A tutorial on:

Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota
 Computer Science and Engineering

CRM Montreal - May 2, 2008

Outline

Part 1

Part 2

- Sparse matrices and sparsity
- Preconditioned iterations
- Basic iterative techniques
- Preconditioning techniques
- Projection methods
- Krylov subspace methods

Part 3

- Parallel implementations
- Multigrid methods

Part 4

- Eigenvalue problems
- Applications

MULTILEVEL PRECONDITIONING

Independent set orderings \& ILUM (Background)

Independent set orderings permute a matrix into the form

$$
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)
$$

where B is a diagonal matrix.
> Unknowns associated with the B block form an independent set (IS).
$>$ IS is maximal if it cannot be augmented by other nodes to form another IS.
> IS ordering can be viewed as a "simplification" of multicoloring

Main observation: Reduced system obtained by eliminating the unknowns associated with the IS, is still sparse since its coefficient matrix is the Schur complement

$$
S=C-E B^{-1} F
$$

> Idea: apply IS set reduction recursively.
> When reduced system small enough solve by any method
$>$ Can devise an ILU factorization based on this strategy.

> See work by [Botta-Wubbs '96, '97, YS'94, '96, (ILUM), Leuze '89, ..]

Group Independent Sets / Aggregates

> Generalizes (common) Independent Sets
Main goal: to improve robustness
Main idea: use independent sets of "cliques", or "aggregates". There is no coupling between the aggregates.

> Reorder equations so nodes of independent sets come first

Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A, and reordered matrix, $A_{0}=P_{0}^{T} A P_{0}$.

> Block ILU
factorization
of $A_{l}$$\left(\begin{array}{ll}B_{l} & F_{l} \\ E_{l} & C_{l}\end{array}\right) \approx\left(\begin{array}{cc}L_{l} & 0 \\ E_{l} U_{l}^{-1} & I\end{array}\right)\left(\begin{array}{cc}I & 0 \\ 0 & A_{l+1}\end{array}\right)\left(\begin{array}{cc}U_{l} & L_{l}^{-1} F_{l} \\ 0 & I\end{array}\right)$
$>$ Diagonal blocks treated as sparse

Problem: Fill-in

> Next step: treat the Schur complement recursively

Algebraic Recursive Multilevel Solver (ARMS)

Basic step:

$$
\begin{gathered}
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)\binom{y}{z}=\binom{f}{g} \quad \rightarrow \\
\left(\begin{array}{cc}
L & 0 \\
E U^{-1} & I
\end{array}\right) \times\left(\begin{array}{cc}
U & L^{-1} F \\
0 & S
\end{array}\right)\binom{y}{z}=\binom{f}{g} \\
\text { where } S=C-E B^{-1} F=\text { Schur complement. }
\end{gathered}
$$

$>$ Perform block factorization recursively on S
> L, U Blocks: sparse
$>$ Exploit recursivity

Factorization: at level $l \quad P_{l}^{T} A_{l} P_{l}=$

$$
\left(\begin{array}{ll}
B_{l} & F_{l} \\
E_{l} & C_{l}
\end{array}\right) \approx\left(\begin{array}{cc}
L_{l} & 0 \\
E_{l} U_{l}^{-1} & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
0 & A_{l+1}
\end{array}\right)\left(\begin{array}{cc}
U_{l} & L_{l}^{-1} \boldsymbol{F}_{l} \\
0 & I
\end{array}\right)
$$

> L-solve \sim restriction. U-solve \sim prolongation.
> Solve Last level system with, e.g., ILUT+GMRES

Group Independent Set reordering

Simple strategy used: Do a Cuthill-MKee ordering until there are enough points to make a block. Reverse ordering. Start a new block from a non-visited node. Continue until all points are visited. Add criterion for rejecting "not sufficiently diagonally dominant rows."

Original matrix

Block size of 6

Block size of 20

ARMS with permutations for diagonal dominance

Idea: ARMS + exploit nonsymmetric permutations

> No particular structure or assumptions for B block
$>$ Permute rows * and * columns of A. Use two permutations P (rows) and Q (columns) to transform A into

$$
P A Q^{T}=\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)
$$

P, Q is a pair of permutations (rows, columns) selected so that the B block has the 'most diagonally dominant' rows (after nonsym perm) and few nonzero elements (to reduce fill-in).

Matching: Greedy algorithm

$>$ Simple algorithm: scan pairs $\left(i_{k}, j_{k}\right)$ in the given order.
$>$ If i_{k} and j_{k} not already assigned, assign them to \mathcal{M}.

Matrix after preselection

Matrix after Matching perm.

Numerical illustration

Matrix	order	nonzeros	Application (Origin)
barrier2-9	115,625	$3,897,557$	Device simul. (Schenk)
matrix 9	103,430	$2,121,550$	Device simul. (Schenk)
mat-n 3*	125,329	$2,678,750$	Device simul. (Schenk)
ohne2	181,343	$11,063,545$	Device simul. (Schenk)
para-4	153,226	$5,326,228$	Device simul. (Schenk)
cir2a	482,969	$3,912,413$	circuit simul.
scircuit	170998	958936	circuit simul. (Hamm)
circuit_4	80209	307604	Circuit simul. (Bomhof)
wang3.rua	26064	177168	Device simul. (Wang)
wang4.rua	26068	177196	Device simul. (Wang)

Parameters

| | Drop tolerance | | | Fill $_{\max }$ | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| nlev | tol $_{D D}$ | LU-B | GW | S | LU-S | LU-B | GW | SU-S | LU |
| 40 | 0.1 | 0.01 | 0.01 | 0.01 | $1 . e-05$ | 3 | 3 | 3 | 20 |

	Fill	Set-up	GMRES(60)		GMRES(100)	
Matrix	Factor	Time	Its.	Time	Its.	Time
barr2-9	0.62	$4.01 e+00$	113	$3.29 \mathrm{e}+01$	93	$3.02 \mathrm{e}+01$
mat-n_3	0.89	$7.53 \mathrm{e}+00$	40	$1.02 \mathrm{e}+01$	40	$1.00 \mathrm{e}+01$
matrix 9	1.77	$5.53 \mathrm{e}+00$	160	$4.94 \mathrm{e}+01$	82	$2.70 \mathrm{e}+01$
ohne2	0.62	$4.34 \mathrm{e}+01$	99	$6.35 \mathrm{e}+01$	80	$5.43 \mathrm{e}+01$
para-4	0.62	$5.70 \mathrm{e}+00$	49	$1.94 \mathrm{e}+01$	49	$1.93 \mathrm{e}+01$
wang3	2.33	$8.90 \mathrm{e}-01$	45	$2.09 \mathrm{e}+00$	45	$1.95 \mathrm{e}+00$
wang4	1.86	$5.10 \mathrm{e}-01$	31	$1.25 \mathrm{e}+00$	31	$1.20 \mathrm{e}+00$
scircuit	0.90	$1.86 \mathrm{e}+00$	Fail	$7.08 \mathrm{e}+01$	Fail	$8.80 \mathrm{e}+01$
circuit_4	0.75	$1.60 \mathrm{e}+00$	199	$1.69 \mathrm{e}+01$	96	$1.07 \mathrm{e}+01$
circ2a	0.76	$2.19 \mathrm{e}+02$	18	$1.08 \mathrm{e}+01$	18	$1.03 \mathrm{e}+01$

Results for the 10 systems - ARMS-ddPQ + GMRES(60) \& GMRES(100)

	Fill	Set-up	GMRES(60)		GMRES(100)	
	Factor	Time	Its.	Time	Its.	Time
Same param's	0.89	1.81	400	$9.13 \mathrm{e}+01$	297	$8.79 \mathrm{e}+01$
Droptol $=.001$	1.00	1.89	98	$2.23 \mathrm{e}+01$	82	$2.27 \mathrm{e}+01$

Solution of the system scircuit - no scaling + two different sets of parameters.

PARALLEL IMPLEMENTATION

Introduction

> Thrust of parallel computing techniques in most applications areas.
> Programming model: Message-passing seems (MPI) dominates
> Open MP and threads for small number of processors
> Important new reality: parallel programming has penetrated the 'applications’ areas [Sciences and Engineering + industry]
> Problem 1: algorithms lagging behind somewhat
> Problem 2: Message passing is painful for large applications. 'Time to solution' up.

Parallel preconditioners: A few approaches

"Parallel matrix computation" viewpoint:

- Local preconditioners: Polynomial (in the 80s), Sparse Approximate Inverses, [M. Benzi-Tuma \& al '99., E. Chow '00]
- Distributed versions of ILU [Ma \& YS '94, Hysom \& Pothen '00]
- Use of multicoloring to unaravel parallelism

Domain Decomposition ideas:

- Schwarz-type Preconditioners [e.g. Widlund, Bramble-PasciakXu, X. Cai, D. Keyes, Smith, ...]
- Schur-complement techniques [Gropp \& Smith, Ferhat et al. (FETI), T.F. Chan et al., YS and Sosonkina '97, J. Zhang '00, ...]

Multigrid / AMG viewpoint:

- Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro et al (Aztec project), ...]
> In practice: Variants of additive Schwarz very common (simplicity)

Standard Domain Decomposition

$$
\begin{aligned}
& \text { Problem: } \\
& \left\{\begin{array}{cc}
\Delta u=\quad f \text { in } \Omega \\
u=u_{\Gamma} \text { on } \Gamma=\partial \Omega
\end{array}\right.
\end{aligned}
$$

Domain:

$$
\Omega=\bigcup_{i=1}^{s} \Omega_{i}
$$

> Domain decomposition or substructuring methods attempt to solve a PDE problem (e.g.) on the entire domain from problem solutions on the subdomains Ω_{i}.

Discretization of domain

Coefficient Matrix

Types of mappings

(a) Vertex-based;
(b) edge-based; and

(c) element-based partitioning
> Can adapt PDE viewpoint to general sparse matrices
> Will use the graph representation and 'vertex-based' viewpoint

Generalization: Distributed Sparse Systems

> Simple illustration: Block assignment. Assign equation i and unknown i to a given 'process'
$>$ Naive partitioning won't work well in practice

$>$ Best idea is to use the adjacency graph of A :

Vertices $=\{1,2, \cdots, n\}$;
Edges: $i \rightarrow j$ iff $a_{i j} \neq 0$

Graph partitioning problem:

- Want a partition of the vertices of the graph so that
(1) partitions have \sim the same sizes
(2) interfaces are small in size

General Partitioning of a sparse linear system

$S_{1}=\{1,2,6,7,11,12\}:$ This means equations and unknowns $1,2,3,6,7,11,12$ are assigned to Domain 1.
$S_{2}=\{3,4,5,8,9,10,13\}$
$S_{3}=\{16,17,18,21,22,23\}$
$S_{4}=\{14,15,19,20,24,25\}$

Alternative: | Map elements / edges rather than vertices

Equations/unknowns 3, 8, 12 shared by 2 domains. From distributed sparse matrix viewpoint this is an overlap of one layer
> Partitioners : Metis, Chaco, Scotch, ..
> More recent: Zoltan, H-Metis, PaToH

$>$ Standard dual objective: "minimize" communication + "balance" partition sizes
> Recent trend: use of hypergraphs [PaToh, Hmetis,...]
> Hypergraphs are very general.. Ideas borrowed from VLSI work
> Main motivation: to better represent communication volumes when partitioning a graph. Standard models face many limitations
> Hypergraphs can better express complex graph partitioning problems and provide better solutions. Example: completely nonsymmetric patterns.

Two views of a distributed sparse matrix

> Local interface variables always ordered last.
> Need: 1) to set up the various "local objects". 2) Preprocessing to prepare for communications needed during iteration?

Local view of distributed matrix:

The local system:

$$
\underbrace{\left(\begin{array}{ll}
B_{i} & F_{i} \\
E_{i} & C_{i}
\end{array}\right)}_{A_{i}}\binom{u_{i}}{y_{i}}+\underbrace{\binom{0}{\sum_{j \in N_{i}} E_{i j} y_{j}}}_{y_{\text {ext }}}=\binom{f_{i}}{g_{i}}
$$

$>u_{i}$: Internal variables; \boldsymbol{y}_{i} : Interface variables

The local matrix:

The local matrix consists of 2 parts: a part (' $A_{l o c}$ ') which acts on local data and another (' $B_{e x t}$ ') which acts on remote $\mathbf{B}_{\text {ext }}$ data.
> Once the partitioning is available these parts must be identified and built locally..
> In finite elements, assembly is a local process.
> How to perform a matrix vector product? [needed by iterative schemes?]

Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter $x_{\text {bound }}$ to neighbors - Gather $x_{e x t}$ from neighbors
2. Local matrix - vector product

$$
y=A_{l o c} x_{l o c}
$$

3. External matrix - vector product

$$
y=y+B_{e x t} x_{e x t}
$$

NOTE: 1 and 2 are independent and can be overlapped.

Main Operations in (F) GMRES :

1. Saxpy's - local operation - no communication
2. Dot products - global operation
3. Matrix-vector products - local operation - local communication
4. Preconditioning operations - locality varies.

Distributed Dot Product

/*-------------------- call blas1 function
tloc $=\operatorname{DDOT}(\mathrm{n}, \mathrm{x}$, incx, y , incy);
/*-------------------- call global reduction
MPI_Allreduce (\&tloc,\&ro, 1, MPI_DOUBLE,MPI_SUM, comm);

A remark: the global viewpoint

$\leftarrow \begin{aligned} & \begin{array}{l}\text { Interior } \\ \text { variables }\end{array} \\ & \text { variables }\end{aligned} \rightarrow$

SCHUR COMPLEMENT-BASED PRECONDITIONERS

Schur complement system

Local system can be written as

$$
\begin{equation*}
A_{i} x_{i}+X_{i} y_{i, e x t}=b_{i} \tag{1}
\end{equation*}
$$

$x_{i}=$ vector of local unknowns, $y_{i, \text { ext }}=$ external interface variables, and $b_{i}=$ local part of RHS.
$>$ Local equations

$$
\left(\begin{array}{ll}
B_{i} & \boldsymbol{F}_{i} \tag{2}\\
E_{i} & C_{i}
\end{array}\right)\binom{u_{i}}{y_{i}}+\binom{0}{\sum_{j \in N_{i}} \boldsymbol{E}_{i j} y_{j}}=\binom{f_{i}}{g_{i}}
$$

$>$ eliminate u_{i} from the above system:

$$
S_{i} \boldsymbol{y}_{i}+\sum_{j \in N_{i}} \boldsymbol{E}_{i j} \boldsymbol{y}_{j}=g_{i}-E_{i} B_{i}^{-1} \boldsymbol{f}_{i} \equiv g_{i}^{\prime}
$$

where S_{i} is the "local" Schur complement

$$
\begin{equation*}
S_{i}=C_{i}-E_{i} B_{i}^{-1} F_{i} . \tag{3}
\end{equation*}
$$

Structure of Schur complement system

Global Schur complement system:
$S y=g^{\prime}$ with :

$$
S=\left(\begin{array}{cccc}
S_{1} & E_{12} & \ldots & E_{1 p} \\
E_{21} & S_{2} & \ldots & E_{2 p} \\
\vdots & & \ddots & \vdots \\
E_{p 1} & E_{p-1,2} & \ldots & S_{p}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{p}
\end{array}\right)=\left(\begin{array}{c}
g_{1}^{\prime} \\
g_{2}^{\prime} \\
\vdots \\
g_{p}^{\prime}
\end{array}\right) .
$$

$>E_{i j}$'s are sparse $=$ same as in the original matrix
> Can solve global Schur complement system iteratively. Backsubstitute to recover rest of variables (internal).

- Can use the procedure as a preconditining to global system.

Simplest idea: Schur Complement Iterations

$$
\binom{u_{i}}{y_{i}} \text { Internal variables }
$$

> Do a global primary iteration (e.g., block-Jacobi)
$>$ Then accelerate only the y variables (with a Krylov method)
Still need to precondition..

Approximate Schur-LU

> Two-level method based on induced preconditioner. Global system can also be viewed as

$$
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)\binom{u}{y}=\binom{f}{g}, \quad B=\left(\begin{array}{cccc|c}
B_{1} & & & & F_{1} \\
& B_{2} & & & F_{2} \\
& & \ddots & & \vdots \\
& & & B_{p} & F_{p} \\
\hline E_{1} & E_{2} & \cdots & E_{p} & C
\end{array}\right)
$$

Block LU factorization of A :

$$
\left(\begin{array}{ll}
B & F \\
E & C
\end{array}\right)=\left(\begin{array}{ll}
B & 0 \\
E & S
\end{array}\right)\left(\begin{array}{cc}
I & B^{-1} F \\
0 & I
\end{array}\right)
$$

Preconditioning:

$$
L=\left(\begin{array}{cc}
B & 0 \\
E & M_{S}
\end{array}\right) \quad \text { and } \quad U=\left(\begin{array}{cc}
I & B^{-1} F \\
0 & I
\end{array}\right)
$$

with $M_{S}=$ some approximation to S.
> Preconditioning to global system can be induced from any preconditioning on Schur complement.

Rewrite local Schur system as

$$
y_{i}+S_{i}^{-1} \sum_{j \in N_{i}} E_{i j} y_{j}=S_{i}^{-1}\left[g_{i}-E_{i} B_{i}^{-1} f_{i}\right] .
$$

> equivalent to Block-Jacobi preconditioner for Schur complement.
$>$ Solve with, e.g., a few s (e.g., 5) of GMRES
$>$ Question: How to solve with S_{i} ?
$>$ Can use LU factorization of local matrix $A_{i}=\left(\begin{array}{cc}B_{i} & F_{i} \\ E_{i} & C_{i}\end{array}\right)$ and exploit the relation:

$$
\boldsymbol{A}_{i}=\left(\begin{array}{cc}
L_{B_{i}} & 0 \\
\boldsymbol{E}_{i} U_{B_{i}}^{-1} & L_{S_{i}}
\end{array}\right)\left(\begin{array}{cc}
U_{B_{i}} & L_{B_{i}}^{-1} F_{i} \\
0 & U_{S_{i}}
\end{array}\right) \quad \rightarrow \quad L_{S_{i}} U_{S_{i}}=S_{i}
$$

$>$ Need only the (I) LU factorization of the A_{i} [rest is already available]
> Very easy implementation of (parallel) Schur complement techniques for vertex-based partitioned systems : YS-Sosonkina '97; YS-Sosonkina-Zhang '99.

PARALLEL ARMS

Parallel implementation of ARMS

Three types of points:

interior (independent sets), local interfaces, and global interfaces

Main ideas: (1) exploit recursivity (2) distinguish two phases: elimination of interior points and then interface points.

Result: 2-part Schur complement: one corresponding to local interfaces and the other to inter-domain interfaces.

Three approaches

Method 1: Simple additive Schwarz using ILUT or ARMS locally

Method 2: Schur complement approach. Solve Schur complement system (both I1 and I2) with either a block Jacobi (M. Sosonkina and YS, '99) or multicolor ILU(0).

Method 3: Do independent set reduction across subdomains. Requires construction of global group independent sets.
> pARMS: Methods 1 and 2. Method 3 : Phidal [w. Pascal Henon]

Algorithm: Multicolor Distributed ILU(0)

1. Eliminate local rows,
2. Receive external interf. rows from PEs s.t. color $(P E)<$ MyColor
3. Process local interface rows
4. Send local interface rows to PEs s.t. color $(\boldsymbol{P E})>$ MyColor

Methods implemented in pARMS:

| add $-x$ | Additive Schwarz with method x for subdomains. With/out |
| :--- | :--- | overlap. $x=$ one of ILUT, ILUK, ARMS.

sch x Schur complement technique, with method $x=$ factorization used for local submatrix. Same x as above. Equiv. to Additive Schwarz preconditioner on Schur complement.
sch sgs \quad Multicolor Multiplicative Schwarz (block Gauss-Seidel) preconditioning is used instead of additive Schwarz for Schur complement.
sch gilu0 ILU(0) preconditioning to solve global Schur complement system obtained from ARMS reduction.

Test problem

1. Scalability experiment: sample finite difference problem.

$$
-\Delta u+\gamma\left(e^{x y} \frac{\partial u}{\partial x}+e^{-x y} \frac{\partial u}{\partial y}\right)+\alpha u=f
$$

Dirichlet Boundary Conditions ; $\gamma=100, \alpha=-10$; centered differences discretization.
$>$ Keep size constant on each processor $[100 \times 100]>$ Global linear system with $10,000 *$ nproc unknowns.
2. Comparison with a parallel direct solver - symmetric problems
3. Large irregular matrix example arising from magneto hydrodynamics.

Times for 2D PDE problem with fixed subproblem size
100×100 mesh per processor - Iterations

Iterations for 2D PDE problem with fixed subproblem size

Times for 2D PDE problem with fixed subproblem size
100×100 mesh per processor - Iterations

Iterations

Software

Direct solvers:

> SUPERLU
http://crd.lbl.gov/ xiaoye/SuperLU/
> MUMPS: [cerfacs]
> Univ. Minn. / IBM's PSPASES [SPD matrices]
http://www-users.cs.umn.edu/ mjoshi/pspases/
> UMFPACK

Iterative solvers:

> PETSc
http://acts.nersc.gov/petsc/
and Trilinos (more recent)
http://trilinos.sandia.gov/
... are very comprehensive packages..
> PETSc includes few preconditioners...
> Hypre, ML, ..., all include interfaces to PETSc or trilinos
> pARMS:

> http: //www. cs . umn . edu~saad/software
is a more modest effort -

