Efficient Linear Algebra Methods in Data Mining

Yousef Saad
 University of Minnesota Dept. of Computer Science and Engineering

M2A07 - Luminy, France

Introduction and Background:

> Information sciences : Data Mining, Data Analysis, Machine Learning, Classification, are a huge source of interesting matrix problems
$>$ Effective linear algebra methods are just starting to be deployed

1. Information retrieval
> In this talk 3 sample problems:
2. Face recognotion
3. Clustering

Information Retrieval: Vector Space Model

Given: 1) set of documents (columns of a matrix $A)$; 2) a query vector q. Entry $a_{i j}$ of $A=$ frequency of term i in document $j+$ weighting.

Documents

> Queries ('pseudo-documents') q represented similarly to columns
Problem: find columns of A that best match q

Vector Space Model and the Truncated SVD

$>$ Similarity metric: angle between column $\boldsymbol{A}_{j, \text { : }}$ and query q

Use Cosines:

$$
\frac{\left|\boldsymbol{q}^{T} \boldsymbol{A}_{:, j}\right|}{\left\|\boldsymbol{A}_{:, j}\right\|_{2}\|\boldsymbol{q}\|_{2}}
$$

> To rank all documents compute the similarity vector:

$$
s=\boldsymbol{A}^{T} \boldsymbol{q}
$$

> 'Litteral' matching - not very effective. Problems : polysemy, synonymy, ...
> LSI: replace matrix A by low rank approximation

$$
A=U \Sigma V^{T} \quad \rightarrow \quad A_{k}=U_{k} \Sigma_{k} V_{k}^{T} \quad \rightarrow \quad s_{k}=A_{k}^{T} q
$$

$>U_{k}$: term space, V_{k} : document space.
> Called TSVD - Expensive, hard to update, ..

IR: Use of approximation theory

> Use of polynomial filters * Joint work with E. Kokiopoulou
Idea: Replace A_{k} by $\boldsymbol{A} \phi\left(A^{T} A\right)$ where $\phi=$ a filter function
> Consider the step-function:

$$
\phi(x)=\left\{\begin{array}{l}
0, \quad 0 \leq x \leq \sigma_{k}^{2} \\
1, \\
\sigma_{k}^{2} \leq x \leq \sigma_{1}^{2}
\end{array}\right.
$$

> This would yield the same result as with TSVD but...
> ... Not easy to use this function directly
$>$ Solution : use a polynomial approximation to ϕ
$>$ Note: $s^{T}=q^{T} A \phi\left(A^{T} A\right)$, requires only Mat-Vec's

How to get the polynomial filter?

Idea: First select an "ideal fiter"

$>$ e.g. a piecewise polynomial function

$>$ For example $\phi=$ Hermite interpolating pol. in [0,a], and $\phi=1$ in [a, b]
$>$ Then approximate this filter by an 'optimal' (least-squares) polynomial

Main advantage: Extremely flexible.

Method: Build a sequence of polynomials ϕ_{k} which approximate the ideal PP filter ϕ, in the L_{2} sense.
$>$ If $\left\{\mathcal{P}_{j}\right\}$ is a basis of polynomials that are orthogomal w.r.t. some L_{2} inner-product, then

$$
\phi_{k}(t)=\sum_{j=1}^{k}\left\langle\phi, \mathcal{P}_{j}\right\rangle \mathcal{P}_{j}(t)
$$

> Can use Stieljes procedure to compute orthogonal polynomials [Erhel, Guyomarch, YS'99]
$>$ Or can use a Conjugate residual-type algorithm in polynomial space [YS'05, Bekas-Kokiopoulou-YS'05]
$>$ Accuracy close to that of TSVD - But no SVD required
$>$ Experiments and details skipped.

IR: Use of the Lanczos algorithm

* Joint work with Jie Chen - in progress
> Lanczos is good at catching large (and small) eigenvalues: can compute singular vectors with Lanczos, \& use them in LSI
> Can do better: Use the Lanczos vectors directly for the projection..
> First advocated by: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005]. Use Lanczos bidiagonalization.
$>$ Use a similar approach - But directly with $A A^{T}$ or $A^{T} A$.

IR: Use of the Lanczos algorithm (1)

$>$ Let $A \in \mathbb{R}^{m \times n}$. Apply the Lanczos procedure to $M=\boldsymbol{A} A^{T}$. Result:

$$
Q_{k}^{T} A A^{T} Q_{k}=T_{k}
$$

with Q_{k} orthogonal, T_{k} tridiagonal.
$>$ Define $s_{i} \equiv$ orth. projection of $A b$ on subspace span $\left\{Q_{i}\right\}$

$$
s_{i}:=Q_{i} Q_{i}^{T} A b .
$$

$>s_{i}$ can be easily updated from s_{i-1} :

$$
s_{i}=s_{i-1}+\boldsymbol{q}_{i} \boldsymbol{q}_{i}^{T} A b
$$

IR: Use of the Lanczos algorithm (2)

$>$ If $n<m$ it may be more economial to apply Lanczos to $M=$ $A^{T} A$ which is $n \times n$. Result:

$$
\bar{Q}_{k}^{T} A^{T} A \bar{Q}_{k}=\bar{T}_{k}
$$

> Define:

$$
t_{i}:=A \bar{Q}_{i} \bar{Q}_{i}^{T} b
$$

$>$ Project b first before applying A to result.

Why does this work?

> First, recall a result on Lanczos algorithm [YS 83]
Let $\left\{\lambda_{j}, u_{j}\right\}=j$-th eigen-pair of M (label \downarrow)

$$
\frac{\left\|\left(I-Q_{k} Q_{k}^{T}\right) u_{j}\right\|}{\left\|Q_{k} Q_{k}^{T} u_{j}\right\|} \leq \frac{K_{j}}{T_{k-j}\left(\gamma_{j}\right)} \frac{\left\|\left(I-Q_{1} Q_{1}^{T}\right) u_{j}\right\|}{\left\|Q_{1} Q_{1}^{T} u_{j}\right\|}
$$

where

$$
\gamma_{j}=1+2 \frac{\lambda_{j}-\lambda_{j+1}}{\lambda_{j+1}-\lambda_{n}}, \quad K_{j}=\left\{\begin{array}{ll}
1 & j=1 \\
\prod_{i=1}^{j-1} \frac{\lambda_{i}-\lambda_{n}}{\lambda_{i}-\lambda_{j}} & j \neq 1
\end{array},\right.
$$

and $T_{l}(x)=$ Chebyshev polynomial of 1 st kind of degree l.
This has the form

$$
\left\|\left(I-Q_{k} Q_{k}^{T}\right) u_{j}\right\| \leq c_{j} / T_{k-j}\left(\gamma_{j}\right),
$$

where $c_{j}=$ constant independent of k
$>$ Result: Distance between unit eigenvector u_{j} and Krylov subspace $\operatorname{span}\left(Q_{k}\right)$ decays fast (for small j)
$>$ Consider component of difference between $A b-s_{k}$ along left singular directions of A. If $A=U \Sigma V^{T}$, then u_{j} 's (columns of U) are eigenvectors of $M=A A^{T}$. So:

$$
\begin{aligned}
\left|\left\langle A b-s_{k}, u_{j}\right\rangle\right| & =\left|\left\langle\left(I-Q_{k} Q_{k}^{T}\right) A b, u_{j}\right\rangle\right| \\
& =\left|\left\langle\left(I-Q_{k} Q_{k}^{T}\right) u_{j}, A b\right\rangle\right| \\
& \leq\left\|\left(I-Q_{k} Q_{k}^{T}\right) u_{j}\right\|\|A b\| \\
& \leq c_{j}\|A b\| T_{k-j}^{-1}\left(\gamma_{j}\right)
\end{aligned}
$$

$>\left\{s_{i}\right\}$ converges rapidly to $A b$ in directions of the major left singular vectors of A.
$>$ Similar result for left projection sequence t_{j}
$>$ Here is a typical distribution of eigenvalues of M : [Matrix of size 1398×1398]

> Convergence toward first few singular vectors very fast -

Advantages of Lanczos over polynomial filters:

(1) No need for eigenvalue estimates
(2) Mat-vecs performed only in preprocessing

Disadvantages:

(1) Need to store Lanczos vectors;
(2) Preprocessing must be redone when A changes.
(3) Need for reorthogonalization - expensive for large k.

Tests: IR

Information retrieval datasets
\# Terms \# Docs \# queries sparsity

MED	7,014	1,033	30	0.735
CRAN	3,763	1,398	225	1.412

Med dataset.

Cran dataset.

Average query times

Med dataset

Cran dataset.

Average retrieval precision

Med dataset

Cran dataset

Retrieval precision comparisons

Problem 2: Face Recognition - background

Problem: We are given a database of images: [arrays of pixel values]. And a test (new) image.

Question: Does this new image correspond to one of those in the database?

Difficulty

$>$ Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces - Principal Component Analysis technique

Example: Occlusion.

See recent paper by John Wright et al.

Top test image: deliberate disguise.

Bottom: 50\% pixels randomly changed

Source: http://perception.csl.uiuc.edu/
... recognition/Robust_face.html
> See also: Recent real-life example - international man-hunt

Eigenfaces

- Consider each picture as a one-dimensional colum of all pixels
- Put together into an array A of size \#_pixels $\times \#$ _images .

- Do an SVD of A and perform comparison with any test image in low-dim. space
- Similar to LSI in spirit - but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)

Tests: Face Recognition

Tests with 2 well-known data sets:
ORL 40 subjects, 10 sample images each - example:

\# of pixels: $112 \times 92 \quad$ TOT. \# images : 400
AR set 126 subjects - 4 facial expressions selected for each [natural, smiling, angry, screaming] - example:

[^0]
Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset

AR dataset

Vertical axis shows average error rate. Horizontal = Subspace dimension

Problem 3: Clustering

* Joint work with Haw-Ren Fang - in progress

Problem: A set X of n objects in some space. Find subsets of X that each contain objects that are most 'alike'
> 'Bread-and-butter problem' - arises in *many* applications
$>$ Variation of the problem: Graph partitioning [need closeness + few edge cuts]
> Supervised clustering: Subsets are known - problem is to optimally 'classify' a new item into one of the subsets

Questions: 'alike' in what sense? How many subsets?

Clustering: using farthest centroids

$>$ Given $X=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right] \in \mathbb{R}^{m \times n}$
$>$ Centroid of a set $Y=\left[y_{1}, \cdots, y_{p}\right]$ is

$$
c_{Y}=\frac{1}{p} \sum_{j=1}^{p} y_{j}=\frac{1}{p} Y e \quad e=[1,1, \cdots, 1]^{T}
$$

$>$ Clustering into $\mathbf{2}$ even sets. Idea: find partition vector c :

$$
\begin{aligned}
& \text { Maximize } \quad\|X c\|_{2} \\
& \text { subject to }\left\{\begin{array}{l}
c_{i}= \pm 1, i=1, \cdots, n \\
c^{T} e=0
\end{array}\right.
\end{aligned}
$$

$>$ Subset $X_{+}=$set with $c_{i}=1$, Subset $X_{-}=$set with $c_{i}=-1$
$>c^{T} e=0$ is a balance constraint between the 2 sets
> Hard problem to solve [integer programming - NP-hard]
$>$ But: can be solved approximately [~ graph partitioning]
> Can also relax constraints.
(1) 'center' X, i.e., use $\bar{X}=X-\frac{1}{n} X e^{T}$ for X
(2) Replace $c_{i}= \pm 1$ by $c^{T} c=n$

$$
\begin{aligned}
& \text { Maximize } \quad\|\bar{X} c\|_{2} \\
& \text { subject to }\left\{\begin{array}{l}
\|c\|_{2}=1, \\
c^{T} e=0
\end{array}\right.
\end{aligned}
$$

Solution = dominant singular vector.
> Exploited by Boley '97 in PDDP - [See also Juhász '81]
> Similar idea exploited in graph partitioning

Even-sets clustering by exchange

$>$ Go back to constraint $c_{i}= \pm 1$ - i.e., use actual centroids
$>$ Need to improve a given partition
> Similar to Kernigan and Lin in graph partitioning
$>$ Let $Y=\left[y_{1}, \cdots, y_{n / 2}\right] . Z=\left[z_{1}, \cdots, z_{n / 2}\right]$
> Scaled squared distance between the centroids is

$$
d=\|Y e-Z e\|_{2}^{2}=(Y e-Z e)^{T}(Y e-Z e)
$$

$>$ What happens if we swap $y^{*} \in Y$ and $z^{*} \in Z$?
$>$ Call $\delta=y^{*}-z^{*}$
> New distance:

$$
\begin{aligned}
d_{\text {new }} & =\left\|\left(Y e-y^{*}+z^{*}\right)-\left(Z e-z^{*}+y^{*}\right)\right\|_{2}^{2} \\
& =\|(Y e-\delta)-(Z e+\delta)\|_{2}^{2} \\
& =\|(Y e-Z e)-2 \delta\|_{2}^{2} \\
& =d+4\|\delta\|_{2}^{2}-4((Y e-Z e), \delta)
\end{aligned}
$$

$>$ Distance gains if :

$$
-(Y e-Z e)^{T} \delta+\|\delta\|_{2}^{2}>0
$$

Idea:

$>$ Begin with the Lanczos algorithm for $\bar{X}^{T} \bar{X}$ to get $s . \vec{v} \cdot v_{1}$
$>$ Get a marginal set among components of v_{1} for refining
$>$ Repeat: exchange marginal points (only) - until no further gains are made

Clustering: example

Initialization of two sets of $n=1,000$ random points on two-dimensional plane. Green points are margin set (100). Left: uniform distribution; right: normal distribution.

Clustering : K-means + improvement

ALGORITHM : 1. \boldsymbol{K}-means clustering algorithm

Given: K initial centroids p_{1}, \cdots, p_{K}
Do:
Set $S_{j}:=\emptyset$ for $j=1, \ldots, K$.
For $i=1,2 \ldots, n$
Find $k=\operatorname{argmin}_{j}\left\|x_{i}-p_{j}\right\|$
Set $S_{k}:=S_{k} \cup\left\{x_{i}\right\}$.
EndFor
For $j=1,2, \ldots, K$
Set $p_{j}==$ mean of points in S_{j}.
EndFor
While $\left\{p_{1}, \ldots, p_{K}\right\}$ have not converged.

In words: Find closest centroid p_{k} to each x_{i}. Add this x_{i} to S_{k}. Get new centroids. Repeat.
$>$ Excellent algorithm - but very slow. Depends on initial set.
$>$ Common practice: start with something else - [cheaper]

Ideas:

(1) Start with PDDP [Lanczos] then refine with K-means
(2) Start with FCDP [Lanczos] then refine with K-means

Clustering : test with ORL-get 40 clusters

> Result of clustering displayed on a 2-D plane:

Left: clustering by PCA. Right: clustering by FCDC.

Conclusion

$>$ Many interesting linear algebra problems in data mining.
$>$ Current methods mix 1) statistics, 2) Linear algebra 3) Differential geometry (manifold learning) 4) (Basic) graph theory
> Have shown some simple techniques put to work..
$>$ Work on clustering still challenging..
> Modern dimension reduction techniques (LLE, Eigenmaps, Isomap,
...) exploit nearest neighbor graph. Resulting methods quite powerful

[^0]: \# of pixels : 112×92
 \# TOT. \# images : 504

