Efficient Linear Algebra Methods in Data Mining

Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

M2A07 – Luminy, France

Introduction and Background:

Information sciences : Data Mining, Data Analysis, Machine Learning, Classification, are a huge source of interesting matrix problems

Effective linear algebra methods are just starting to be deployed

- In this talk 3 sample problems:
- 1. Information retrieval
- 2. Face recognotion
- 3. Clustering

Information Retrieval: Vector Space Model

Given: 1) set of documents (columns of a matrix A); 2) a query vector q. Entry a_{ij} of A = frequency of term i in document j + weighting.

Queries ('pseudo-documents') q represented similarly to columns Problem: find columns of A that best match q

Vector Space Model and the Truncated SVD

Similarity metric: angle between column $A_{j,:}$ and query q

Use Cosines:
$$|q^T A_{:,j}| = ||A_{:,j}||_2 ||q||_2$$

To rank all documents compute the similarity vector:

$$s = A^T q$$

Litteral' matching – not very effective. Problems : polysemy, synonymy, ...

LSI: replace matrix A by low rank approximation

$$A = U \Sigma V^T \quad o \quad A_k = U_k \Sigma_k V_k^T \quad o \quad s_k = A_k^T q \; ,$$

- > U_k : term space, V_k : document space.
- Called TSVD Expensive, hard to update, ..

IR: Use of approximation theory

► Use of polynomial filters * Joint work with E. Kokiopoulou Idea: Replace A_k by $A\phi(A^TA)$ where ϕ = a filter function

Consider the step-function:

$$\phi(x) = \left\{egin{array}{ll} 0, & 0 \leq x \leq \sigma_k^2 \ 1, & \sigma_k^2 \leq x \leq \sigma_1^2 \end{array}
ight.$$

- This would yield the same result as with TSVD but...
- Mot easy to use this function directly
- **>** Solution : use a polynomial approximation to ϕ
- > Note: $s^T = q^T A \phi(A^T A)$, requires only Mat-Vec's

How to get the polynomial filter?

For example $\phi =$ Hermite interpolating pol. in [0,a], and $\phi = 1$ in [a, b]

Then approximate this filter by an 'optimal' (least-squares) polynomial

Main advantage: Extremely flexible.

Method: Build a sequence of polynomials ϕ_k which approximate the ideal PP filter ϕ , in the L_2 sense.

► If $\{\mathcal{P}_j\}$ is a basis of polynomials that are orthogomal w.r.t. some L_2 inner-product, then

$$\phi_k(t) = \sum_{j=1}^k \langle \phi, \mathcal{P}_j
angle \mathcal{P}_j(t),$$

Can use Stieljes procedure to compute orthogonal polynomials [Erhel, Guyomarch, YS'99]

Or can use a Conjugate residual-type algorithm in polynomial space [YS'05, Bekas-Kokiopoulou-YS'05]

- Accuracy close to that of TSVD But no SVD required
- Experiments and details skipped.

IR: Use of the Lanczos algorithm

- * Joint work with Jie Chen in progress
- Lanczos is good at catching large (and small) eigenvalues: can compute singular vectors with Lanczos, & use them in LSI
- Can do better: Use the Lanczos vectors directly for the projection..
- First advocated by: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005].Use Lanczos bidiagonalization.
- **>** Use a similar approach But directly with AA^T or A^TA .

IR: Use of the Lanczos algorithm (1)

► Let $A \in \mathbb{R}^{m \times n}$. Apply the Lanczos procedure to $M = AA^T$. Result:

$$Q_k^T A A^T Q_k = T_k$$

with Q_k orthogonal, T_k tridiagonal.

> Define $s_i \equiv$ orth. projection of Ab on subspace span $\{Q_i\}$

$$s_i := Q_i Q_i^T A b.$$

> s_i can be easily updated from s_{i-1} :

$$s_i = s_{i-1} + q_i q_i^T A b.$$

IR: Use of the Lanczos algorithm (2)

► If n < m it may be more economial to apply Lanczos to $M = A^T A$ which is $n \times n$. Result:

$$ar{Q}_k^T A^T A ar{Q}_k = ar{T}_k$$

Define:

$$t_i:=Aar{Q}_iar{Q}_i^Tb,$$

Project b first before applying A to result.

Why does this work?

First, recall a result on Lanczos algorithm [YS 83]

Let
$$\{\lambda_j, u_j\}$$
 = *j*-th eigen-pair of M (label \downarrow)
 $\frac{\|(I - Q_k Q_k^T) u_j\|}{\|Q_k Q_k^T u_j\|} \leq \frac{K_j}{T_{k-j}(\gamma_j)} \frac{\|(I - Q_1 Q_1^T) u_j\|}{\|Q_1 Q_1^T u_j\|},$

where

$$\gamma_j = 1 + 2rac{\lambda_j - \lambda_{j+1}}{\lambda_{j+1} - \lambda_n}, \qquad K_j = egin{cases} 1 & j = 1 \ \prod_{i=1}^{j-1} rac{\lambda_i - \lambda_n}{\lambda_i - \lambda_j} & j
eq 1 \end{cases},$$

and $T_l(x)$ = Chebyshev polynomial of 1st kind of degree *l*.

This has the form

$$\|(I-Q_kQ_k^T)u_j\|\leq c_j/T_{k-j}(\gamma_j),$$

where c_j = constant independent of k

► Result: Distance between unit eigenvector u_j and Krylov subspace span(Q_k) decays fast (for small j)

► Consider component of difference between $Ab - s_k$ along left singular directions of A. If $A = U\Sigma V^T$, then u_j 's (columns of U) are eigenvectors of $M = AA^T$. So:

$$egin{aligned} |\langle Ab-s_k,u_j
angle| &= \left|\langle (I-Q_kQ_k^T)Ab,u_j
angle
ight| \ &= \left|\langle (I-Q_kQ_k^T)u_j,Ab
ight
angle| \ &\leq \|(I-Q_kQ_k^T)u_j\|\|Ab\| \ &\leq c_j\|Ab\|T_{k-j}^{-1}(\gamma_j) \end{aligned}$$

> $\{s_i\}$ converges rapidly to Ab in directions of the major left singular vectors of A.

> Similar result for left projection sequence t_j

► Here is a typical distribution of eigenvalues of M: [Matrix of size 1398×1398]

Convergence toward first few singular vectors very fast –

Advantages of Lanczos over polynomial filters:

- (1) No need for eigenvalue estimates
- (2) Mat-vecs performed only in preprocessing

Disadvantages:

- (1) Need to store Lanczos vectors;
- (2) Preprocessing must be redone when A changes.
- (3) Need for reorthogonalization expensive for large k.

Tests: IR

Information		# Terms	# Docs	# queries	sparsity
retrieval	MED	7,014	1,033	30	0.735
datasets	CRAN	3,763	1,398	225	1.412

Med dataset.

Cran dataset.

M2A-07, Oct-2007

Med dataset

Cran dataset.

Med dataset

Cran dataset

Retrieval precision comparisons

Problem 2: Face Recognition – background

Problem: We are given a database of images: [arrays of pixel values]. And a test (new) image.

Question: Does this new image correspond to one of those in the database?

Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces – Principal Component Analysis tech-

nique

M2A–07, Oct-2007 ____ 20

Example:Occlusion.See recent paper byJohn Wright et al.Top test image:deliberate disguise.Bottom:50% pixelsrandomly changed

Source: http://perception.csl.uiuc.edu/ ...

recognition/Robust_face.html

See also: Recent real-life example – international man-hunt

Eigenfaces

- Consider each picture as a one-dimensional colum of all pixels
- Put together into an array A of size $\#_pixels \times \#_images$.

– Do an SVD of A and perform comparison with any test image in

low-dim. space

- Similar to LSI in spirit but data is not sparse.
- **Idea:** replace SVD by Lanczos vectors (same as for IR)

Tests: Face Recognition

Tests with 2 well-known data sets:

ORL 40 subjects, 10 sample images each – example:

of pixels : 112×92 **TOT. # images : 400**

AR set 126 subjects – 4 facial expressions selected for each [natu-

ral, smiling, angry, screaming] – example:

of pixels : 112×92 # TOT. # images : 504

Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset

AR dataset

Vertical axis shows average error rate. Horizontal = Subspace dimension

Problem 3: Clustering

* Joint work with Haw-Ren Fang – in progress

Problem: A set X of n objects in some space. Find subsets of

X that each contain objects that are most 'alike'

- 'Bread-and-butter problem' arises in *many* applications
- Variation of the problem: Graph partitioning [need closeness + few edge cuts]
- Supervised clustering: Subsets are known problem is to optimally 'classify' a new item into one of the subsets

Questions: 'alike' in what sense? How many subsets?

Clustering: using farthest centroids

$$\blacktriangleright$$
 Given $X = [x_1 \ x_2 \ \cdots \ x_n] \ \in \ \mathbb{R}^{m imes n}$

► Centroid of a set
$$Y = [y_1, \cdots, y_p]$$
 is

$$c_Y = rac{1}{p} \sum_{j=1}^p y_j = rac{1}{p} Y e \quad e = [1, 1, \cdots, 1]^T$$

Clustering into 2 even sets. Idea: find partition vector c:

Subset X_+ = set with $c_i = 1$, Subset X_- = set with $c_i = -1$

 $rac{}{} c^T e = 0$ is a balance constraint between the 2 sets

- Hard problem to solve [integer programming NP-hard]
- But: can be solved approximately [~ graph partitioning]
- Can also relax constraints.
 - **0** 'center' X, i.e., use $\bar{X} = X \frac{1}{n}Xe^{T}$ for X

2 Replace
$$c_i = \pm 1$$
 by $c^T c = n$

Solution = dominant singular vector.

- Exploited by Boley '97 in PDDP [See also Juhász '81]
- Similar idea exploited in graph partitioning

Even-sets clustering by exchange

- **>** Go back to constraint $c_i = \pm 1$ i.e., use actual centroids
- Need to improve a given partition
- Similar to Kernigan and Lin in graph partitioning
- ▶ Let $Y = [y_1, \cdots, y_{n/2}]$. $Z = [z_1, \cdots, z_{n/2}]$
- Scaled squared distance between the centroids is

$$d = ||Ye - Ze||_2^2 = (Ye - Ze)^T (Ye - Ze)$$

 \blacktriangleright What happens if we swap $y^* \in Y$ and $z^* \in Z$?

$$\blacktriangleright \quad \mathsf{Call} \ \delta = y^* - z^*$$

> New distance:

$$egin{aligned} d_{new} &= \|(Ye-y^*+z^*)-(Ze-z^*+y^*)\|_2^2 \ &= \|(Ye-\delta)-(Ze+\delta)\|_2^2 \ &= \|(Ye-Ze)-2\delta\|_2^2 \ &= d+4\|\delta\|_2^2-4((Ye-Ze),\delta) \end{aligned}$$

Distance gains if :

$$-(Ye - Ze)^T \delta + \|\delta\|_2^2 > 0$$

Idea:

- > Begin with the Lanczos algorithm for $\bar{X}^T \bar{X}$ to get $s. v_1$
- > Get a marginal set among components of v_1 for refining
- Repeat: exchange marginal points (only) until no further gains are made

Clustering: example

Initialization of two sets of n = 1,000 random points on two-dimensional plane. Green points are margin set (100). Left: uniform distribution; right: normal distribution.

Clustering : K-means + improvement

ALGORITHM : 1 . K-means clustering algorithm

```
Given: K initial centroids p_1, \dots, p_K
Do:
    Set S_j := \emptyset for j = 1, \ldots, K.
    For i = 1, 2..., n
        Find k = \operatorname{argmin}_{i} \|x_{i} - p_{j}\|
        Set S_k := S_k \cup \{x_i\}.
    EndFor
    For j = 1, 2, ..., K
        Set p_i == mean of points in S_i.
    EndFor
While \{ p_1, \ldots, p_K \} have not converged.
                                                 M2A-07, Oct-2007 -
```

In words: Find closest centroid p_k to each x_i . Add this x_i to S_k . Get new centroids. Repeat.

- **Excellent algorithm but very slow. Depends on initial set.**
- Common practice: start with something else [cheaper]
 Ideas:
 - **1** Start with PDDP [Lanczos] then refine with K-means
 - **2** Start with FCDP [Lanczos] then refine with K-means

Clustering : test with ORL –get 40 clusters

Result of clustering displayed on a 2-D plane:

Left: clustering by PCA. Right: clustering by FCDC.

Conclusion

Many interesting linear algebra problems in data mining.

Current methods mix 1) statistics, 2) Linear algebra 3) Differential geometry (manifold learning) 4) (Basic) graph theory

Have shown some simple techniques put to work..

Work on clustering still challenging..

Modern dimension reduction techniques (LLE, Eigenmaps, Isomap, ...) exploit nearest neighbor graph. Resulting methods quite powerful