
Efficient Linear Algebra Methods in Data
Mining

Yousef Saad
University of Minnesota

Dept. of Computer Science and
Engineering

M2A07 – Luminy, France

1

Introduction and Background:

ä Information sciences : Data Mining, Data Analysis, Machine Learn-

ing, Classification, are a huge source of interesting matrix prob-

lems

ä Effective linear algebra methods are just starting to be deployed

ä In this talk 3 sample problems:

1. Information retrieval

2. Face recognotion

3. Clustering

M2A–07, Oct-2007 2

2

Information Retrieval: Vector Space Model

Given: 1) set of docu-

ments (columns of a matrix

A); 2) a query vector q.

Entry aij of A = frequency

of term i in document j +

weighting.
Te

rm
s

Documents

ä Queries (‘pseudo-documents’) q represented similarly to columns

Problem: find columns of A that best match q

M2A–07, Oct-2007 3

3

Vector Space Model and the Truncated SVD

ä Similarity metric: angle between column Aj,: and query q

Use Cosines:
|qTA:,j|

‖A:,j‖2‖q‖2

ä To rank all documents compute the similarity vector:

s = ATq

ä ‘Litteral’ matching – not very effective. Problems : polysemy,

synonymy, ...

ä LSI: replace matrix A by low rank approximation

A = UΣV T → Ak = UkΣkV
T

k → sk = AT
k q

ä Uk : term space, Vk: document space.

ä Called TSVD – Expensive, hard to update, ..

M2A–07, Oct-2007 4

4

IR: Use of approximation theory

ä Use of polynomial filters * Joint work with E. Kokiopoulou

Idea: Replace Ak by Aφ(ATA) where φ = a filter function

ä Consider the step-function:

φ(x) =

 0, 0 ≤ x ≤ σ2
k

1, σ2
k ≤ x ≤ σ2

1
σ σ

φ

k 1

2 2

(t)

ä This would yield the same result as with TSVD but...

ä ... Not easy to use this function directly

ä Solution : use a polynomial approximation to φ

ä Note: sT = qTAφ(ATA) , requires only Mat-Vec’s

M2A–07, Oct-2007 5

5

How to get the polynomial filter?

Idea: First select an “ideal fiter”

ä e.g. a piecewise

polynomial function

ba

φ

ä For example φ = Hermite interpolating pol. in [0,a], and φ = 1 in

[a, b]

M2A–07, Oct-2007 6

6

ä Then approximate this filter by an ‘optimal’ (least-squares) poly-

nomial

ba

φ

Main advantage: Extremely flexible.

Method: Build a sequence of polynomials φk which approximate

the ideal PP filter φ, in the L2 sense.

M2A–07, Oct-2007 7

7

ä If {Pj} is a basis of polynomials that are orthogomal w.r.t. some

L2 inner-product, then

φk(t) =
k∑

j=1

〈φ, Pj〉Pj(t),

ä Can use Stieljes procedure to compute orthogonal polynomials

[Erhel, Guyomarch, YS’99]

ä Or can use a Conjugate residual-type algorithm in polynomial

space [YS’05, Bekas-Kokiopoulou-YS’05]

ä Accuracy close to that of TSVD – But no SVD required

ä Experiments and details skipped.

M2A–07, Oct-2007 8

8

IR: Use of the Lanczos algorithm

* Joint work with Jie Chen – in progress

ä Lanczos is good at catching large (and small) eigenvalues: can

compute singular vectors with Lanczos, & use them in LSI

ä Can do better: Use the Lanczos vectors directly for the projec-

tion..

ä First advocated by: K. Blom and A. Ruhe [SIMAX, vol. 26, 2005].

Use Lanczos bidiagonalization.

ä Use a similar approach – But directly with AAT or ATA.

M2A–07, Oct-2007 9

9

IR: Use of the Lanczos algorithm (1)

ä Let A ∈ Rm×n. Apply the Lanczos procedure to M = AAT .

Result:

QT
k AATQk = Tk

with Qk orthogonal, Tk tridiagonal.

ä Define si ≡ orth. projection of Ab on subspace span{Qi}

si := QiQ
T
i Ab.

ä si can be easily updated from si−1:

si = si−1 + qiq
T
i Ab.

M2A–07, Oct-2007 10

10

IR: Use of the Lanczos algorithm (2)

ä If n < m it may be more economial to apply Lanczos to M =

ATA which is n × n. Result:

Q̄T
k ATAQ̄k = T̄k

ä Define:

ti := AQ̄iQ̄
T
i b,

ä Project b first before applying A to result.

M2A–07, Oct-2007 11

11

Why does this work?

ä First, recall a result on Lanczos algorithm [YS 83]

Let {λj, uj} = j-th eigen-pair of M (label ↓)

‖(I − QkQ
T
k)uj‖

‖QkQ
T
k uj‖

≤
Kj

Tk−j(γj)

‖(I − Q1Q
T
1)uj‖

‖Q1Q
T
1 uj‖

,

where

γj = 1 + 2
λj − λj+1

λj+1 − λn

, Kj =

1 j = 1∏j−1
i=1

λi−λn

λi−λj
j 6= 1

,

and Tl(x) = Chebyshev polynomial of 1st kind of degree l.

This has the form

‖(I − QkQ
T
k)uj‖ ≤ cj/Tk−j(γj),

where cj = constant independent of k

M2A–07, Oct-2007 12

12

ä Result: Distance between unit eigenvector uj and Krylov sub-

space span(Qk) decays fast (for small j)

ä Consider component of difference between Ab − sk along left

singular directions of A. If A = UΣV T , then uj’s (columns of U)

are eigenvectors of M = AAT . So:

|〈Ab − sk, uj〉| =
∣∣〈(I − QkQ

T
k)Ab, uj

〉∣∣
=

∣∣〈(I − QkQ
T
k)uj, Ab

〉∣∣
≤ ‖(I − QkQ

T
k)uj‖‖Ab‖

≤ cj‖Ab‖T −1
k−j(γj)

ä {si} converges rapidly to Ab in directions of the major left sin-

gular vectors of A.

M2A–07, Oct-2007 13

13

ä Similar result for left projection sequence tj

ä Here is a typical distribution of eigenvalues of M : [Matrix of size

1398 × 1398]

x
0

y

λ1λ2

λ3

λ4

λ5

· · ·

ä Convergence toward first few singular vectors very fast –

M2A–07, Oct-2007 14

14

Advantages of Lanczos over polynomial filters:

(1) No need for eigenvalue estimates

(2) Mat-vecs performed only in preprocessing

Disadvantages:

(1) Need to store Lanczos vectors;

(2) Preprocessing must be redone when A changes.

(3) Need for reorthogonalization – expensive for large k.

M2A–07, Oct-2007 15

15

Tests: IR

Information

retrieval

datasets

Terms # Docs # queries sparsity

MED 7,014 1,033 30 0.735

CRAN 3,763 1,398 225 1.412

P
re

pr
oc

es
si

ng
tim

es

Med dataset.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90
Med

iterations

pr
ep

ro
ce

ss
in

g
tim

e

lanczos
tsvd

Cran dataset.

0 50 100 150 200 250 300
0

10

20

30

40

50

60
Cran

iterations

pr
ep

ro
ce

ss
in

g
tim

e

lanczos
tsvd

M2A–07, Oct-2007 16

16

Average query times

Med dataset

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−3 Med

iterations

av
er

ag
e

qu
er

y
tim

e

lanczos
tsvd
lanczos−rf
tsvd−rf

Cran dataset.

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

−3 Cran

iterations
av

er
ag

e
qu

er
y

tim
e

lanczos
tsvd
lanczos−rf
tsvd−rf

M2A–07, Oct-2007 17

17

Average retrieval precision

Med dataset

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Med

iterations

av
er

ag
e

pr
ec

is
io

n

lanczos
tsvd
lanczos−rf
tsvd−rf

Cran dataset

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Cran

iterations
av

er
ag

e
pr

ec
is

io
n

lanczos
tsvd
lanczos−rf
tsvd−rf

Retrieval precision comparisons

M2A–07, Oct-2007 18

18

Problem 2: Face Recognition – background

Problem: We are given a database of images: [arrays of pixel val-

ues]. And a test (new) image.

ÿ ÿ ÿ ÿ ÿ ÿ

↖ ↑ ↗

Question: Does this new image correspond to one of those in the

database?

M2A–07, Oct-2007 19

19

Difficulty

ä Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces – Principal Component Analysis tech-

nique

M2A–07, Oct-2007 20

20

Example: Occlusion.

See recent paper by

John Wright et al.

Top test image:

deliberate disguise.

Bottom: 50% pixels

randomly changed

Source: http://perception.csl.uiuc.edu/ ...

... recognition/Robust face.html

ä See also: Recent real-life example – international man-hunt

M2A–07, Oct-2007 21

21

Eigenfaces

– Consider each picture as a one-dimensional colum of all pixels

– Put together into an array A of size # pixels × # images.

. . . =⇒ . . .

︸ ︷︷ ︸
A

– Do an SVD of A and perform comparison with any test image in

low-dim. space

– Similar to LSI in spirit – but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)

M2A–07, Oct-2007 22

22

Tests: Face Recognition

Tests with 2 well-known data sets:

ORL 40 subjects, 10 sample images each – example:

of pixels : 112 × 92 TOT. # images : 400

AR set 126 subjects – 4 facial expressions selected for each [natu-

ral, smiling, angry, screaming] – example:

of pixels : 112 × 92 # TOT. # images : 504

M2A–07, Oct-2007 23

23

Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ORL

iterations

av
er

ag
e

er
ro

r
ra

te

lanczos
tsvd

AR dataset

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
AR

iterations

av
er

ag
e

er
ro

r
ra

te

lanczos
tsvd

Vertical axis shows average error rate. Horizontal = Subspace di-

mension

M2A–07, Oct-2007 24

24

Problem 3: Clustering

* Joint work with Haw-Ren Fang – in progress

Problem: A set X of n objects in some space. Find subsets of

X that each contain objects that are most ’alike’

ä ‘Bread-and-butter problem’ – arises in *many* applications

ä Variation of the problem: Graph partitioning [need closeness +

few edge cuts]

ä Supervised clustering: Subsets are known – problem is to opti-

mally ‘classify’ a new item into one of the subsets

Questions: ‘alike’ in what sense? How many subsets?

M2A–07, Oct-2007 25

25

Clustering: using farthest centroids

ä Given X = [x1 x2 · · · xn] ∈ Rm×n

ä Centroid of a set Y = [y1, · · · , yp] is

cY = 1
p

∑p
j=1 yj = 1

p
Y e e = [1, 1, · · · , 1]T

ä Clustering into 2 even sets. Idea: find partition vector c:

Maximize ‖Xc‖2

subject to

 ci = ±1, i = 1, · · · , n

cTe = 0

ä Subset X+ = set with ci = 1, Subset X− = set with ci = −1

ä cTe = 0 is a balance constraint between the 2 sets

M2A–07, Oct-2007 26

26

ä Hard problem to solve [integer programming – NP-hard]

ä But: can be solved approximately [∼ graph partitioning]

ä Can also relax constraints.

Ê ’center’ X, i.e., use X̄ = X − 1
n
XeT for X

Ë Replace ci = ±1 by cTc = n

Maximize ‖X̄c‖2

subject to

 ‖c‖2 = 1,

cTe = 0

Solution = dominant singular vector.

ä Exploited by Boley ’97 in PDDP – [See also Juhász ’81]

ä Similar idea exploited in graph partitioning

M2A–07, Oct-2007 27

27

Even-sets clustering by exchange

ä Go back to constraint ci = ±1 – i.e., use actual centroids

ä Need to improve a given partition

ä Similar to Kernigan and Lin in graph partitioning

ä Let Y = [y1, · · · , yn/2]. Z = [z1, · · · , zn/2]

ä Scaled squared distance between the centroids is

d = ‖Y e − Ze‖2
2 = (Y e − Ze)T (Y e − Ze)

ä What happens if we swap y∗ ∈ Y and z∗ ∈ Z ?

M2A–07, Oct-2007 28

28

ä Call δ = y∗ − z∗

ä New distance:

dnew = ‖(Y e − y∗ + z∗) − (Ze − z∗ + y∗)‖2
2

= ‖(Y e − δ) − (Ze + δ)‖2
2

= ‖(Y e − Ze) − 2δ‖2
2

= d + 4‖δ‖2
2 − 4((Y e − Ze), δ)

ä Distance gains if :

−(Y e − Ze)Tδ + ‖δ‖2
2 > 0

M2A–07, Oct-2007 29

29

Idea:

ä Begin with the Lanczos algorithm for X̄TX̄ to get ~s.v.v1

ä Get a marginal set among components of v1 for refining

ä Repeat: exchange marginal points (only) – until no further gains

are made

M2A–07, Oct-2007 30

30

Clustering: example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

−4 −3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

4

Initialization of two sets of n = 1, 000 random points on two-dimensional

plane. Green points are margin set (100). Left: uniform distribution;

right: normal distribution.

M2A–07, Oct-2007 31

31

Clustering : K-means + improvement

ALGORITHM : 1 K-means clustering algorithm

Given: K initial centroids p1, · · · , pK

Do:

Set Sj := ∅ for j = 1, . . . , K.

For i = 1, 2 . . . , n

Find k = argminj‖xi − pj‖

Set Sk := Sk ∪ {xi}.

EndFor

For j = 1, 2, . . . , K

Set pj == mean of points in Sj.

EndFor

While { p1, . . . , pK } have not converged.
M2A–07, Oct-2007 32

32

In words: Find closest centroid pk to each xi. Add this xi to Sk. Get

new centroids. Repeat.

ä Excellent algorithm – but very slow. Depends on initial set.

ä Common practice: start with something else – [cheaper]

Ideas:

Ê Start with PDDP [Lanczos] then refine with K-means

Ë Start with FCDP [Lanczos] then refine with K-means

M2A–07, Oct-2007 33

33

Clustering : test with ORL –get 40 clusters

2 3 4 5 6 7 8 9 10

0.4

0.5

0.6

0.7

0.8

0.9

1
40−clusters for face image clustering

samples per subject

to
ta

l e
nt

ro
py

PDDP
FCDP
PDDP+Kmeans
FCDP+Kmeans
Kmeans

M2A–07, Oct-2007 34

34

ä Result of clustering displayed on a 2-D plane:

Left: clustering by PCA. Right: clustering by FCDC.

M2A–07, Oct-2007 35

35

Conclusion

ä Many interesting linear algebra problems in data mining.

ä Current methods mix 1) statistics, 2) Linear algebra 3) Differential

geometry (manifold learning) 4) (Basic) graph theory

ä Have shown some simple techniques put to work..

ä Work on clustering still challenging..

ä Modern dimension reduction techniques (LLE, Eigenmaps, Isomap,

...) exploit nearest neighbor graph. Resulting methods quite power-

ful

M2A–07, Oct-2007 36

36

