OF MINNESOTA TWIN CITIES

A tutorial on: Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota Computer Science and Engineering

CRM Montreal - May 3, 2008

Outline

Part 1

- Sparse matrices and sparsity Preconditioned iterations
- Basic iterative techniques
- Projection methods
- Krylov subspace methods

Part 3

- Parallel implementations
- Multigrid methods

Part 4

• Eigenvalue problems

Preconditioning techniques

Applications

Part 2

... CRM May 3, 2008 2

PROJECTION METHODS

One-dimensional projection processes

Steepest descent – **Problem:** Ax = b, with A SPD

> Define:
$$f(x) = \frac{1}{2} ||x - x^*||_A^2 = \frac{1}{2} (A(x - x^*), (x - x^*))$$

Note: 1. $f(x) = \frac{1}{2}(Ax, x) - (b, x)$ + constant 2. $\nabla f(x) = Ax - b \rightarrow$ 'descent' direction = $b - Ax \equiv r$

Idea: take a step of the form $x_{new} = x + \alpha r$ which minimizes f(x). Best lpha = (r,r)/(Ar,r).

Iteration: $r \leftarrow b - Ax,$
 $\alpha \leftarrow (r, r)/(Ar, r)$
 $x \leftarrow x + \alpha r$

Can show: convergence guaranteed if A is SPD.

Residual norm steepest descent: Now *A* is arbitrary

• Minimize instead: $f(x) = \frac{1}{2} ||b - Ax||_2^2$ in direction $-\nabla f$.

- > Important Note: equivalent to usual steepest descent applied to normal equations $A^T A x = A^T b$.
- Converges under the condition that A is nonsingular.
- But convergence can be very slow

Minimal residual iteration: Assume A is positive definite $(A + A^T)$

is SPD).

► The objective function is still $\frac{1}{2} ||b - Ax||_2^2$, but the direction of search is r = b - Ax instead of $-\nabla f(x)$

Iteration:
$$r \leftarrow b - Ax,$$

 $\alpha \leftarrow (Ar, r)/(Ar, Ar)$
 $x \leftarrow x + \alpha r$

• Each step minimizes $f(x) = \|b - Ax\|_2^2$ in direction r.

Converges under the condition that $A + A^T$ is SPD.

Common feature of these techniques: $x_{new} = x + \alpha d$, where d

= a certain direction.

 $\blacktriangleright \alpha$ is defined to optimize a certain quadratic function.

Equivalent to determining α by an orthogonality constraint.

In MR:

Example

x(lpha)=x+lpha d, with d=b-Ax.

 $\min_lpha \ \|b - Ax(lpha)\|_2$ reached iff $b - Ax(lpha) \perp r$

One-dimensional projection methods – can we generalize to mdimensional techniques?

Initial Problem:
$$b - Ax = 0$$

Given two subspaces K and L of \mathbb{R}^N define the *approximate problem:*

Find
$$ilde{x} \in K$$
 such that $b - A ilde{x} \perp L$

Leads to a small linear system ('projected problems') This is a basic projection step. Typically: sequence of such steps are applied

\blacktriangleright With a nonzero initial guess x_0 , the approximate problem is

Find $ilde{x} \in x_0 + K$ such that $b - A ilde{x} \perp L$

Write $\tilde{x} = x_0 + \delta$ and $r_0 = b - Ax_0$. Leads to a system for δ :

Find $\delta \in K$ such that $r_0 - A\delta \perp L$

Let
$$egin{array}{l} ullet V = [v_1, \dots, v_m] ext{ a basis of } K extbf{\&} \ ullet W = [w_1, \dots, w_m] ext{ a basis of } L \end{array}$$

Then letting x be the approximate solution $\tilde{x} = x_0 + \delta \equiv x_0 + Vy$ where y is a vector of \mathbb{R}^m , the Petrov-Galerkin condition yields,

 $W^T(r_0 - AVy) = 0$

and therefore

$$ilde{x} = x_0 + V [W^T A V]^{-1} W^T r_0$$

Remark: In practice $W^T A V$ is known from algorithm and has a simple structure [tridiagonal, Hessenberg,..]

Prototype Projection Method

Until Convergence Do:

- **1.** Select a pair of subspaces *K*, and *L*;
- 2. Choose bases $V = [v_1, \ldots, v_m]$ for K and $W = [w_1, \ldots, w_m]$ for L.
- 3. Compute

$$egin{aligned} r \leftarrow b - Ax, \ y \leftarrow (W^T A V)^{-1} W^T r, \ x \leftarrow x + V y. \end{aligned}$$

Two important particular cases.

- 1. L = AK . then $\|b A\tilde{x}\|_2 = \min_{z \in K} \|b Az\|_2$
 - \rightarrow class of minimal residual methods: CR, GCR, ORTHOMIN, GMRES, CGNR, ...
- 2. $L = K \rightarrow$ class of Galerkin or orthogonal projection methods. When A is SPD then

$$\|x^* - ilde{x}\|_A = \min_{z \in K} \|x^* - z\|_A.$$

One-dimensional projection processes

 $K = span\{d\}$ and $L = span\{e\}$

Then $ilde{x} \leftarrow x + lpha d$ and Petrov-Galerkin condition $r - A\delta \perp e$ yields $\alpha = rac{(r,e)}{(Ad,e)}$

(I) Steepest descent: K = span(r), L = K

(II) Residual norm steepest descent: $K = span(A^T r)$, L = AK

(III) Minimal residual iteration: K = span(r), L = AK

Krylov Subspace Methods

Principle: Projection methods on Krylov subspaces:

$$K_m(A,v_1)= extsf{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$$

- probably the most important class of iterative methods.
- many variants exist depending on the subspace L.

Simple properties of K_m . Let $\mu = \deg$. of minimal polynomial of v

- $K_m = \{p(A)v | p = \text{polynomial of degree} \le m 1\}$
- $K_m = K_\mu$ for all $m \ge \mu$. Moreover, K_μ is invariant under A.
- $\bullet dim(K_m)=m ext{ iff } \mu \geq m.$

Arnoldi's Algorithm

- **Sol:** to compute an orthogonal basis of K_m .
- > Input: Initial vector v_1 , with $||v_1||_2 = 1$ and m.

For j=1,...,m do

• Compute $w := Av_j$

$$ullet$$
 for $i=1,\ldots,j,$ do $\left\{egin{array}{ll} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i \end{array}
ight.$

 $ullet h_{j+1,j} = \|w\|_2$ and $v_{j+1} = w/h_{j+1,j}$

Result of orthogonalization process

- **1.** $V_m = [v_1, v_2, ..., v_m]$ orthonormal basis of K_m .
- **2.** $AV_m = V_{m+1}\overline{H}_m$
- **3.** $V_m^T A V_m = H_m \equiv \overline{H}_m \text{last row.}$



> Petrov-Galerkin condition when $L_m = K_m$, shows:

$$x_m = x_0 + V_m H_m^{-1} V_m^T r_0$$

Select $v_1 = r_0 / \|r_0\|_2 \equiv r_0 / \beta$ in Arnoldi's algorithm, then: $x_m = x_0 + \beta V_m H_m^{-1} e_1$

Equivalent algorithms:

- * FOM [YS, 1981] (above formulation)
- * Young and Jea's ORTHORES [1982].
- * Axelsson's projection method [1981].

Minimal residual methods $(L_m = AK_m)$

> When $L_m = AK_m$, we let $W_m \equiv AV_m$ and obtain:

 $egin{aligned} x_m = x_0 + V_m [W_m^T A V_m]^{-1} W_m^T r_0 \end{aligned}$

 \blacktriangleright Use again $v_1:=r_0/(eta:=\|r_0\|_2)$ and: $AV_m=V_{m+1}ar{H_m}$

$$x_m = x_0 + V_m [ar{H}_m^T ar{H}_m]^{-1} ar{H}_m^T eta e_1 = x_0 + V_m y_m$$

where y_m minimizes $\|\beta e_1 - \overline{H}_m y\|_2$ over $y \in \mathbb{R}^m$. Hence, (Generalized Minimal Residual method (GMRES) [Saad-Schultz, 1983]):

$$x_m = x_0 + V_m y_m$$
where $y_m : \min_y \|\beta e_1 - \bar{H}_m y\|_2$ Equivalent methods:• Axelsson's CGLS• Orthomin (1980)• Orthodir• GCR

Difficulty: As m increases, storage and work per step increase fast.

First remedy: Restarting. Fix the dimension m of the subspace

ALGORITHM : 1 . Restarted GMRES (resp. Arnoldi)

- 1. Start/Restart: Compute $r_0 = b Ax_0$, and $v_1 = r_0/(\beta := ||r_0||_2)$.
- **2.** Arnoldi Process: generate \overline{H}_m and V_m .
- 3. Compute $y_m = H_m^{-1} eta e_1$ (FOM), or

 $egin{argmin} y_m = argmin \|eta e_1 - ar{H}_m y\|_2$ (GMRES)

4. $x_m = x_0 + V_m y_m$

5. If $||r_m||_2 \leq \epsilon ||r_0||_2$ stop else set $x_0 := x_m$ and go to 1.

Second remedy: Truncate the orthogonalization

The formula for v_{j+1} is replaced by

$$h_{j+1,j}v_{j+1}=Av_j-\sum_{i=j-k+1}^jh_{ij}v_i$$
 ,

 \rightarrow each v_j is made orthogonal to the previous $k v_i$'s.

- $ightarrow x_m$ still computed as $x_m = x_0 + V_m H_m^{-1} eta e_1$.
- \rightarrow It can be shown that this is again an oblique projection process.

IOM (Incomplete Orthogonalization Method) = replace orthogonalization in FOM, by the above truncated (or 'incomplete') orthogonalization.

The direct version of IOM [DIOM]:

Writing the LU decomposition of H_m as $H_m = L_m U_m$ we get

 $x_m = x_0$ + $V_m U_m^{-1}$ $\left| L_m^{-1} eta e_1
ight| \equiv x_0 + P_m z_m$

Structure of L_m, U_m when k = 3

Result: Can update x_m at each step:

$$x_m = x_{m-1} + \zeta_m p_m$$
 ,

Note: Several existing pairs of methods have a similar link: they are based on the LU, or other, factorizations of the H_m matrix

- **CG-like formulation of IOM called DIOM [Saad, 1982]**
- ORTHORES(k) [Young & Jea '82] equivalent to DIOM(k)
- **SYMMLQ** [Paige and Saunders, '77] uses LQ factorization of H_m .
- \blacktriangleright Can add partial pivoting to LU factorization of H_m

The Symmetric Case: Observation

Observe: When *A* is real symmetric then in Arnoldi's method:

 $oldsymbol{H}_m = V_m^T A V_m$

must be symmetric. Therefore

THEOREM. When Arnoldi's algorithm is applied to a (real) symmetric matrix then the matrix H_m is symmetric tridiagonal.

In other words:

1) $h_{ij} = 0$ for |i - j| > 1

2) $h_{j,j+1} = h_{j+1,j}, \quad j = 1, \dots, m$

We can write

The v_i 's satisfy a three-term recurrence [Lanczos Algorithm]:

$$eta_{j+1}v_{j+1}=Av_j-lpha_jv_j-eta_jv_{j-1}$$

 \rightarrow simplified version of Arnoldi's algorithm for sym. systems.

Symmetric matrix + Arnoldi --> Symmetric Lanczos

The Lanczos algorithm

ALGORITHM : 2 Lanczos

1. Choose an initial vector v_1 of norm unity.

Set $eta_1 \equiv 0, v_0 \equiv 0$

2. For j = 1, 2, ..., m Do:

$$3. \qquad w_j := Av_j - \beta_j v_{j-1}$$

4. $\alpha_j := (w_j, v_j)$

$$5. \qquad w_j := w_j - \alpha_j v_j$$

- 6. $\beta_{j+1} := \|w_j\|_2$. If $\beta_{j+1} = 0$ then Stop
- 7. $v_{j+1}:=w_j/eta_{j+1}$
- 8. EndDo

Lanczos algorithm for linear systems

- Usual orthogonal projection method setting:
- $ullet L_m = K_m = span\{r_0, Ar_0, \dots, A^{m-1}r_0\}$
- Basis $V_m = [v_1, \dots, v_m]$ of K_m generated by the Lanczos algorithm
- Three different possible implementations.
- (1) Arnoldi-like; (2) Exploit tridigonal nature of H_m (DIOM); (3) Conjugate gradient.
- following what was done for DIOM..

The Conjugate Gradient Algorithm (A S.P.D.)

- > Note: the p_i 's are A-orthogonal
- > The r''_i 's are orthogonal.

$$\blacktriangleright$$
 And we have $x_m = x_{m-1} + \xi_m p_m$

So there must be an update of the form:

1.
$$p_m = r_{m-1} + eta_m p_{m-1}$$

2. $x_m = x_{m-1} + \xi_m p_m$
3. $r_m = r_{m-1} - \xi_m A p_m$

ALGORITHM : 3 . Conjugate Gradient

Start:
$$r_0 := b - Ax_0$$
, $p_0 := r_0$.

Iterate: Until convergence do,

$$lpha_{j} := (r_{j}, r_{j})/(Ap_{j}, p_{j})$$
 $x_{j+1} := x_{j} + lpha_{j}p_{j}$
 $r_{j+1} := r_{j} - lpha_{j}Ap_{j}$
 $eta_{j} := (r_{j+1}, r_{j+1})/(r_{j}, r_{j})$
 $p_{j+1} := r_{j+1} + eta_{j}p_{j}$
EndDo

▶ $r_j = scaling \times v_{j+1}$. The r_j 's are orthogonal.

► The p_j 's are A-conjugate, i.e., $(Ap_i, p_j) = 0$ for $i \neq j$.

METHODS BASED ON LANCZOS BIORTHOGONALIZATION

ALGORITHM : 4 Lanczos Bi-Orthogonalization

1. Choose two vectors v_1, w_1 such that $(v_1, w_1) = 1$.

2. Set
$$eta_1=\delta_1\equiv 0$$
, $w_0=v_0\equiv 0$

3. For j = 1, 2, ..., m Do:

4.
$$\alpha_j = (Av_j, w_j)$$

5.
$$\hat{v}_{j+1} = Av_j - \alpha_j v_j - \beta_j v_{j-1}$$

$$\hat{w}_{j+1} = A^T w_j - \alpha_j w_j - \delta_j w_{j-1}$$

7.
$$\delta_{j+1} = |(\hat{v}_{j+1}, \hat{w}_{j+1})|^{1/2}$$
. If $\delta_{j+1} = 0$ Stop

8.
$$eta_{j+1} = (\hat{v}_{j+1}, \hat{w}_{j+1}) / \delta_{j+1}$$

9.
$$w_{j+1} = \hat{w}_{j+1} / eta_{j+1}$$

10.
$$v_{j+1} = \hat{v}_{j+1} / \delta_{j+1}$$

11. EndDo

Extension of the symmetric Lanczos algorithm

Builds a pair of biorthogonal bases for the two subspaces

 $\mathcal{K}_m(A,v_1) \hspace{0.2cm} ext{and} \hspace{0.2cm} \mathcal{K}_m(A^T,w_1)$

> Different ways to choose δ_{j+1} , β_{j+1} in lines 7 and 8.

Let

$$T_m = egin{pmatrix} lpha_1 & eta_2 & \ \delta_2 & lpha_2 & eta_3 & \ & \ddots & \ddots & \ & & \delta_{m-1} & lpha_{m-1} & eta_m & \ & & & \delta_m & lpha_m \end{pmatrix} \,.$$

 $\succ v_i \in \mathcal{K}_m(A,v_1)$ and $w_j \in \mathcal{K}_m(A^T,w_1)$.

If the algorithm does not break down before step m, then the vectors $v_i, i = 1, ..., m$, and $w_j, j = 1, ..., m$, are biorthogonal, i.e.,

$$(v_j,w_i)=\delta_{ij} \hspace{1em} 1\leq i, \hspace{1em} j\leq m \; .$$

Moreover, $\{v_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A,v_1)$ and $\{w_i\}_{i=1,2,...,m}$ is a basis of $\mathcal{K}_m(A^T,w_1)$ and

$$egin{aligned} AV_m &= V_m T_m + \delta_{m+1} v_{m+1} e_m^T, \ A^T W_m &= W_m T_m^T + eta_{m+1} w_{m+1} e_m^T, \ W_m^T A V_m &= T_m ~~. \end{aligned}$$

The Lanczos Algorithm for Linear Systems

ALGORITHM : 5 Lanczos Alg. for Linear Systems

- 1. Compute $r_0 = b Ax_0$ and $\beta := \|r_0\|_2$
- 2. Run m steps of the nonsymmetric Lanczos Algorithm i.e.,
- 3. Start with $v_1 := r_0/\beta$, and any w_1 such that

 $(v_1,w_1)=1$

- 4. Generate the pair of Lanczos vectors v_1, \ldots, v_m , and w_1, \ldots, w_m
- 5. and the tridiagonal matrix T_m from Algorithm ??.
- 6. Compute $y_m = T_m^{-1}(\beta e_1)$ and $x_m := x_0 + V_m y_m$.
- BCG can be derived from the Lanczos Algorithm similarly to CG

ALGORITHM : 6 BiConjugate Gradient (BCG)

- 1. Compute $r_0 := b Ax_0$.
- 2. Choose r_0^* such that $(r_0, r_0^*) \neq 0$;

Set $p_0:=r_0$, $p_0^*:=r_0^*$

3. For j = 0, 1, ..., until convergence Do:,

4.
$$lpha_j:=(r_j,r_j^*)/(Ap_j,p_j^*)$$

5.
$$x_{j+1} := x_j + \alpha_j p_j$$

6.
$$r_{j+1}:=r_j-lpha_jAp_j$$

7.
$$r_{j+1}^* := r_j^* - lpha_j A^T p_j^*$$

8.
$$eta_j := (r_{j+1}, r_{j+1}^*)/(r_j, r_j^*)$$

- 9. $p_{j+1}:=r_{j+1}+eta_jp_j$
- 10. $p_{j+1}^* := r_{j+1}^* + eta_j p_j^*$

11. EndDo

Quasi-Minimal Residual Algorithm

 $\blacktriangleright \quad \text{Recall relation from the lanczos algorithm: } AV_m = V_{m+1}\bar{T}_m \text{ with} \\ \bar{T}_m = (m+1) \times m \text{ tridiagonal matrix } \bar{T}_m = \begin{pmatrix} T_m \\ \delta_{m+1}e_m^T \end{pmatrix} .$

> Let $v_1 \equiv eta r_0$ and $x = x_0 + V_m y$. Residual norm $\|b - Ax\|_2$ equals

$$\|m{r}_0 - m{A}m{V}_mm{y}\|_2 = \|m{eta}m{v}_1 - m{V}_{m+1}ar{m{T}}_mm{y}\|_2 = \|m{V}_{m+1}\left(m{eta}m{e}_1 - ar{m{T}}_mm{y}
ight)\|_2$$

► Column-vectors of V_{m+1} are not \perp (\neq GMRES).

▶ But: reasonable idea to minimize the function $J(y) \equiv \|eta e_1 - ar{T}_m y\|_2$

Quasi-Minimal Residual Algorithm (Freund, 1990).

Transpose-Free Variants

- BCG and QMR require a matrix-by-vector product with A and A^T at each step. The products with A^T do not contribute directly to x_m.
 They allow to determine the scalars (α_j and β_j in BCG).
 QUESTION: is it possible to bypass the use of A^T?
- Motivation: in nonlinear equations, A is often not available explicitly but via the Frechet derivative:

$$J(u_k)v = rac{F(u_k+\epsilon v)-F(u_k)}{\epsilon}\,.$$

Conjugate Gradient Squared

* Clever variant of BCG which avoids using A^T [Sonneveld, 1984].

In BCG:

$$r_i=
ho_i(A)r_0$$

where $\rho_i = polynomial$ of degree *i*.

In CGS:

$$r_i=
ho_i^2(A)r_0$$

Define :

$$egin{aligned} r_j &= \phi_j(A) r_0, \ p_j &= \pi_j(A) r_0, \end{aligned}$$

$$egin{aligned} r_j^* &= \phi_j(A^T)r_0^*, \ p_j^* &= \pi_j(A^T)r_0^* \end{aligned}$$

Scalar α_j in BCG is given by

$$lpha_j = rac{(\phi_j(A)r_0,\phi_j(A^T)r_0^*)}{(A\pi_j(A)r_0,\pi_j(A^T)r_0^*)} = rac{(\phi_j^2(A)r_0,r_0^*)}{(A\pi_j^2(A)r_0,r_0^*)}$$

> Possible to get a recursion for the $\phi_j^2(A)r_0$ and $\pi_j^2(A)r_0$?

$$\begin{array}{c|c} \phi_{j+1}(t) = \phi_j(t) - \alpha_j t \pi_j(t), \\ \pi_{j+1}(t) = \phi_{j+1}(t) + \beta_j \pi_j(t) \end{array}$$
 Square these equalities
$$\begin{array}{c|c} \phi_{j+1}(t) = \phi_j^2(t) - 2\alpha_j t \pi_j(t) \phi_j(t) + \alpha_j^2 t^2 \pi_j^2(t), \\ \pi_{j+1}^2(t) = \phi_{j+1}^2(t) + 2\beta_j \phi_{j+1}(t) \pi_j(t) + \beta_j^2 \pi_j(t)^2. \end{array}$$
 Problem: ... Cross terms

Solution: Let $\phi_{j+1}(t)\pi_j(t)$, be a third member of the recurrence. For $\pi_j(t)\phi_j(t)$, note:

$$egin{aligned} \phi_j(t) \pi_j(t) &= \phi_j(t) \left(\phi_j(t) + eta_{j-1} \pi_{j-1}(t)
ight) \ &= \phi_j^2(t) + eta_{j-1} \phi_j(t) \pi_{j-1}(t). \end{aligned}$$

Result:

$$egin{aligned} \phi_{j+1}^2 &= \phi_j^2 - lpha_j t \left(2 \phi_j^2 + 2 eta_{j-1} \phi_j \pi_{j-1} - lpha_j t \ \pi_j^2
ight) \ \phi_{j+1} \pi_j &= \phi_j^2 + eta_{j-1} \phi_j \pi_{j-1} - lpha_j t \ \pi_j^2 \ \pi_{j+1}^2 &= \phi_{j+1}^2 + 2 eta_j \phi_{j+1} \pi_j + eta_j^2 \pi_j^2. \end{aligned}$$

Define:

$$r_j = \phi_j^2(A) r_0, \hspace{1em} p_j = \pi_j^2(A) r_0, \hspace{1em} q_j = \phi_{j+1}(A) \pi_j(A) r_0$$

Recurrences become:

$$egin{aligned} r_{j+1} &= r_j - lpha_j A \left(2 r_j + 2 eta_{j-1} q_{j-1} - lpha_j A \, p_j
ight), \ q_j &= r_j + eta_{j-1} q_{j-1} - lpha_j A \, p_j, \ p_{j+1} &= r_{j+1} + 2 eta_j q_j + eta_j^2 p_j. \end{aligned}$$

Define auxiliary vector $d_j = 2r_j + 2eta_{j-1}q_{j-1} - lpha_jAp_j$

Sequence of operations to compute the approximate solution, starting with $r_0 := b - Ax_0$, $p_0 := r_0$, $q_0 := 0$, $\beta_0 := 0$.

1. $\alpha_j = (r_j, r_0^*)/(Ap_j, r_0^*)$ 5. $r_{j+1} = r_j - \alpha_j Ad_j$ 2. $d_j = 2r_j + 2\beta_{j-1}q_{j-1} - \alpha_j Ap_j$ 6. $\beta_j = (r_{j+1}, r_0^*)/(r_j, r_0^*)$ 3. $q_j = r_j + \beta_{j-1}q_{j-1} - \alpha_j Ap_j$ 7. $p_{j+1} = r_{j+1} + \beta_j(2q_j + \beta_j p_j)$.

4. $x_{j+1} = x_j + \alpha_j d_j$ > one more auxiliary vector, $u_j = r_j + \beta_{j-1}q_{j-1}$. So

$$egin{aligned} d_j \,&=\, u_j + q_j, \ q_j \,&=\, u_j - lpha_j A p_j, \ p_{j+1} \,&=\, u_{j+1} + eta_j (q_j + eta_j p_j), \end{aligned}$$

> vector d_j is no longer needed.

ALGORITHM : 7 . Conjugate Gradient Squared

1. Compute $r_0 := b - Ax_0$; r_0^* arbitrary.

2. Set
$$p_0 := u_0 := r_0$$
.

3. For j = 0, 1, 2..., until convergence Do:

4.
$$lpha_j = (r_j, r_0^*)/(Ap_j, r_0^*)$$

5.
$$q_j = u_j - \alpha_j A p_j$$

6.
$$x_{j+1} = x_j + \alpha_j (u_j + q_j)$$

7.
$$r_{j+1} = r_j - \alpha_j A(u_j + q_j)$$

8. $eta_j = (r_{j+1}, r_0^*)/(r_j, r_0^*)$

9.
$$u_{j+1}=r_{j+1}+eta_j q_j$$

10.
$$p_{j+1} = u_{j+1} + \beta_j (q_j + \beta_j p_j)$$

11. EndDo

> Note: no matrix-by-vector products with A^T but two matrix-by-vector products with A, at each step.

 $\begin{array}{rcl} \text{Vector:} & \longleftrightarrow & \text{Polynomial in BCG} & : \\ & q_i & \longleftrightarrow & \bar{r}_i(t) \bar{p}_{i-1}(t) \\ & u_i & \longleftrightarrow & \bar{p}_i^2(t) \\ & r_i & \longleftrightarrow & \bar{r}_i^2(t) \end{array}$

where $\bar{r}_i(t)$ = residual polynomial at step *i* for BCG, .i.e., $r_i = \bar{r}_i(A)r_0$, and $\bar{p}_i(t)$ = conjugate direction polynomial at step *i*, i.e., $p_i = \bar{p}_i(A)r_0$.

BCGSTAB (van der Vorst, 1992)

➤ In CGS: residual polynomial of BCG is squared. ➤ bad behavior in case of irregular convergence.

Bi-Conjugate Gradient Stabilized (BCGSTAB) = a variation of CGS which avoids this difficulty. > Derivation similar to CGS.

Residuals in BCGSTAB are of the form,

 $r_j'=\psi_j(A)\phi_j(A)r_0$

in which, $\phi_j(t)$ = BCG residual polynomial, and ..

> .. $\psi_j(t)$ = a new polynomial defined recursively as $\psi_{j+1}(t) = (1-\omega_j t)\psi_j(t)$

 ω_i chosen to 'smooth' convergence [steepest descent step]

ALGORITHM : 8 BCGSTAB

1. Compute $r_0 := b - Ax_0$; r_0^* arbitrary;

2. $p_0 := r_0$.

3. For $j = 0, 1, \ldots$, until convergence Do:

4.
$$\alpha_j := (r_j, r_0^*)/(Ap_j, r_0^*)$$

$$5. \quad s_j := r_j - \alpha_j A p_j$$

$$\boldsymbol{6.} \quad \omega_j := (As_j, s_j)/(As_j, As_j)$$

7.
$$x_{j+1} := x_j + \alpha_j p_j + \omega_j s_j$$

8.
$$r_{j+1}:=s_j-\omega_jAs_j$$

9.
$$\beta_j := rac{(r_{j+1}, r_0^*)}{(r_j, r_0^*)} imes rac{lpha_j}{\omega_j}$$

10.
$$p_{j+1} := r_{j+1} + eta_j (p_j - \omega_j A p_j)$$

11. EndDo

PRECONDITIONING

Preconditioning – Basic principles

Basic ideais to use the Krylov subspace method on a modifiedsystem such as

 $M^{-1}Ax = M^{-1}b.$

- The matrix $M^{-1}A$ need not be formed explicitly; only need to solve Mw = v whenever needed.
- Consequence: fundamental requirement is that it should be easy to compute $M^{-1}v$ for an arbitrary vector v.

Left, Right, and Split preconditioning

Left preconditioning: $M^{-1}Ax = M^{-1}b$

Right preconditioning: $AM^{-1}u = b$, with $x = M^{-1}u$

Split preconditioning: $M_L^{-1}AM_R^{-1}u = M_L^{-1}b$, with $x = M_R^{-1}u$

[Assume M is factored: $M = M_L M_R$.]

- **Assume:** *A* and *M* are both SPD.
- > Applying CG directly to $M^{-1}Ax = M^{-1}b$ or $AM^{-1}u = b$ won't work because coefficient matrices are not symmetric.
- > Alternative: when $M = LL^T$ use split preconditioner option
- Second alternative: Observe that $M^{-1}A$ is self-adjoint wrt M inner product:

$$(M^{-1}Ax,y)_M = (Ax,y) = (x,Ay) = (x,M^{-1}Ay)_M$$

Preconditioned CG (PCG)

ALGORITHM : 9 Preconditioned Conjugate Gradient

- 1. Compute $r_0 := b Ax_0$, $z_0 = M^{-1}r_0$, and $p_0 := z_0$
- 2. For $j = 0, 1, \ldots$, until convergence Do:

3.
$$lpha_j:=(r_j,z_j)/(Ap_j,p_j)$$

4.
$$x_{j+1}:=x_j+lpha_j p_j$$

5.
$$r_{j+1}:=r_j-lpha_jAp_j$$

6.
$$z_{j+1}:=M^{-1}r_{j+1}$$

- 7. $\beta_j := (r_{j+1}, z_{j+1})/(r_j, z_j)$
- 8. $p_{j+1}:=z_{j+1}+eta_jp_j$
- 9. EndDo

Note $M^{-1}A$ is also self-adjoint with respect to $(.,.)_A$:

 $(M^{-1}Ax,y)_A = (AM^{-1}Ax,y) = (x,AM^{-1}Ay) = (x,M^{-1}Ay)_A$

Can obtain a similar algorithm

> Assume that M =Cholesky product $M = LL^T$.

Then, another possibility: Split preconditioning option, which applies CG to the system

$$L^{-1}AL^{-T}u = L^{-1}b$$
, with $x = L^{T}u$

Notation: $\hat{A} = L^{-1}AL^{-T}$. All quantities related to the preconditioned system are indicated by \hat{A} .

ALGORITHM : 10 . CG with Split Preconditioner

- 1. Compute $r_0 := b Ax_0$; $\hat{r}_0 = L^{-1}r_0$; and $p_0 := L^{-T}\hat{r}_0$.
- 2. For $j = 0, 1, \ldots$, until convergence Do:

3.
$$lpha_j := (\hat{r}_j, \hat{r}_j)/(Ap_j, p_j)$$

4.
$$x_{j+1} := x_j + \alpha_j p_j$$

- 5. $\hat{r}_{j+1}:=\hat{r}_j-lpha_jL^{-1}Ap_j$
- 6. $eta_j := (\hat{r}_{j+1}, \hat{r}_{j+1})/(\hat{r}_j, \hat{r}_j)$

7.
$$p_{j+1} := L^{-T} \hat{r}_{j+1} + \beta_j p_j$$

8. EndDo

> The x_j 's produced by the above algorithm and PCG are identical (if same initial guess is used).

Question: What can we do in case *M* is defined only approximately? i.e., if it can vary from one step to the other.?

Applications:

Iterative techniques as preconditioners: Block-SOR, SSOR, Multigrid, etc..

Chaotic relaxation type preconditioners (e.g., in a parallel computing environment)

Mixing Preconditioners – mixing coarse mesh / fine mesh preconditioners.

1. Start: Choose x_0 and a dimension m of the Krylov subspaces.

2. Arnoldi process:

- Compute $r_0 = b Ax_0$, $eta = \|r_0\|_2$ and $v_1 = r_0/eta$.
- For j = 1, ..., m do - Compute $w := Av_j$ - for i = 1, ..., j, do $\begin{cases} h_{i,j} := (w, v_i) \\ w := w - h_{i,j}v_i \end{cases}$; - $h_{j+1,1} = \|w\|_2$; $v_{j+1} = \frac{w}{h_{j+1,1}}$ • Define $V_m := [v_1, ..., v_m]$ and $\bar{H}_m = \{h_{i,j}\}$.
- 3. Form the approximate solution: Compute $x_m = x_0 + V_m y_m$ where $y_m = \operatorname{argmin}_y \|\beta e_1 \bar{H}_m y\|_2$ and $e_1 = [1, 0, \dots, 0]^T$.
- 4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.

- **1.** Start: Choose x_0 and a dimension m
- 2. Arnoldi process:
 - Compute $r_0 = b A x_0$, $eta = \|r_0\|_2$ and $v_1 = r_0/eta$.
 - ullet For j=1,...,m do
 - Compute $z_j := M^{-1} v_j$
 - Compute $w := A z_j$
 - for $i=1,\ldots,j$, do : $\left\{egin{array}{l} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i\end{array}
 ight\}$ - $h_{j+1,1}=\|w\|_2; v_{j+1}=w/h_{j+1,1}$
 - Define $V_m:=[v_1,...,v_m]$ and $ar{H}_m=\{h_{i,j}\}.$
- 3. Form the approximate solution: $x_m = x_0 + M^{-1}V_m y_m$ where $y_m = \operatorname{argmin}_y \|eta e_1 ar{H}_m y\|_2$ and $e_1 = [1, 0, \dots, 0]^T$.
- 4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.

ALGORITHM : 13 GMRES – variable preconditioner

1. Start: Choose x_0 and a dimension m of the Krylov subspaces.

2. Arnoldi process:

- Compute $r_0 = b Ax_0$, $eta = \|r_0\|_2$ and $v_1 = r_0/eta$.
- ullet For j=1,...,m do
 - Compute $z_j := M_j^{-1} v_j$; Compute $w := A z_j$;
 - for $i=1,\ldots,j$, do: $\left\{egin{array}{l} h_{i,j}:=(w,v_i)\ w:=w-h_{i,j}v_i\end{array}
 ight\}$; - $h_{j+1,1}=\|w\|_2;v_{j+1}=w/h_{j+1,1}$
- Define $Z_m:=[z_1,...,z_m]$ and $ar{H}_m=\{h_{i,j}\}.$
- 3. Form the approximate solution: Compute $x_m = x_0 + Z_m y_m$ where $y_m = \operatorname{argmin}_y \|\beta e_1 \bar{H}_m y\|_2$ and $e_1 = [1, 0, \dots, 0]^T$.
- 4. Restart: If satisfied stop, else set $x_0 \leftarrow x_m$ and goto 2.

Properties

- x_m minimizes $b Ax_m$ over $\mathrm{Span}\{Z_m\}$.
- If $Az_j = v_j$ (i.e., if preconditioning is 'exact' at step j) then approximation x_j is exact.
- If M_j is constant then method is \equiv to Right-Preconditioned GM-RES.

Additional Costs:

- Arithmetic: none.
- Memory: Must save the additional set of vectors $\{z_j\}_{j=1,...m}$

Standard preconditioners

- Simplest preconditioner: M = Diag(A) > poor convergence.
- Next to simplest: SSOR $M = (D \omega E)D^{-1}(D \omega F)$
- Still simple but often more efficient: ILU(0).
- ILU(p) ILU with level of fill p more complex.
- Class of ILU preconditioners with threshold
- Class of approximate inverse preconditioners
- Class of Multilevel ILU preconditioners: Multigrid, Algebraic Multigrid, M-level ILU, ..

An observation. Introduction to Preconditioning

► Take a look back at basic relaxation methods: Jacobi, Gauss-Seidel, SOR, SSOR, ...

► These are iterations of the form $x^{(k+1)} = Mx^{(k)} + f$ where M is of the form $M = I - P^{-1}A$. For example for SSOR, $P_{SSOR} = (D - \omega E)D^{-1}(D - \omega F)$

SSOR attempts to solve the equivalent system

$$P^{-1}Ax = P^{-1}b$$

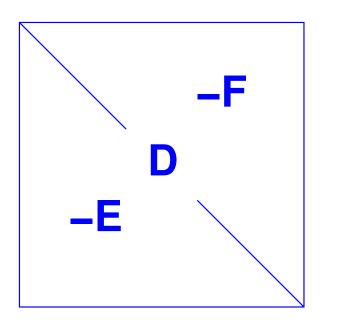
where $P \equiv P_{SSOR}$ by the fixed point iteration

 $x^{(k+1)} = \underbrace{(I - P^{-1}A)}_{M} x^{(k)} + P^{-1}b$ instead of $x^{(k+1)} = (I - A)x^{(k)} + b$

In other words:

Relaxation Scheme \iff **Preconditioned Fixed Point Iteration**

The SOR/SSOR preconditioner



SOR preconditioning

$$M_{SOR} = (D - \omega E)$$

SSOR preconditioning

$$M_{SSOR} = (D-\omega E)D^{-1}(D-\omega F)$$

> $M_{SSOR} = LU, L =$ lower unit matrix, U = upper triangular. One solve with $M_{SSOR} \approx$ same cost as a MAT-VEC.

► *k*-step SOR (resp. SSOR) preconditioning:

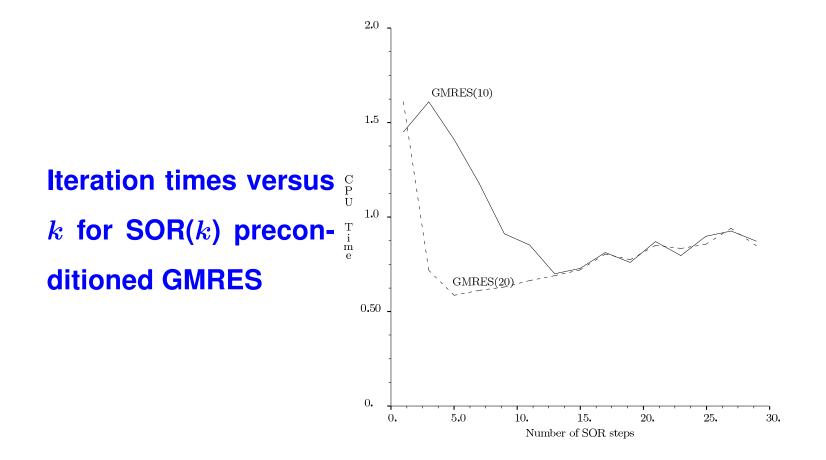
k steps of SOR (resp. SSOR)

> Questions: Best ω ? For preconditioning can take $\omega = 1$

$$M = (D - E)D^{-1}(D - F)$$

Observe: M = LU + R with $R = ED^{-1}F$.

> Best k? k = 1 is rarely the best. Substantial difference in performance.



ILU(0) and IC(0) preconditioners

Notation:
$$NZ(X) = \{(i, j) \mid X_{i,j} \neq 0\}$$

Formal definition of ILU(0):

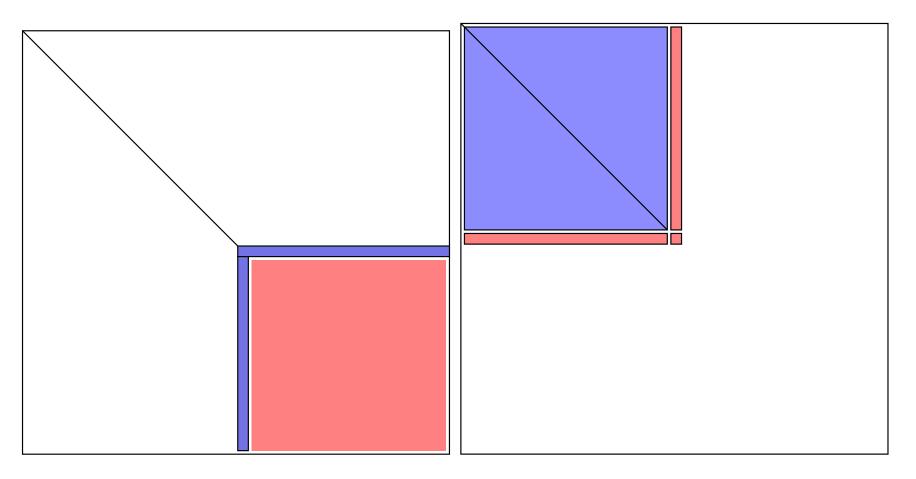
> This does not define ILU(0) in a unique way.

<u>Constructive definition</u>: Compute the LU factorization of A but drop any fill-in in L and U outside of Struct(A).

ILU factorizations are often based on i, k, j version of GE.

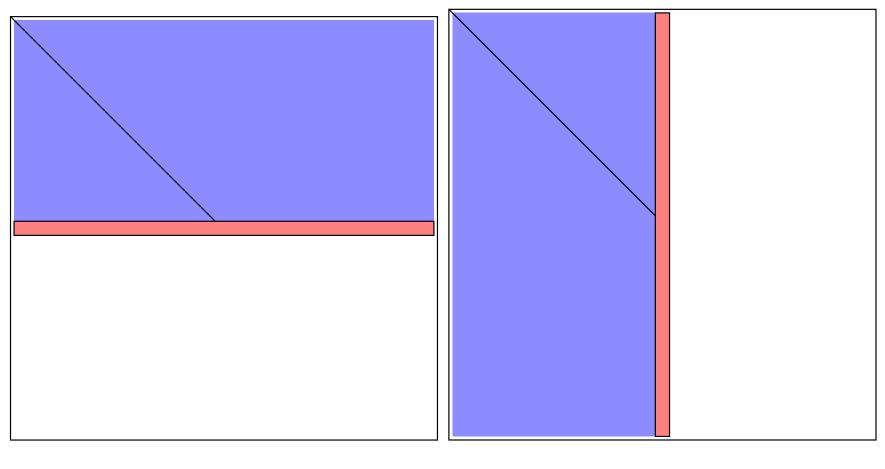
What is the IKJ version of GE?

Different computational patterns for gaussian elimination



KJI,KJI

IJK



IKJ

JKI

ALGORITHM : 14 Gaussian Elimination – IKJ Variant

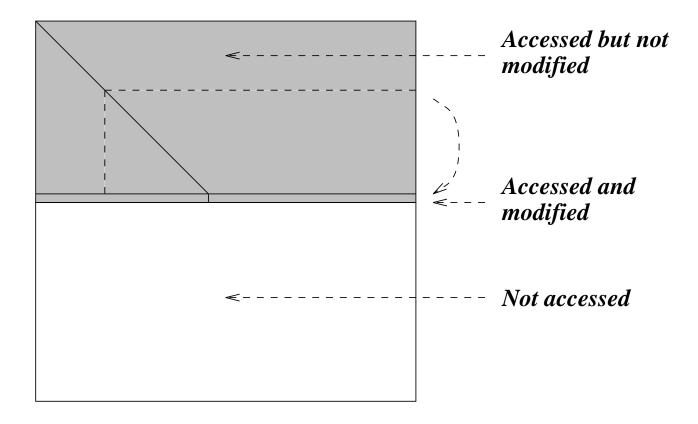
- 1. For i = 2, ..., n Do:
- 2. For $k = 1, \ldots, i 1$ Do:

$$a_{ik} := a_{ik}/a_{kk}$$

4. For
$$j = k + 1, ..., n$$
 Do:

5.
$$a_{ij} := a_{ij} - a_{ik} * a_{kj}$$

- 6. EndDo
- 7. EndDo
- 8. EndDo



ALGORITHM : 15 . *ILU(0)*

For $i=1,\ldots,N$ Do:

For $k = 1, \ldots, i - 1$ and if $(i, k) \in NZ(A)$ Do:

Compute $a_{ik} := a_{ik}/a_{kj}$

For $j = k + 1, \ldots$ and if $(i, j) \in NZ(A)$, Do:

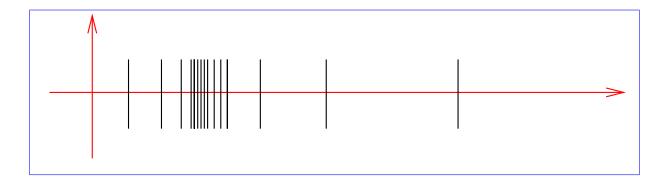
compute $a_{ij} := a_{ij} - a_{ik}a_{k,j}$.

EndFor

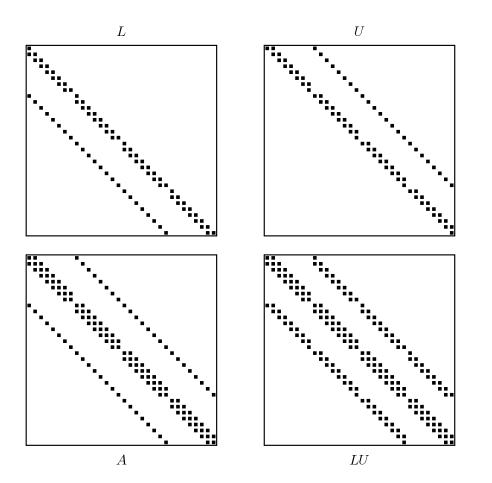
EndFor

➤ When A is SPD then the ILU factorization = Incomplete Cholesky factorization – IC(0). Meijerink and Van der Vorst [1977].

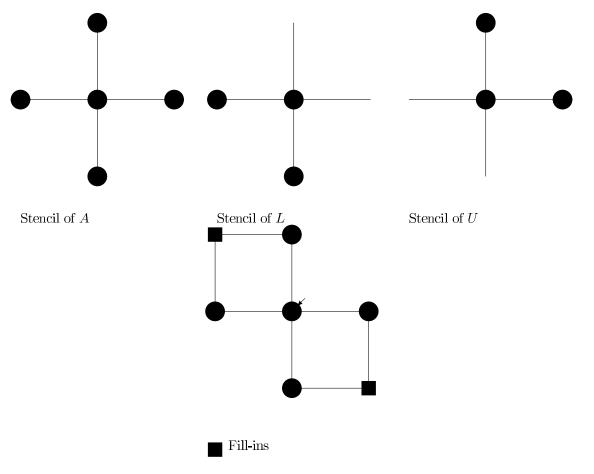
Typical eigenvalue distribution of preconditioned matrix



Pattern of ILU(0) for 5-point matrix



Stencils of A and the L and U parts of A:



Higher accuracy incomplete Cholesky: for regularly structured problems, IC(p) allows p additional diagonals in L.

Can be generalized to irregular sparse matrices using the notion of level of fill-in [Watts III, 1979]

• Initially $Lev_{ij} = egin{cases} 0 & ext{for} \ a_{ij}
eq 0 \ \infty & ext{for} \ a_{ij} == \end{array}$

o for
$$a_{ij} == 0$$

At a given step *i* of Gaussian elimination:

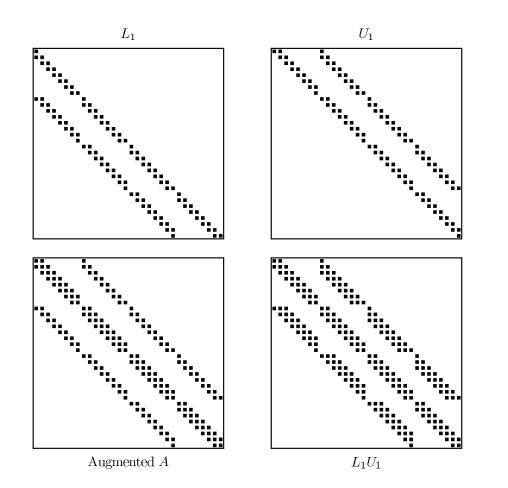
 $Lev_{kj} = \min\{Lev_{kj}; Lev_{ki} + Lev_{ij} + 1\}$

ILU(p) Strategy = drop anything with level of fill-in exceeding *p*.

* Increasing level of fill-in <u>usually</u> results in more accurate ILU and...

* ...typically in fewer steps and fewer arithmetic operations.

ILU(1)



ALGORITHM : 16 ILU(p)

For i = 2, N Do For each k = 1, ..., i - 1 and if $a_{ij} \neq 0$ do Compute $a_{ik} := a_{ik}/a_{jj}$ Compute $a_{i,*} := a_{i,*} - a_{ik}a_{k,*}$. Update the levels of $a_{i,*}$ Replace any element in row i with $lev(a_{ij}) > p$ by zero. EndFor EndFor

➤ The algorithm can be split into a symbolic and a numerical phase. Level-of-fill ➤ in Symbolic phase

ILU with threshold – generic algorithms

ILU(p) factorizations are based on structure only and not numerical values ➤ potential problems for non M-matrices.

One remedy: ILU with threshold – (generic name ILUT.)

Two broad approaches:

First approach [derived from direct solvers]: use any (direct) sparse solver and incorporate a dropping strategy. [Munksgaard (?), Osterby & Zlatev, Sameh & Zlatev[90], D. Young, & al. (Boeing) etc...] **Second approach : [derived from 'iterative solvers' viewpoint]**

- **1.** use a (row or colum) version of the (i, k, j) version of GE;
- **2.** apply a drop strategy for the elment l_{ik} as it is computed;
- 3. perform the linear combinations to get a_{i*} . Use full row expansion of a_{i*} ;
- 4. apply a drop strategy to fill-ins.

ILU with threshold: $ILUT(k, \epsilon)$

- Do the *i*, *k*, *j* version of Gaussian Elimination (GE).
- During each i-th step in GE, discard any pivot or fill-in whose value is below $\epsilon \|row_i(A)\|$.
- Once the *i*-th row of L + U, (L-part + U-part) is computed retain only the k largest elements in both parts.
- Advantages: controlled fill-in. Smaller memory overhead.
- **Easy to implement** –
- Can be made quite inexpensive.