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• Sparse matrices and sparsity

• Basic iterative techniques

• Projection methods

• Krylov subspace methods
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• Preconditioned iterations

• Preconditioning techniques
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• Parallel implementations

• Multigrid methods
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• Eigenvalue problems

• Applications
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MULTILEVEL PRECONDITIONING



Independent set orderings & ILUM (Background)

Independent set orderings permute a matrix into the formB F

E C


where B is a diagonal matrix.

ä Unknowns associated with the B block form an independent set

(IS).

ä IS is maximal if it cannot be augmented by other nodes to form

another IS.

ä IS ordering can be viewed as a “simplification” of multicoloring



Main observation: Reduced system obtained by eliminating the

unknowns associated with the IS, is still sparse since its coefficient

matrix is the Schur complement

S = C − EB−1F

ä Idea: apply IS set reduction recursively.

ä When reduced system small enough solve by any method

ä Can devise an ILU factorization based on this strategy.

ä See work by [Botta-Wubbs ’96, ’97, YS’94, ’96, (ILUM), Leuze ’89,

..]
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Group Independent Sets / Aggregates

ä Generalizes (common) Independent Sets

Main goal: to improve robustness

Main idea: use independent sets of “cliques”, or “aggregates”.

There is no coupling between the aggregates.

No Coupling
ä Reorder equations

so nodes of indepen-

dent sets come first
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Algebraic Recursive Multilevel Solver (ARMS)

Original matrix, A , and reordered matrix, A0 = P T
0 AP0 .

0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155
0 50 100 150 200 250 300

0

50

100

150

200

250

300

nz = 3155

ä Block ILU

factorization

of Al

Bl Fl

El Cl

 ≈
 Ll 0

ElU
−1
l I

 I 0

0 Al+1

 Ul L−1
l Fl

0 I



CRM May 2, 2008 7



ä Diagonal blocks treated as sparse

Problem: Fill-in
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Remedy: dropping strategy
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ä Next step: treat the Schur complement recursively
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Algebraic Recursive Multilevel Solver (ARMS)

Basic step: B F

E C

 y

z

 =

f

g

 →

 L 0

EU−1 I

 ×
U L−1F

0 S

 y

z

 =

f

g


where S = C − EB−1F = Schur complement.

ä Perform block factorization recursively on S

ä L, U Blocks: sparse

ä Exploit recursivity
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Factorization: at level l P T
l AlPl =Bl Fl

El Cl

 ≈
 Ll 0

ElU
−1
l I

 I 0

0 Al+1

 Ul L−1
l Fl

0 I


ä L-solve ∼ restriction. U-solve ∼ prolongation.

ä Solve Last level system with, e.g., ILUT+GMRES
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Group Independent Set reordering

Separator
First Block 

Simple strategy used: Do a Cuthill-MKee ordering until there are

enough points to make a block. Reverse ordering. Start a new block

from a non-visited node. Continue until all points are visited. Add

criterion for rejecting “not sufficiently diagonally dominant rows.”
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Original matrix



Block size of 6



Block size of 20



ARMS with permutations for diagonal dominance

Idea: ARMS + exploit nonsymmetric permutations

ä No particular structure or assumptions for B block

ä Permute rows * and * columns of A. Use two permutations P

(rows) and Q (columns) to transform A into

PAQT =

B F

E C


P, Q is a pair of permutations (rows, columns) selected so that the

B block has the ‘most diagonally dominant’ rows (after nonsym

perm) and few nonzero elements (to reduce fill-in).
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Matching: Greedy algorithm

ä Simple algorithm: scan pairs (ik, jk) in the given order.

ä If ik and jk not already assigned, assign them to M.
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Numerical illustration

Matrix order nonzeros Application (Origin)

barrier2-9 115,625 3,897,557 Device simul. (Schenk)

matrix 9 103,430 2,121,550 Device simul. (Schenk)

mat-n 3* 125,329 2,678,750 Device simul. (Schenk)

ohne2 181,343 11,063,545 Device simul. (Schenk)

para-4 153,226 5,326,228 Device simul. (Schenk)

cir2a 482,969 3,912,413 circuit simul.

scircuit 170998 958936 circuit simul. (Hamm)

circuit 4 80209 307604 Circuit simul. (Bomhof)

wang3.rua 26064 177168 Device simul. (Wang)

wang4.rua 26068 177196 Device simul. (Wang)

CRM May 2, 2008 17



Parameters

Drop tolerance Fillmax

nlevmax tolDD LU-B GW S LU-S LU-B GW S LU-S

40 0.1 0.01 0.01 0.01 1.e-05 3 3 3 20
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Fill Set-up GMRES(60) GMRES(100)

Matrix Factor Time Its. Time Its. Time

barr2-9 0.62 4.01e+00 113 3.29e+01 93 3.02e+01

mat-n 3 0.89 7.53e+00 40 1.02e+01 40 1.00e+01

matrix 9 1.77 5.53e+00 160 4.94e+01 82 2.70e+01

ohne2 0.62 4.34e+01 99 6.35e+01 80 5.43e+01

para-4 0.62 5.70e+00 49 1.94e+01 49 1.93e+01

wang3 2.33 8.90e-01 45 2.09e+00 45 1.95e+00

wang4 1.86 5.10e-01 31 1.25e+00 31 1.20e+00

scircuit 0.90 1.86e+00 Fail 7.08e+01 Fail 8.80e+01

circuit 4 0.75 1.60e+00 199 1.69e+01 96 1.07e+01

circ2a 0.76 2.19e+02 18 1.08e+01 18 1.03e+01

Results for the 10 systems - ARMS-ddPQ + GMRES(60) & GMRES(100)
CRM May 2, 2008 19



Fill Set-up GMRES(60) GMRES(100)

Factor Time Its. Time Its. Time

Same param’s 0.89 1.81 400 9.13e+01 297 8.79e+01

Droptol = .001 1.00 1.89 98 2.23e+01 82 2.27e+01

Solution of the system scircuit – no scaling + two different sets

of parameters.
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PARALLEL IMPLEMENTATION



Introduction

ä Thrust of parallel computing techniques in most applications

areas.

ä Programming model: Message-passing seems (MPI) dominates

ä Open MP and threads for small number of processors

ä Important new reality: parallel programming has penetrated the

‘applications’ areas [Sciences and Engineering + industry]

ä Problem 1: algorithms lagging behind somewhat

ä Problem 2: Message passing is painful for large applications.

‘Time to solution’ up.
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Parallel preconditioners: A few approaches

“Parallel matrix computation” viewpoint:

• Local preconditioners: Polynomial (in the 80s), Sparse Approxi-

mate Inverses, [M. Benzi-Tuma & al ’99., E. Chow ’00]

• Distributed versions of ILU [Ma & YS ’94, Hysom & Pothen ’00]

• Use of multicoloring to unaravel parallelism
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Domain Decomposition ideas:

• Schwarz-type Preconditioners [e.g. Widlund, Bramble-Pasciak-

Xu, X. Cai, D. Keyes, Smith, ...]

• Schur-complement techniques [Gropp & Smith, Ferhat et al. (FETI),

T.F. Chan et al., YS and Sosonkina ’97, J. Zhang ’00, ...]

Multigrid / AMG viewpoint:

• Multi-level Multigrid-like preconditioners [e.g., Shadid-Tuminaro

et al (Aztec project), ...]

ä In practice: Variants of additive Schwarz very common (simplic-

ity)
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Standard Domain Decomposition

Problem: ∆u = f in Ω

u = uΓ on Γ = ∂Ω.

Domain:

Ω =
s⋃

i=1

Ωi,

ä Domain decomposition or substructuring methods attempt to

solve a PDE problem (e.g.) on the entire domain from problem

solutions on the subdomains Ωi.
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Discretization of domain



Coefficient Matrix
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Types of mappings

(a) Vertex-based; (b) edge-based; and (c) element-based

partitioning

ä Can adapt PDE viewpoint to general sparse matrices

ä Will use the graph representation and ’vertex-based’ viewpoint

–
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DISTRIBUTED SPARSE MATRICES



Generalization: Distributed Sparse Systems

ä Simple illustration:

Block assignment. Assign

equation i and unknown i

to a given ’process’

ä Naive partitioning -

won’t work well in practice
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ä Best idea is to use the adjacency graph of A:

Vertices = {1, 2, · · · , n};

Edges: i→ j iff aij 6= 0

1 2

34

Graph partitioning problem:

• Want a partition of the vertices of the graph so that

(1) partitions have ∼ the same sizes

(2) interfaces are small in size
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General Partitioning of a sparse linear system

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

S1 = {1, 2, 6, 7, 11, 12}: This

means equations and unknowns

1, 2, 3, 6, 7, 11, 12 are assigned

to Domain 1.

S2 = {3, 4, 5, 8, 9, 10, 13}

S3 = {16, 17, 18, 21, 22, 23}

S4 = {14, 15, 19, 20, 24, 25}

CRM May 2, 2008 32



Alternative: Map elements / edges rather than vertices

32 4 5

7 8 9 10

11 12 13 15

17 18

21 22 23 24 25

201916

6

1

14

Equations/unknowns 3, 8, 12

shared by 2 domains. From dis-

tributed sparse matrix viewpoint

this is an overlap of one layer

ä Partitioners : Metis, Chaco, Scotch, ..

ä More recent: Zoltan, H-Metis, PaToH
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ä Standard dual objective: “minimize” communication + “bal-

ance” partition sizes

ä Recent trend: use of hypergraphs [PaToh, Hmetis,...]

ä Hypergraphs are very general.. Ideas borrowed from VLSI work

ä Main motivation: to better represent communication volumes

when partitioning a graph. Standard models face many limitations

ä Hypergraphs can better express complex graph partitioning prob-

lems and provide better solutions. Example: completely nonsym-

metric patterns.
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Two views of a distributed sparse matrix

External interface
nodes

Internal
nodes   

Local interface
nodes

XiXi
Ai

ä Local interface variables always ordered last.

ä Need: 1) to set up the various “local objects”. 2) Preprocessing

to prepare for communications needed during iteration?
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Local view of distributed matrix:

local 
Data 

External data External data 

OO A i
iX Xi

The local system:

Bi Fi

Ei Ci


︸ ︷︷ ︸

Ai

ui

yi

 +

 0∑
j∈Ni

Eijyj


︸ ︷︷ ︸

yext

=

fi

gi



ä ui : Internal variables; yi : Interface variables
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The local matrix:

Local

points

Internal
Points

Interface

Aloc

Bext

The local matrix consists of

2 parts: a part (’Aloc’) which

acts on local data and another

(’Bext’) which acts on remote

data.

ä Once the partitioning is available these parts must be identified

and built locally..

ä In finite elements, assembly is a local process.

ä How to perform a matrix vector product? [needed by iterative

schemes?]
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Distributed Sparse Matrix-Vector Product Kernel

Algorithm:

1. Communicate: exchange boundary data.

Scatter xbound to neighbors - Gather xext from neighbors

2. Local matrix – vector product

y = Alocxloc

3. External matrix – vector product

y = y + Bextxext

NOTE: 1 and 2 are independent and can be overlapped.
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Main Operations in (F) GMRES :

1. Saxpy’s – local operation – no communication

2. Dot products – global operation

3. Matrix-vector products – local operation – local communication

4. Preconditioning operations – locality varies.
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Distributed Dot Product

/*-------------------- call blas1 function

tloc = DDOT(n, x, incx, y, incy);

/*-------------------- call global reduction

MPI_Allreduce(&tloc,&ro,1,MPI_DOUBLE,MPI_SUM,comm);
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A remark: the global viewpoint



B1 F1

B2 F2

. . . .
. . . .

Bp Fp

E1 C1 E12 · · · E1p

E2 E21 C2 · · · E2p

. . . ... ... ...
Ep Ep1 Ep2 · · · Cp





u1

u2

...

...
up

y1

y2

...
yp



=



f1

f2

...

...
fp

g1

g2

...
gp


←

Interior

variables
→←

Interface

variables
→
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SCHUR COMPLEMENT-BASED PRECONDITIONERS



Schur complement system

Local system can be written as

Aixi + Xiyi,ext = bi. (1)

local 
Data 

External data External data 

OO A i
iX Xi

xi= vector of local unknowns, yi,ext = external interface variables,

and bi = local part of RHS.
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ä Local equationsBi Fi

Ei Ci

 ui

yi

 +

 0∑
j∈Ni

Eijyj

 =

fi

gi

 (2)

ä eliminate ui from the above system:

Siyi +
∑
j∈Ni

Eijyj = gi − EiB
−1
i fi ≡ g′i,

where Si is the “local” Schur complement

Si = Ci − EiB
−1
i Fi. (3)
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Structure of Schur complement system

Global Schur complement system: Sy = g′ with :

S =


S1 E12 . . . E1p

E21 S2 . . . E2p

... . . . ...

Ep1 Ep−1,2 . . . Sp




y1

y2

...

yp

 =


g′1

g′2
...

g′p

 .

ä Eij’s are sparse = same as in the original matrix

ä Can solve global Schur complement system iteratively. Back-

substitute to recover rest of variables (internal).

ä Can use the procedure as a preconditining to global system.
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Simplest idea: Schur Complement Iterations

 ui

yi

 Internal variables

Interface variables

ä Do a global primary iteration (e.g., block-Jacobi)

ä Then accelerate only the y variables (with a Krylov method)

Still need to precondition..
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Approximate Schur-LU

ä Two-level method based on induced preconditioner. Global

system can also be viewed as

B F

E C

 u

y

 =

f

g

 , B =



B1 F1

B2 F2

. . . ...

Bp Fp

E1 E2 · · · Ep C


Block LU factorization of A:B F

E C

 =

B 0

E S

 I B−1F

0 I

 ,
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Preconditioning:

L =

B 0

E MS

 and U =

I B−1F

0 I


with MS = some approximation to S.

ä Preconditioning to global system can be induced from any pre-

conditioning on Schur complement.

Rewrite local Schur system as

yi + S−1
i

∑
j∈Ni

Eijyj = S−1
i

[
gi − EiB

−1
i fi

]
.

ä equivalent to Block-Jacobi preconditioner for Schur comple-

ment.

ä Solve with, e.g., a few s (e.g., 5) of GMRES CRM May 2, 2008 49



ä Question: How to solve with Si?

ä Can use LU factorization of local matrix Ai =

Bi Fi

Ei Ci


and exploit the relation:

Ai =

 LBi
0

EiU
−1
Bi

LSi

 UBi
L−1

Bi
Fi

0 USi

 → LSi
USi

= Si

ä Need only the (I) LU factorization of the Ai [rest is already avail-

able]

ä Very easy implementation of (parallel) Schur complement tech-

niques for vertex-based partitioned systems : YS-Sosonkina ’97;

YS-Sosonkina-Zhang ’99.
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PARALLEL ARMS



Parallel implementation of ARMS

Interdomain

Interior points

Local 
Interfaces Interfaces 

Three types of points:

interior (independent sets), lo-

cal interfaces, and global inter-

faces

Main ideas: (1) exploit recursivity (2) distinguish two phases: elim-

ination of interior points and then interface points.
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Result: 2-part Schur complement: one corresponding to local in-

terfaces and the other to inter-domain interfaces.
IS I1

I2

Bext
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Three approaches

Method 1: Simple additive Schwarz using ILUT or ARMS locally

Method 2: Schur complement approach. Solve Schur complement

system (both I1 and I2) with either a block Jacobi (M. Sosonkina

and YS, ’99) or multicolor ILU(0).

Method 3: Do independent set reduction across subdomains. Re-

quires construction of global group independent sets.

ä pARMS: Methods 1 and 2. Method 3 : Phidal [w. Pascal Henon]
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color 2
color 3

color 4

color 1

color 1

color 3

Internal interface points 

External interface points 

Algorithm: Multicolor Distributed ILU(0)
1. Eliminate local rows,

2. Receive external interf. rows from PEs s.t. color(PE) < MyColor

3. Process local interface rows

4. Send local interface rows to PEs s.t. color(PE) > MyColor
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Methods implemented in pARMS:

add x Additive Schwarz with method x for subdomains. With/out

overlap. x = one of ILUT, ILUK, ARMS.

sch x Schur complement technique, with method x = factor-

ization used for local submatrix. Same x as above. Equiv. to

Additive Schwarz preconditioner on Schur complement.

sch sgs Multicolor Multiplicative Schwarz (block Gauss-Seidel)

preconditioning is used instead of additive Schwarz for Schur

complement.

sch gilu0 ILU(0) preconditioning to solve global Schur comple-

ment system obtained from ARMS reduction.
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Test problem

1. Scalability experiment: sample finite difference problem.

−∆u + γ

(
exy∂u

∂x
+ e−xy∂u

∂y

)
+ αu = f ,

Dirichlet Boundary Conditions ; γ = 100, α = −10; centered differ-

ences discretization.

ä Keep size constant on each processor [100 × 100] ä Global

linear system with 10, 000 ∗ nproc unknowns.

2. Comparison with a parallel direct solver – symmetric problems

3. Large irregular matrix example arising from magneto hydrody-

namics.
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Software

Direct solvers:

ä SUPERLU

http://crd.lbl.gov/ xiaoye/SuperLU/

ä MUMPS: [cerfacs]

ä Univ. Minn. / IBM’s PSPASES [SPD matrices]

http://www-users.cs.umn.edu/ mjoshi/pspases/

ä UMFPACK
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Iterative solvers:

ä PETSc

http://acts.nersc.gov/petsc/

and Trilinos (more recent)

http://trilinos.sandia.gov/

... are very comprehensive packages..

ä PETSc includes few preconditioners...

ä Hypre, ML, ..., all include interfaces to PETSc or trilinos

ä pARMS:

http://www.cs.umn.edu∼saad/software

is a more modest effort -
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