
A tutorial on:
Iterative methods for Sparse Matrix Problems

Yousef Saad

University of Minnesota
Computer Science and Engineering

CRM Montreal - May 2, 2008

Outline

Part 1

• Sparse matrices and sparsity

• Basic iterative techniques

• Projection methods

• Krylov subspace methods

Part 2

• Preconditioned iterations

• Preconditioning techniques

Part 3

• Parallel implementations

• Multigrid methods

Part 4

• Eigenvalue problems

• Applications

CRM May 2, 2008 2

MULTILEVEL PRECONDITIONING

Independent set orderings & ILUM (Background)

Independent set orderings permute a matrix into the formB F

E C

where B is a diagonal matrix.

ä Unknowns associated with the B block form an independent set

(IS).

ä IS is maximal if it cannot be augmented by other nodes to form

another IS.

ä IS ordering can be viewed as a “simplification” of multicoloring

Main observation: Reduced system obtained by eliminating the

unknowns associated with the IS, is still sparse since its coefficient

matrix is the Schur complement

S = C − EB−1F

ä Idea: apply IS set reduction recursively.

ä When reduced system small enough solve by any method

ä Can devise an ILU factorization based on this strategy.

ä See work by [Botta-Wubbs ’96, ’97, YS’94, ’96, (ILUM), Leuze ’89,

..]

CRM May 2, 2008 5

Group Independent Sets / Aggregates

ä Generalizes (common) Independent Sets

Main goal: to improve robustness

Main idea: use independent sets of “cliques”, or “aggregates”.

There is no coupling between the aggregates.

No Coupling
ä Reorder equations

so nodes of indepen-

dent sets come first

CRM May 2, 2008 6

Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A , and reordered matrix, A0 = P T
0 AP0 .

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155
0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155

ä Block ILU

factorization

of Al

Bl Fl

El Cl

 ≈
 Ll 0

ElU
−1
l I

 I 0

0 Al+1

 Ul L−1
l Fl

0 I

CRM May 2, 2008 7

ä Diagonal blocks treated as sparse

Problem: Fill-in

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 12205

ä

ä

Remedy: dropping strategy

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 4255

ä Next step: treat the Schur complement recursively

CRM May 2, 2008 8

Algebraic Recursive Multilevel Solver (ARMS)

Basic step: B F

E C

 y

z

 =

f

g

 →

 L 0

EU−1 I

 ×
U L−1F

0 S

 y

z

 =

f

g

where S = C − EB−1F = Schur complement.

ä Perform block factorization recursively on S

ä L, U Blocks: sparse

ä Exploit recursivity

CRM May 2, 2008 9

Factorization: at level l P T
l AlPl =Bl Fl

El Cl

 ≈
 Ll 0

ElU
−1
l I

 I 0

0 Al+1

 Ul L−1
l Fl

0 I

ä L-solve ∼ restriction. U-solve ∼ prolongation.

ä Solve Last level system with, e.g., ILUT+GMRES

CRM May 2, 2008 10

Group Independent Set reordering

Separator
First Block

Simple strategy used: Do a Cuthill-MKee ordering until there are

enough points to make a block. Reverse ordering. Start a new block

from a non-visited node. Continue until all points are visited. Add

criterion for rejecting “not sufficiently diagonally dominant rows.”

CRM May 2, 2008 11

Original matrix

Block size of 6

Block size of 20

ARMS with permutations for diagonal dominance

Idea: ARMS + exploit nonsymmetric permutations

ä No particular structure or assumptions for B block

ä Permute rows * and * columns of A. Use two permutations P

(rows) and Q (columns) to transform A into

PAQT =

B F

E C

P, Q is a pair of permutations (rows, columns) selected so that the

B block has the ‘most diagonally dominant’ rows (after nonsym

perm) and few nonzero elements (to reduce fill-in).

CRM May 2, 2008 15

Matching: Greedy algorithm

ä Simple algorithm: scan pairs (ik, jk) in the given order.

ä If ik and jk not already assigned, assign them to M.

2

3

1 2 3 54 7 86

42

8

3

7

4

6

5

1

5

6

7

8

1

2

3

1 2 3 54 7 86

4

2

1

4

5

7

6

8

3

1

5

6

7

8

Matrix after preselection Matrix after Matching perm.

CRM May 2, 2008 16

Numerical illustration

Matrix order nonzeros Application (Origin)

barrier2-9 115,625 3,897,557 Device simul. (Schenk)

matrix 9 103,430 2,121,550 Device simul. (Schenk)

mat-n 3* 125,329 2,678,750 Device simul. (Schenk)

ohne2 181,343 11,063,545 Device simul. (Schenk)

para-4 153,226 5,326,228 Device simul. (Schenk)

cir2a 482,969 3,912,413 circuit simul.

scircuit 170998 958936 circuit simul. (Hamm)

circuit 4 80209 307604 Circuit simul. (Bomhof)

wang3.rua 26064 177168 Device simul. (Wang)

wang4.rua 26068 177196 Device simul. (Wang)

CRM May 2, 2008 17

Parameters

Drop tolerance Fillmax

nlevmax tolDD LU-B GW S LU-S LU-B GW S LU-S

40 0.1 0.01 0.01 0.01 1.e-05 3 3 3 20

CRM May 2, 2008 18

Fill Set-up GMRES(60) GMRES(100)

Matrix Factor Time Its. Time Its. Time

barr2-9 0.62 4.01e+00 113 3.29e+01 93 3.02e+01

mat-n 3 0.89 7.53e+00 40 1.02e+01 40 1.00e+01

matrix 9 1.77 5.53e+00 160 4.94e+01 82 2.70e+01

ohne2 0.62 4.34e+01 99 6.35e+01 80 5.43e+01

para-4 0.62 5.70e+00 49 1.94e+01 49 1.93e+01

wang3 2.33 8.90e-01 45 2.09e+00 45 1.95e+00

wang4 1.86 5.10e-01 31 1.25e+00 31 1.20e+00

scircuit 0.90 1.86e+00 Fail 7.08e+01 Fail 8.80e+01

circuit 4 0.75 1.60e+00 199 1.69e+01 96 1.07e+01

circ2a 0.76 2.19e+02 18 1.08e+01 18 1.03e+01

Results for the 10 systems - ARMS-ddPQ + GMRES(60) & GMRES(100)
CRM May 2, 2008 19

Fill Set-up GMRES(60) GMRES(100)

Factor Time Its. Time Its. Time

Same param’s 0.89 1.81 400 9.13e+01 297 8.79e+01

Droptol = .001 1.00 1.89 98 2.23e+01 82 2.27e+01

Solution of the system scircuit – no scaling + two different sets

of parameters.

CRM May 2, 2008 20

PARALLEL IMPLEMENTATION

Introduction

ä Thrust of parallel computing techniques in most applications

areas.

ä Programming model: Message-passing seems (MPI) dominates

ä Open MP and threads for small number of processors

ä Important new reality: parallel programming has penetrated the

‘applications’ areas [Sciences and Engineering + industry]

ä Problem 1: algorithms lagging behind somewhat

ä Problem 2: Message passing is painful for large applications.

‘Time to solution’ up.

CRM May 2, 2008 22

Parallel preconditioners: A few approaches

“Parallel matrix computation” viewpoint:

• Local preconditioners: Polynomial (in the 80s), Sparse Approxi-

mate Inverses, [M. Benzi-Tuma & al ’99., E. Chow ’00]

• Distributed versions of ILU [Ma & YS ’94, Hysom & Pothen ’00]

• Use of multicoloring to unaravel parallelism

CRM May 2, 2008 23

Domain Decomposition ideas:

• Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-

Xu, X. Cai, D. Keyes, Smith, ...]

• Schur-complement techniques [Gropp & Smith, Ferhat et al. (FETI),

T.F. Chan et al., YS and Sosonkina ’97, J. Zhang ’00, ...]

Multigrid / AMG viewpoint:

• Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro

et al (Aztec project), ...]

ä In practice: Variants of additive Schwarz very common (simplic-

ity)

CRM May 2, 2008 24

Standard Domain Decomposition

Problem: ∆u = f in Ω

u = uΓ on Γ = ∂Ω.

Domain:

Ω =
s⋃

i=1

Ωi,

ä Domain decomposition or substructuring methods attempt to

solve a PDE problem (e.g.) on the entire domain from problem

solutions on the subdomains Ωi.

CRM May 2, 2008 25

Discretization of domain

Coefficient Matrix

CRM May 2, 2008 27

Types of mappings

(a) Vertex-based; (b) edge-based; and (c) element-based

partitioning

ä Can adapt PDE viewpoint to general sparse matrices

ä Will use the graph representation and ’vertex-based’ viewpoint

–
CRM May 2, 2008 28

DISTRIBUTED SPARSE MATRICES

Generalization: Distributed Sparse Systems

ä Simple illustration:

Block assignment. Assign

equation i and unknown i

to a given ’process’

ä Naive partitioning -

won’t work well in practice

CRM May 2, 2008 30

ä Best idea is to use the adjacency graph of A:

Vertices = {1, 2, · · · , n};

Edges: i→ j iff aij 6= 0

1 2

34

Graph partitioning problem:

• Want a partition of the vertices of the graph so that

(1) partitions have ∼ the same sizes

(2) interfaces are small in size

CRM May 2, 2008 31

General Partitioning of a sparse linear system

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

S1 = {1, 2, 6, 7, 11, 12}: This

means equations and unknowns

1, 2, 3, 6, 7, 11, 12 are assigned

to Domain 1.

S2 = {3, 4, 5, 8, 9, 10, 13}

S3 = {16, 17, 18, 21, 22, 23}

S4 = {14, 15, 19, 20, 24, 25}

CRM May 2, 2008 32

Alternative: Map elements / edges rather than vertices

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

Equations/unknowns 3, 8, 12

shared by 2 domains. From dis-

tributed sparse matrix viewpoint

this is an overlap of one layer

ä Partitioners : Metis, Chaco, Scotch, ..

ä More recent: Zoltan, H-Metis, PaToH

CRM May 2, 2008 33

CRM May 2, 2008 34

ä Standard dual objective: “minimize” communication + “bal-

ance” partition sizes

ä Recent trend: use of hypergraphs [PaToh, Hmetis,...]

ä Hypergraphs are very general.. Ideas borrowed from VLSI work

ä Main motivation: to better represent communication volumes

when partitioning a graph. Standard models face many limitations

ä Hypergraphs can better express complex graph partitioning prob-

lems and provide better solutions. Example: completely nonsym-

metric patterns.

CRM May 2, 2008 35

Two views of a distributed sparse matrix

External interface
nodes

Internal
nodes

Local interface
nodes

XiXi
Ai

ä Local interface variables always ordered last.

ä Need: 1) to set up the various “local objects”. 2) Preprocessing

to prepare for communications needed during iteration?

CRM May 2, 2008 36

Local view of distributed matrix:

local
Data

External data External data

OO A i
iX Xi

The local system:

Bi Fi

Ei Ci

︸ ︷︷ ︸

Ai

ui

yi

 +

 0∑
j∈Ni

Eijyj

︸ ︷︷ ︸

yext

=

fi

gi

ä ui : Internal variables; yi : Interface variables

CRM May 2, 2008 37

The local matrix:

Local

points

Internal
Points

Interface

Aloc

Bext

The local matrix consists of

2 parts: a part (’Aloc’) which

acts on local data and another

(’Bext’) which acts on remote

data.

ä Once the partitioning is available these parts must be identified

and built locally..

ä In finite elements, assembly is a local process.

ä How to perform a matrix vector product? [needed by iterative

schemes?]

CRM May 2, 2008 38

Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter xbound to neighbors - Gather xext from neighbors

2. Local matrix – vector product

y = Alocxloc

3. External matrix – vector product

y = y + Bextxext

NOTE: 1 and 2 are independent and can be overlapped.

CRM May 2, 2008 39

Main Operations in (F) GMRES :

1. Saxpy’s – local operation – no communication

2. Dot products – global operation

3. Matrix-vector products – local operation – local communication

4. Preconditioning operations – locality varies.

CRM May 2, 2008 40

Distributed Dot Product

/*-------------------- call blas1 function

tloc = DDOT(n, x, incx, y, incy);

/*-------------------- call global reduction

MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);

CRM May 2, 2008 41

A remark: the global viewpoint

B1 F1

B2 F2

. . . .
. . . .

Bp Fp

E1 C1 E12 · · · E1p

E2 E21 C2 · · · E2p

.
Ep Ep1 Ep2 · · · Cp

u1

u2

...

...
up

y1

y2

...
yp

=

f1

f2

...

...
fp

g1

g2

...
gp

←

Interior

variables
→←

Interface

variables
→

CRM May 2, 2008 42

SCHUR COMPLEMENT-BASED PRECONDITIONERS

Schur complement system

Local system can be written as

Aixi + Xiyi,ext = bi. (1)

local
Data

External data External data

OO A i
iX Xi

xi= vector of local unknowns, yi,ext = external interface variables,

and bi = local part of RHS.

CRM May 2, 2008 44

ä Local equationsBi Fi

Ei Ci

 ui

yi

 +

 0∑
j∈Ni

Eijyj

 =

fi

gi

 (2)

ä eliminate ui from the above system:

Siyi +
∑
j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g′i,

where Si is the “local” Schur complement

Si = Ci − EiB
−1
i Fi. (3)

CRM May 2, 2008 45

Structure of Schur complement system

Global Schur complement system: Sy = g′ with :

S =

S1 E12 . . . E1p

E21 S2 . . . E2p

...

Ep1 Ep−1,2 . . . Sp

y1

y2

...

yp

 =

g′1

g′2
...

g′p

 .

ä Eij’s are sparse = same as in the original matrix

ä Can solve global Schur complement system iteratively. Back-

substitute to recover rest of variables (internal).

ä Can use the procedure as a preconditining to global system.
CRM May 2, 2008 46

Simplest idea: Schur Complement Iterations

 ui

yi

 Internal variables

Interface variables

ä Do a global primary iteration (e.g., block-Jacobi)

ä Then accelerate only the y variables (with a Krylov method)

Still need to precondition..

CRM May 2, 2008 47

Approximate Schur-LU

ä Two-level method based on induced preconditioner. Global

system can also be viewed as

B F

E C

 u

y

 =

f

g

 , B =

B1 F1

B2 F2

.

Bp Fp

E1 E2 · · · Ep C

Block LU factorization of A:B F

E C

 =

B 0

E S

 I B−1F

0 I

 ,

CRM May 2, 2008 48

Preconditioning:

L =

B 0

E MS

 and U =

I B−1F

0 I

with MS = some approximation to S.

ä Preconditioning to global system can be induced from any pre-

conditioning on Schur complement.

Rewrite local Schur system as

yi + S−1
i

∑
j∈Ni

Eijyj = S−1
i

[
gi − EiB

−1
i fi

]
.

ä equivalent to Block-Jacobi preconditioner for Schur comple-

ment.

ä Solve with, e.g., a few s (e.g., 5) of GMRES CRM May 2, 2008 49

ä Question: How to solve with Si?

ä Can use LU factorization of local matrix Ai =

Bi Fi

Ei Ci

and exploit the relation:

Ai =

 LBi
0

EiU
−1
Bi

LSi

 UBi
L−1

Bi
Fi

0 USi

 → LSi
USi

= Si

ä Need only the (I) LU factorization of the Ai [rest is already avail-

able]

ä Very easy implementation of (parallel) Schur complement tech-

niques for vertex-based partitioned systems : YS-Sosonkina ’97;

YS-Sosonkina-Zhang ’99.

CRM May 2, 2008 50

PARALLEL ARMS

Parallel implementation of ARMS

Interdomain

Interior points

Local
Interfaces Interfaces

Three types of points:

interior (independent sets), lo-

cal interfaces, and global inter-

faces

Main ideas: (1) exploit recursivity (2) distinguish two phases: elim-

ination of interior points and then interface points.

CRM May 2, 2008 52

Result: 2-part Schur complement: one corresponding to local in-

terfaces and the other to inter-domain interfaces.
IS I1

I2

Bext

CRM May 2, 2008 53

Three approaches

Method 1: Simple additive Schwarz using ILUT or ARMS locally

Method 2: Schur complement approach. Solve Schur complement

system (both I1 and I2) with either a block Jacobi (M. Sosonkina

and YS, ’99) or multicolor ILU(0).

Method 3: Do independent set reduction across subdomains. Re-

quires construction of global group independent sets.

ä pARMS: Methods 1 and 2. Method 3 : Phidal [w. Pascal Henon]

CRM May 2, 2008 54

color 2
color 3

color 4

color 1

color 1

color 3

Internal interface points

External interface points

Algorithm: Multicolor Distributed ILU(0)
1. Eliminate local rows,

2. Receive external interf. rows from PEs s.t. color(PE) < MyColor

3. Process local interface rows

4. Send local interface rows to PEs s.t. color(PE) > MyColor

CRM May 2, 2008 55

Methods implemented in pARMS:

add x Additive Schwarz with method x for subdomains. With/out

overlap. x = one of ILUT, ILUK, ARMS.

sch x Schur complement technique, with method x = factor-

ization used for local submatrix. Same x as above. Equiv. to

Additive Schwarz preconditioner on Schur complement.

sch sgs Multicolor Multiplicative Schwarz (block Gauss-Seidel)

preconditioning is used instead of additive Schwarz for Schur

complement.

sch gilu0 ILU(0) preconditioning to solve global Schur comple-

ment system obtained from ARMS reduction.

CRM May 2, 2008 56

Test problem

1. Scalability experiment: sample finite difference problem.

−∆u + γ

(
exy∂u

∂x
+ e−xy∂u

∂y

)
+ αu = f ,

Dirichlet Boundary Conditions ; γ = 100, α = −10; centered differ-

ences discretization.

ä Keep size constant on each processor [100 × 100] ä Global

linear system with 10, 000 ∗ nproc unknowns.

2. Comparison with a parallel direct solver – symmetric problems

3. Large irregular matrix example arising from magneto hydrody-

namics.

CRM May 2, 2008 57

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

12

14

16

18

20

Processors

O
rig

in
 3

80
0

se
co

nd
s

100 x 100 mesh per processor − Wall−Clock Time

add_arms
add_arms no its
add_arms ovp
add_arms ovp no its
add_ilut
add_ilut no its
add_ilut ovp
add_ilut ovp no its

Times for 2D PDE problem with fixed subproblem size

0 10 20 30 40 50 60 70 80 90
10

20

30

40

50

60

70

80

90

100

Processors

Ite
ra

tio
ns

100 x 100 mesh per processor − Iterations
add_arms
add_arms no its
add_arms ovp
add_arms ovp no its
add_ilut
add_ilut no its
add_ilut ovp
add_ilut ovp no its

Iterations for 2D PDE problem with fixed subproblem size

0 10 20 30 40 50 60 70 80 90
0.5

1

1.5

2

2.5

3

3.5

4

Processors

O
rig

in
 3

80
0

se
co

nd
s

100 x 100 mesh per processor − Wall−Clock Time

add_arms no its
add_arms ovp no its
sch_arms
sch_gilu0
sch_gilu0 no its
sch_sgs
sch_sgs no its

Times for 2D PDE problem with fixed subproblem size

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

100

Processors

Ite
ra

tio
ns

100 x 100 mesh per processor − Iterations

add_arms no its
add_arms ovp no its
sch_arms
sch_gilu0
sch_gilu0 no its
sch_sgs
sch_sgs no its

Iterations

Software

Direct solvers:

ä SUPERLU

http://crd.lbl.gov/ xiaoye/SuperLU/

ä MUMPS: [cerfacs]

ä Univ. Minn. / IBM’s PSPASES [SPD matrices]

http://www-users.cs.umn.edu/ mjoshi/pspases/

ä UMFPACK

CRM May 2, 2008 62

Iterative solvers:

ä PETSc

http://acts.nersc.gov/petsc/

and Trilinos (more recent)

http://trilinos.sandia.gov/

... are very comprehensive packages..

ä PETSc includes few preconditioners...

ä Hypre, ML, ..., all include interfaces to PETSc or trilinos

ä pARMS:

http://www.cs.umn.edu∼saad/software

is a more modest effort -
CRM May 2, 2008 63

