoldi's algorithm for sym. systems.

Symmetric matrix + Arnoldi \rightarrow Symmetric Lanczos

The Lanczos algorithm

ALGORITHM:2. Lanczos

1. Choose an initial vector v_{1} of norm unity.

$$
\text { Set } \beta_{1} \equiv 0, v_{0} \equiv 0
$$

2. $\operatorname{For} j=1,2, \ldots, m$ Do:
3. $w_{j}:=A v_{j}-\beta_{j} v_{j-1}$
4. $\alpha_{j}:=\left(w_{j}, v_{j}\right)$
5. $\quad w_{j}:=w_{j}-\alpha_{j} v_{j}$
6. $\quad \boldsymbol{\beta}_{j+1}:=\left\|w_{j}\right\|_{2}$. If $\beta_{j+1}=0$ then Stop
7. $v_{j+1}:=w_{j} / \beta_{j+1}$
8. EndDo

Lanczos algorithm for linear systems

> Usual orthogonal projection method setting:

- $L_{m}=\boldsymbol{K}_{m}=\operatorname{span}\left\{r_{0}, A r_{0}, \ldots, A^{m-1} r_{0}\right\}$
- Basis $V_{m}=\left[v_{1}, \ldots, v_{m}\right]$ of K_{m} generated by the Lanczos algorithm
> Three different possible implementations.
(1) Arnoldi-like; (2) Exploit tridigonal nature of H_{m} (DIOM); (3) Conjugate gradient.
.... following what was done for DIOM..

The Conjugate Gradient Algorithm (A S.P.D.)

$>$ Note: the p_{i} 's are A-orthogonal
$>$ The $r_{i}^{\prime \prime}$ s are orthogonal.
$>$ And we have $x_{m}=x_{m-1}+\xi_{m} p_{m}$
So there must be an update of the form:

1. $\boldsymbol{p}_{\boldsymbol{m}}=\boldsymbol{r}_{m-1}+\boldsymbol{\beta}_{m} \boldsymbol{p}_{m-1}$
2. $\boldsymbol{x}_{\boldsymbol{m}}=\boldsymbol{x}_{\boldsymbol{m - 1}}+\boldsymbol{\xi}_{\boldsymbol{m}} \boldsymbol{p}_{\boldsymbol{m}}$
3. $r_{m}=r_{m-1}-\xi_{m} A p_{m}$

ALGORITHM : 3. Conjugate Gradient

Start: $r_{0}:=b-A x_{0}, p_{0}:=r_{0}$.
Iterate: Until convergence do,

$$
\begin{aligned}
& \alpha_{j}:=\left(r_{j}, r_{j}\right) /\left(A p_{j}, p_{j}\right) \\
& x_{j+1}:=x_{j}+\alpha_{j} p_{j} \\
& r_{j+1}:=r_{j}-\alpha_{j} A p_{j} \\
& \boldsymbol{\beta}_{j}:=\left(r_{j+1}, r_{j+1}\right) /\left(r_{j}, r_{j}\right) \\
& p_{j+1}:=r_{j+1}+\beta_{j} p_{j}
\end{aligned}
$$

EndDo

$>r_{j}=$ scaling $\times v_{j+1}$. The r_{j} 's are orthogonal.
$>$ The p_{j} 's are A-conjugate, i.e., $\left(A p_{i}, p_{j}\right)=0$ for $i \neq j$.

ALGORITHM : 4. Lanczos Bi-Orthogonalization

1. Choose two vectors v_{1}, w_{1} such that $\left(v_{1}, w_{1}\right)=1$.
2. Set $\beta_{1}=\delta_{1} \equiv 0, w_{0}=v_{0} \equiv 0$
3. For $j=1,2, \ldots, m$ Do:
4. $\alpha_{j}=\left(A v_{j}, w_{j}\right)$
5. $\hat{v}_{j+1}=A v_{j}-\alpha_{j} v_{j}-\beta_{j} v_{j-1}$
6. $\hat{w}_{j+1}=A^{T} w_{j}-\alpha_{j} w_{j}-\delta_{j} w_{j-1}$
7. $\delta_{j+1}=\left|\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right)\right|^{1 / 2}$. If $\delta_{j+1}=0$ Stop
8. $\boldsymbol{\beta}_{j+1}=\left(\hat{v}_{j+1}, \hat{w}_{j+1}\right) / \delta_{j+1}$
9. $w_{j+1}=\hat{w}_{j+1} / \beta_{j+1}$
10. $v_{j+1}=\hat{v}_{j+1} / \delta_{j+1}$
11. EndDo
$>$ Extension of the symmetric Lanczos algorithm
> Builds a pair of biorthogonal bases for the two subspaces

$$
\mathcal{K}_{m}\left(A, \boldsymbol{v}_{1}\right) \quad \text { and } \quad \mathcal{K}_{m}\left(\boldsymbol{A}^{T}, \boldsymbol{w}_{1}\right)
$$

$>$ Different ways to choose $\delta_{j+1}, \beta_{j+1}$ in lines 7 and 8 .
Let

$$
T_{m}=\left(\begin{array}{cccccc}
\alpha_{1} & \beta_{2} & & & & \\
\delta_{2} & \alpha_{2} & \beta_{3} & & \\
& \cdot & \cdot & & \\
& & \delta_{m-1} & \alpha_{m-1} & \beta_{m} \\
& & & \delta_{m} & \alpha_{m}
\end{array}\right)
$$

$>v_{i} \in \mathcal{K}_{m}\left(A, v_{1}\right)$ and $w_{j} \in \mathcal{K}_{m}\left(A^{T}, w_{1}\right)$.

If the algorithm does not break down before step m, then the vectors $v_{i}, i=1, \ldots, m$, and $w_{j}, j=1, \ldots, m$, are biorthogonal, i.e.,

$$
\left(v_{j}, w_{i}\right)=\delta_{i j} \quad 1 \leq i, j \leq m .
$$

Moreover, $\left\{v_{i}\right\}_{i=1,2, \ldots, m}$ is a basis of $\mathcal{K}_{m}\left(A, v_{1}\right)$ and $\left\{w_{i}\right\}_{i=1,2, \ldots, m}$ is a basis of $\mathcal{K}_{m}\left(A^{T}, w_{1}\right)$ and

$$
\begin{aligned}
& A V_{m}=V_{m} T_{m}+\delta_{m+1} v_{m+1} e_{m}^{T}, \\
& A^{T} W_{m}=W_{m} T_{m}^{T}+\beta_{m+1} w_{m+1} e_{m}^{T}, \\
& W_{m}^{T} A V_{m}=T_{m}
\end{aligned}
$$

The Lanczos Algorithm for Linear Systems

ALGORITHM : 5. Lanczos Alg. for Linear Systems

1. Compute $r_{0}=b-A x_{0}$ and $\beta:=\left\|r_{0}\right\|_{2}$
2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
3. Start with $v_{1}:=r_{0} / \beta$, and any w_{1} such that

$$
\left(v_{1}, w_{1}\right)=1
$$

4. Generate the pair of Lanczos vectors v_{1}, \ldots, v_{m}, and w_{1}, \ldots, w_{m}
5. and the tridiagonal matrix T_{m} from Algorithm ??.
6. Compute $y_{m}=T_{m}^{-1}\left(\beta e_{1}\right)$ and $x_{m}:=x_{0}+V_{m} y_{m}$.
> BCG can be derived from the Lanczos Algorithm similarly to CG

ALGORITHM : 6. BiConjugate Gradient (BCG)

1. Compute $r_{0}:=b-A x_{0}$.
2. Choose r_{0}^{*} such that $\left(r_{0}, r_{0}^{*}\right) \neq 0$;

$$
\text { Set } p_{0}:=r_{0}, p_{0}^{*}:=r_{0}^{*}
$$

3. For $j=0,1, \ldots$, until convergence Do:,
4. $\alpha_{j}:=\left(r_{j}, r_{j}^{*}\right) /\left(A p_{j}, p_{j}^{*}\right)$
5. $x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
6. $\quad r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
7. $r_{j+1}^{*}:=r_{j}^{*}-\alpha_{j} A^{T} p_{j}^{*}$
8. $\beta_{j}:=\left(r_{j+1}, r_{j+1}^{*}\right) /\left(r_{j}, r_{j}^{*}\right)$
9. $p_{j+1}:=r_{j+1}+\beta_{j} p_{j}$
10. $p_{j+1}^{*}:=r_{j+1}^{*}+\beta_{j} p_{j}^{*}$
11. EndDo

Quasi-Minimal Residual Algorithm

$>$ Recall relation from the lanczos algorithm: $A V_{m}=V_{m+1} \bar{T}_{m}$ with
$\bar{T}_{m}=(m+1) \times m$ tridiagonal matrix $\bar{T}_{m}=\binom{T_{m}}{\delta_{m+1} e_{m}^{T}}$.
$>$ Let $v_{1} \equiv \beta r_{0}$ and $x=x_{0}+V_{m} y$. Residual norm $\|b-A x\|_{2}$ equals

$$
\left\|r_{0}-A V_{m} y\right\|_{2}=\left\|\beta v_{1}-V_{m+1} \bar{T}_{m} y\right\|_{2}=\left\|V_{m+1}\left(\beta e_{1}-\bar{T}_{m} y\right)\right\|_{2}
$$

$>$ Column-vectors of V_{m+1} are not \perp (\neq GMRES).
$>$ But: reasonable idea to minimize the function $J(y) \equiv\left\|\beta e_{1}-\bar{T}_{m} y\right\|_{2}$
> Quasi-Minimal Residual Algorithm (Freund, 1990).

Transpose-Free Variants

$>B C G$ and QMR require a matrix-by-vector product with A and A^{T} at each step. The products with A^{T} do not contribute directly to x_{m}. > They allow to determine the scalars (α_{j} and β_{j} in BCG).
$>$ QUESTION: is it possible to bypass the use of A^{T} ?
> Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$
J\left(u_{k}\right) v=\frac{F\left(u_{k}+\epsilon v\right)-F\left(u_{k}\right)}{\epsilon} .
$$

Conjugate Gradient Squared

* Clever variant of BCG which avoids using A^{T} [Sonneveld, 1984].

In BCG:

$$
r_{i}=\rho_{i}(A) r_{0}
$$

where $\rho_{i}=$ polynomial of degree i.
In CGS:

$$
r_{i}=\rho_{i}^{2}(A) r_{0}
$$

$>$ Define:

$$
\begin{aligned}
r_{j} & =\phi_{j}(A) r_{0} \\
\boldsymbol{p}_{j} & =\pi_{j}(A) r_{0}
\end{aligned}
$$

$$
\begin{aligned}
& r_{j}^{*}=\phi_{j}\left(A^{T}\right) r_{0}^{*}, \\
& p_{j}^{*}=\pi_{j}\left(A^{T}\right) r_{0}^{*}
\end{aligned}
$$

Scalar α_{j} in BCG is given by

$$
\alpha_{j}=\frac{\left(\phi_{j}(A) r_{0}, \phi_{j}\left(A^{T}\right) r_{0}^{*}\right)}{\left(A \pi_{j}(A) r_{0}, \pi_{j}\left(A^{T}\right) r_{0}^{*}\right)}=\frac{\left(\phi_{j}^{2}(A) r_{0}, r_{0}^{*}\right)}{\left(A \pi_{j}^{2}(A) r_{0}, r_{0}^{*}\right)}
$$

$>$ Possible to get a recursion for the $\phi_{j}^{2}(A) r_{0}$ and $\pi_{j}^{2}(A) r_{0}$?

$$
\begin{gathered}
\phi_{j+1}(t)=\phi_{j}(t)-\alpha_{j} t \pi_{j}(t), \\
\pi_{j+1}(t)=\phi_{j+1}(t)+\beta_{j} \pi_{j}(t) \\
\phi_{j+1}^{2}(t)=\phi_{j}^{2}(t)-2 \alpha_{j} t \pi_{j}(t) \phi_{j}(t)+\alpha_{j}^{2} t^{2} \pi_{j}^{2}(t), \\
\pi_{j+1}^{2}(t)=\phi_{j+1}^{2}(t)+2 \beta_{j} \phi_{j+1}(t) \pi_{j}(t)+\beta_{j}^{2} \pi_{j}(t)^{2} .
\end{gathered}
$$

> Problem:
.. Cross terms

Solution: Let $\phi_{j+1}(t) \pi_{j}(t)$, be a third member of the recurrence. For $\pi_{j}(t) \phi_{j}(t)$, note:

$$
\begin{gathered}
\phi_{j}(t) \pi_{j}(t)=\phi_{j}(t)\left(\phi_{j}(t)+\beta_{j-1} \pi_{j-1}(t)\right) \\
=\phi_{j}^{2}(t)+\beta_{j-1} \phi_{j}(t) \pi_{j-1}(t)
\end{gathered}
$$

Result:

$$
\begin{aligned}
\phi_{j+1}^{2} & =\phi_{j}^{2}-\alpha_{j} t\left(2 \phi_{j}^{2}+2 \beta_{j-1} \phi_{j} \pi_{j-1}-\alpha_{j} t \pi_{j}^{2}\right) \\
\phi_{j+1} \pi_{j} & =\phi_{j}^{2}+\beta_{j-1} \phi_{j} \pi_{j-1}-\alpha_{j} t \pi_{j}^{2} \\
\pi_{j+1}^{2} & =\phi_{j+1}^{2}+2 \beta_{j} \phi_{j+1} \pi_{j}+\beta_{j}^{2} \pi_{j}^{2} .
\end{aligned}
$$

Define:

$$
r_{j}=\phi_{j}^{2}(A) r_{0}, \quad p_{j}=\pi_{j}^{2}(A) r_{0}, \quad q_{j}=\phi_{j+1}(A) \pi_{j}(A) r_{0}
$$

Recurrences become:

$$
\begin{aligned}
r_{j+1} & =r_{j}-\alpha_{j} A\left(2 r_{j}+2 \beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}\right), \\
q_{j} & =r_{j}+\beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}, \\
p_{j+1} & =r_{j+1}+2 \beta_{j} q_{j}+\beta_{j}^{2} p_{j}
\end{aligned}
$$

Define auxiliary vector $d_{j}=2 r_{j}+2 \beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}$
$>$ Sequence of operations to compute the approximate solution, starting with $r_{0}:=b-A x_{0}, p_{0}:=r_{0}, q_{0}:=0, \beta_{0}:=0$.

1. $\alpha_{j}=\left(r_{j}, r_{0}^{*}\right) /\left(A p_{j}, r_{0}^{*}\right)$
2. $d_{j}=2 r_{j}+2 \beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}$
3. $q_{j}=r_{j}+\beta_{j-1} q_{j-1}-\alpha_{j} A p_{j}$
4. $x_{j+1}=x_{j}+\alpha_{j} d_{j}$
5. $r_{j+1}=r_{j}-\alpha_{j} A d_{j}$
6. $\beta_{j}=\left(r_{j+1}, r_{0}^{*}\right) /\left(r_{j}, r_{0}^{*}\right)$
7. $p_{j+1}=r_{j+1}+\beta_{j}\left(2 q_{j}+\beta_{j} p_{j}\right)$.
$>$ one more auxiliary vector, $u_{j}=r_{j}+\beta_{j-1} q_{j-1}$. So

$$
\begin{aligned}
d_{j} & =u_{j}+q_{j}, \\
q_{j} & =u_{j}-\alpha_{j} A p_{j}, \\
p_{j+1} & =u_{j+1}+\beta_{j}\left(q_{j}+\beta_{j} p_{j}\right),
\end{aligned}
$$

$>$ vector d_{j} is no longer needed.

ALGORITHM:7. Conjugate Gradient Squared

1. Compute $r_{0}:=b-A x_{0} ; r_{0}^{*}$ arbitrary.
2. Set $p_{0}:=u_{0}:=r_{0}$.
3. For $j=0,1,2 \ldots$, until convergence Do:
4. $\alpha_{j}=\left(r_{j}, r_{0}^{*}\right) /\left(\boldsymbol{A} p_{j}, r_{0}^{*}\right)$
5. $q_{j}=u_{j}-\alpha_{j} A p_{j}$
6. $x_{j+1}=x_{j}+\alpha_{j}\left(u_{j}+q_{j}\right)$
7. $r_{j+1}=r_{j}-\alpha_{j} A\left(u_{j}+q_{j}\right)$
8. $\boldsymbol{\beta}_{j}=\left(r_{j+1}, r_{0}^{*}\right) /\left(r_{j}, r_{0}^{*}\right)$
9. $u_{j+1}=r_{j+1}+\beta_{j} q_{j}$
10. $p_{j+1}=u_{j+1}+\beta_{j}\left(q_{j}+\beta_{j} p_{j}\right)$
11. EndDo
$>$ Note: no matrix-by-vector products with A^{T} but two matrix-byvector products with A, at each step.

Vector: \longleftrightarrow Polynomial in BCG :

$$
\begin{aligned}
q_{i} \longleftrightarrow \bar{r}_{i}(t) \bar{p}_{i-1}(t) \\
u_{i} \longleftrightarrow \bar{p}_{i}^{2}(t) \\
r_{i} \longleftrightarrow \bar{r}_{i}^{2}(t)
\end{aligned}
$$

where $\bar{r}_{i}(t)=$ residual polynomial at step i for BCG, i.e., $r_{i}=\bar{r}_{i}(A) r_{0}$, and $\bar{p}_{i}(t)=$ conjugate direction polynomial at step i, i.e., $p_{i}=\bar{p}_{i}(A) r_{0}$.

BCGSTAB (van der Vorst, 1992)

> In CGS: residual polynomial of BCG is squared. > bad behavior in case of irregular convergence.
> Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS which avoids this difficulty. > Derivation similar to CGS.
$>$ Residuals in BCGSTAB are of the form,

$$
r_{j}^{\prime}=\psi_{j}(A) \phi_{j}(A) r_{0}
$$

in which, $\phi_{j}(t)=$ BCG residual polynomial, and ..
>.. $\psi_{j}(t)=$ a new polynomial defined recursively as

$$
\psi_{j+1}(t)=\left(1-\omega_{j} t\right) \psi_{j}(t)
$$

ω_{i} chosen to 'smooth' convergence [steepest descent step]

ALGORITHM : 8. BCGSTAB

1. Compute $r_{0}:=b-A x_{0} ; r_{0}^{*}$ arbitrary;
2. $p_{0}:=r_{0}$.
3. For $j=0,1, \ldots$, until convergence Do:
4. $\alpha_{j}:=\left(r_{j}, r_{0}^{*}\right) /\left(A p_{j}, r_{0}^{*}\right)$
5. $s_{j}:=r_{j}-\alpha_{j} A p_{j}$
6. $\quad \omega_{j}:=\left(A s_{j}, s_{j}\right) /\left(A s_{j}, A s_{j}\right)$
7. $x_{j+1}:=x_{j}+\alpha_{j} p_{j}+\omega_{j} s_{j}$
8. $r_{j+1}:=s_{j}-\omega_{j} A s_{j}$
9. $\quad \beta_{j}:=\frac{\left(r_{j+1}, r_{0}^{*}\right)}{\left(r_{j}, r_{0}^{*}\right)} \times \frac{\alpha_{j}}{\omega_{j}}$
10. $p_{j+1}:=r_{j+1}+\beta_{j}\left(p_{j}-\omega_{j} A p_{j}\right)$
11. EndDo

PRECONDITIONING

Preconditioning - Basic principles

Basic idea is to use the Krylov subspace method on a modified system such as

$$
M^{-1} A x=M^{-1} b
$$

- The matrix $M^{-1} A$ need not be formed explicitly; only need to solve $M w=v$ whenever needed.
- Consequence: fundamental requirement is that it should be easy to compute $M^{-1} v$ for an arbitrary vector v.

Left, Right, and Split preconditioning

Left preconditioning: $M^{-1} A x=M^{-1} b$

Right preconditioning: $A M^{-1} u=b$, with $x=M^{-1} u$

Split preconditioning: $M_{L}^{-1} A M_{R}^{-1} u=M_{L}^{-1} b$, with $x=M_{R}^{-1} u$
[Assume M is factored: $M=M_{L} M_{R}$.]

Preconditioned CG (PCG)

$>$ Assume: A and M are both SPD.
> Applying CG directly to $M^{-1} A x=M^{-1} b$ or $A M^{-1} u=b$ won't work because coefficient matrices are not symmetric.
> Alternative: when $M=L L^{T}$ use split preconditioner option
$>$ Second alternative: Observe that $M^{-1} A$ is self-adjoint wrt M inner product:

$$
\left(M^{-1} A x, y\right)_{M}=(A x, y)=(x, A y)=\left(x, M^{-1} A y\right)_{M}
$$

Preconditioned CG (PCG)

ALGORITHM : 9. Preconditioned Conjugate Gradient

1. Compute $r_{0}:=b-A x_{0}, z_{0}=M^{-1} r_{0}$, and $p_{0}:=z_{0}$
2. For $j=0,1, \ldots$, until convergence Do:
3. $\alpha_{j}:=\left(r_{j}, z_{j}\right) /\left(A p_{j}, p_{j}\right)$
4. $x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
5. $\quad r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
6. $\quad z_{j+1}:=M^{-1} r_{j+1}$
7. $\quad \beta_{j}:=\left(r_{j+1}, z_{j+1}\right) /\left(r_{j}, z_{j}\right)$
8. $p_{j+1}:=z_{j+1}+\beta_{j} p_{j}$
9. EndDo

Note $M^{-1} A$ is also self-adjoint with respect to $(., .)_{A}$:

$$
\left(M^{-1} A x, y\right)_{A}=\left(A M^{-1} A x, y\right)=\left(x, A M^{-1} A y\right)=\left(x, M^{-1} A y\right)_{A}
$$

> Can obtain a similar algorithm
$>$ Assume that $M=$ Cholesky product $M=L L^{T}$.
Then, another possibility: Split preconditioning option, which applies CG to the system

$$
L^{-1} A L^{-T} u=L^{-1} b, \text { with } x=L^{T} u
$$

$>$ Notation: $\hat{A}=L^{-1} A L^{-T}$. All quantities related to the preconditioned system are indicated by ${ }^{\wedge}$.

ALGORITHM : 10. CG with Split Preconditioner

1. Compute $r_{0}:=b-A x_{0} ; \hat{r}_{0}=L^{-1} r_{0} ;$ and $p_{0}:=L^{-T} \hat{r}_{0}$.
2. For $j=0,1, \ldots$, until convergence Do:
3. $\alpha_{j}:=\left(\hat{r}_{j}, \hat{r}_{j}\right) /\left(\boldsymbol{A} p_{j}, p_{j}\right)$
4. $x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
5. $\hat{r}_{j+1}:=\hat{r}_{j}-\alpha_{j} L^{-1} A p_{j}$
6. $\quad \beta_{j}:=\left(\hat{r}_{j+1}, \hat{r}_{j+1}\right) /\left(\hat{r}_{j}, \hat{r}_{j}\right)$
7. $p_{j+1}:=L^{-T} \hat{r}_{j+1}+\beta_{j} p_{j}$
8. EndDo
> The x_{j} 's produced by the above algorithm and PCG are identical (if same initial guess is used).

Flexible accelerators

Question: What can we do in case M is defined only approximately? i.e., if it can vary from one step to the other.?

Applications:

> Iterative techniques as preconditioners: Block-SOR, SSOR, Multigrid, etc..
> Chaotic relaxation type preconditioners (e.g., in a parallel computing environment)
> Mixing Preconditioners - mixing coarse mesh / fine mesh preconditioners.

1. Start: Choose x_{0} and a dimension m of the Krylov subspaces.
2. Arnoldi process:

- Compute $r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}$ and $v_{1}=r_{0} / \beta$.
- For $j=1, \ldots, m$ do
- Compute $w:=A v_{j}$

$$
\begin{aligned}
& \text { - for } i=1, \ldots, j, \text { do }\left\{\begin{array}{l}
h_{i, j}:=\left(w, v_{i}\right) \\
w:=w-h_{i, j} v_{i}
\end{array}\right\} ; \\
& -h_{j+1,1}=\|w\|_{2} ; v_{j+1}=\frac{w}{h_{j+1,1}}
\end{aligned}
$$

- Define $V_{m}:=\left[v_{1}, \ldots, v_{m}\right]$ and $\bar{H}_{m}=\left\{h_{i, j}\right\}$.

3. Form the approximate solution: Compute $x_{m}=x_{0}+V_{m} y_{m}$ where $y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-\bar{H}_{m} \boldsymbol{y}\right\|_{2}$ and $e_{1}=[1,0, \ldots, 0]^{T}$.
4. Restart: If satisfied stop, else set $x_{0} \leftarrow x_{m}$ and goto 2 .
5. Start: Choose x_{0} and a dimension m
6. Arnoldi process:

- Compute $r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}$ and $v_{1}=r_{0} / \beta$.
- For $j=1, \ldots, m$ do
- Compute $z_{j}:=M^{-1} v_{j}$
- Compute $w:=A z_{j}$
- for $i=1, \ldots, j$, do : $\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right\}$
$-h_{j+1,1}=\|w\|_{2} ; v_{j+1}=w / h_{j+1,1}$
- Define $V_{m}:=\left[v_{1}, \ldots ., v_{m}\right]$ and $\bar{H}_{m}=\left\{h_{i, j}\right\}$.

3. Form the approximate solution: $x_{m}=x_{0}+M^{-1} V_{m} y_{m}$ where $y_{m}=$ $\operatorname{argmin}_{y}\left\|\beta e_{1}-\bar{H}_{m} y\right\|_{2}$ and $e_{1}=[1,0, \ldots, 0]^{T}$.
4. Restart: If satisfied stop, else set $x_{0} \leftarrow x_{m}$ and goto 2.

ALGORITHM : 13. GMRES - variable preconditioner

1. Start: Choose x_{0} and a dimension m of the Krylov subspaces.
2. Arnoldi process:

- Compute $r_{0}=b-A x_{0}, \beta=\left\|r_{0}\right\|_{2}$ and $v_{1}=r_{0} / \beta$.
- For $j=1, \ldots, m$ do
- Compute $z_{j}:=M_{j}^{-1} v_{j}$; Compute $w:=A z_{j}$;
- for $i=1, \ldots, j$, do: $\left\{\begin{array}{l}h_{i, j}:=\left(w, v_{i}\right) \\ w:=w-h_{i, j} v_{i}\end{array}\right\}$;
$-h_{j+1,1}=\|w\|_{2} ; v_{j+1}=w / h_{j+1,1}$
- Define $Z_{m}:=\left[z_{1}, \ldots, z_{m}\right]$ and $\bar{H}_{m}=\left\{h_{i, j}\right\}$.

3. Form the approximate solution: Compute $x_{m}=x_{0}+Z_{m} y_{m}$ where $y_{m}=\operatorname{argmin}_{y}\left\|\beta e_{1}-\overline{\boldsymbol{H}}_{m} \boldsymbol{y}\right\|_{2}$ and $e_{1}=[1,0, \ldots, 0]^{T}$.
4. Restart: If satisfied stop, else set $x_{0} \leftarrow x_{m}$ and goto 2 .

Properties

- x_{m} minimizes $b-A x_{m}$ over $\operatorname{Span}\left\{Z_{m}\right\}$.
- If $A z_{j}=v_{j}$ (i.e., if preconditioning is 'exact' at step j) then approximation x_{j} is exact.
- If M_{j} is constant then method is \equiv to Right-Preconditioned GMRES.

Additional Costs:

- Arithmetic: none.
- Memory: Must save the additional set of vectors $\left\{z_{j}\right\}_{j=1, \ldots . m}$

Advantage: | Flexibility

Standard preconditioners

- Simplest preconditioner: $\mathbf{M}=\operatorname{Diag}(A)>$ poor convergence.
- Next to simplest: SSOR $M=(D-\omega E) D^{-1}(D-\omega F)$
- Still simple but often more efficient: ILU(0).
- ILU(p) - ILU with level of fill p-more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multigrid, M-level ILU, ..

An observation. Introduction to Preconditioning

> Take a look back at basic relaxation methods: Jacobi, GaussSeidel, SOR, SSOR, ...
$>$ These are iterations of the form $x^{(k+1)}=M x^{(k)}+f$ where M is of the form $M=I-P^{-1} A$. For example for SSOR,

$$
P_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

$>$ SSOR attempts to solve the equivalent system

$$
P^{-1} A x=P^{-1} b
$$

where $P \equiv P_{S S O R}$ by the fixed point iteration
$x^{(k+1)}=\underbrace{\left(I-P^{-1} A\right)}_{M} x^{(k)}+P^{-1} b \quad$ instead of $\quad x^{(k+1)}=(I-A) x^{(k)}+b$
In other words:
Relaxation Scheme \Longleftrightarrow Preconditioned Fixed Point Iteration

The SOR/SSOR preconditioner

$>$ SOR preconditioning

$$
M_{S O R}=(D-\omega E)
$$

> SSOR preconditioning

$$
M_{S S O R}=(D-\omega E) D^{-1}(D-\omega F)
$$

$>M_{S S O R}=L U, L=$ lower unit matrix, $U=$ upper triangular. One solve with $M_{S S O R} \approx$ same cost as a MAT-VEC.
$>k$-step SOR (resp. SSOR) preconditioning:

$$
k \text { steps of SOR (resp. SSOR) }
$$

> Questions: Best ω ? For preconditioning can take $\omega=1$

$$
M=(D-E) D^{-1}(D-F)
$$

Observe: $M=L U+R$ with $R=E D^{-1} F$.
$>$ Best k ? $k=1$ is rarely the best. Substantial difference in performance.

Iteration times versus k for $\operatorname{SOR}(k)$ preconditioned GMRES

GMRES(10)
/

GMRES(20)

$I L U(0)$ and $I C(0)$ preconditioners

Notation: $\quad N Z(X)=$
Formal definition of ILU(0):

$$
\begin{aligned}
& A=L U+R \\
& N Z(L) \cup N Z(U)=N Z(A) \\
& r_{i j}=0 \text { for }(i, j) \in N Z(A)
\end{aligned}
$$

> This does not define $I L U(0)$ in a unique way.
Constructive definition: Compute the LU factorization of A but drop any fill-in in L and U outside of $\operatorname{Struct}(A)$.
$>$ ILU factorizations are often based on i, k, j version of GE.

What is the IKJ version of GE?

Different computational patterns for gaussian elimination

KJI,KJI

ALGORITHM : 14 - Gaussian Elimination - IKJ Variant

1. For $i=2, \ldots, n$ Do:
2. For $k=1, \ldots, i-1$ Do:
3. $a_{i k}:=a_{i k} / a_{k k}$
4. \quad For $j=k+1, \ldots, n$ Do:
5.

$$
a_{i j}:=a_{i j}-a_{i k} * a_{k j}
$$

6. EndDo
7. EndDo
8. EndDo

ILU(0) - zero-fill ILU

ALGORITHM : 15. ILU(0)
For $i=1, \ldots, N$ Do:
For $k=1, \ldots, i-1$ and if $(i, k) \in N Z(A)$ Do:
Compute $a_{i k}:=a_{i k} / a_{k j}$
For $j=k+1, \ldots$ and if $(i, j) \in N Z(A)$, Do:
compute $a_{i j}:=a_{i j}-a_{i k} a_{k, j}$.
EndFor

EndFor

> When A is SPD then the ILU factorization = Incomplete Cholesky factorization - IC(0). Meijerink and Van der Vorst [1977].

Typical eigenvalue distribution of preconditioned matrix

Pattern of ILU(0) for 5-point matrix

Stencils and ILU factorization

Stencils of A and the L and U parts of A :

Higher order ILU factorization

> Higher accuracy incomplete Cholesky: for regularly structured problems, IC(p) allows p additional diagonals in L.
> Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]

- Initially $\operatorname{Lev}_{i j}=\left\{\begin{array}{l}0 \text { for } a_{i j} \neq 0 \\ \infty \text { for } a_{i j}==0\end{array}\right.$
- At a given step i of Gaussian elimination:

$$
\boldsymbol{L e} \boldsymbol{v}_{k j}=\min \left\{\boldsymbol{L} e \boldsymbol{v}_{k j} ; \boldsymbol{L} \boldsymbol{e} \boldsymbol{v}_{k i}+L e \boldsymbol{v}_{i j}+1\right\}
$$

$>\operatorname{ILU}(\mathrm{p})$ Strategy $=$ drop anything with level of fill-in exceeding p.

* Increasing level of fill-in usually results in more accurate ILU and...
* ...typically in fewer steps and fewer arithmetic operations.
$I L U(1)$

ALGORITHM : 16. ILU(p)
For $i=2, N$ Do
For each $k=1, \ldots, i-1$ and if $a_{i j} \neq 0$ do
Compute $a_{i k}:=a_{i k} / a_{j j}$
Compute $a_{i, *}:=a_{i, *}-a_{i k} a_{k, *}$
Update the levels of $a_{i, *}$
Replace any element in row i with lev $\left(a_{i j}\right)>p$ by zero.
EndFor

EndFor

> The algorithm can be split into a symbolic and a numerical phase. Level-of-fill > in Symbolic phase

ILU with threshold - generic algorithms

ILU(p) factorizations are based on structure only and not numerical values $>$ potential problems for non M-matrices.
> One remedy: ILU with threshold - (generic name ILUT.)
Two broad approaches:
First approach [derived from direct solvers]: use any (direct) sparse solver and incorporate a dropping strategy. [Munksgaard (?), Osterby \& Zlatev, Sameh \& Zlatev[90], D. Young, \& al. (Boeing) etc...]

Second approach : [derived from ‘iterative solvers’ viewpoint]

1. use a (row or colum) version of the (i, k, j) version of GE ;
2. apply a drop strategy for the elment $l_{i k}$ as it is computed;
3. perform the linear combinations to get $a_{i *}$. Use full row expansion of $a_{i *}$;
4. apply a drop strategy to fill-ins.

ILU with threshold: ILUT (k, ϵ)

- Do the i, k, j version of Gaussian Elimination (GE).
- During each i-th step in GE, discard any pivot or fill-in whose value is below $\epsilon\left\|\operatorname{row}_{i}(A)\right\|$.
- Once the i-th row of $L+U$, (L-part + U-part) is computed retain only the k largest elements in both parts.
> Advantages: controlled fill-in. Smaller memory overhead.
$>$ Easy to implement -
$>$ Can be made quite inexpensive.

