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Introduction & Background

» Accelerators for linear systems: Conjugate Gradient, Conjugate Residual,
GCR, ORTHOMIN, GMRES, BiCGSTAB, IDR, ..

» Krylov subspace methods
» Picture for solving nonlinear equations is more complex

(a) Linear accelerators invoked when solving Jacobian systems iteratively
iIn Newton — Inexact Newton methods

(b) Quasi-Newton methods, BFGS, LBFGS, ..., : approximate Jacobian/
inverse with Low-rank updates

(c) Anderson acceleration, Pulay mixing, ... nonlinear acceleration view-

point + (rough) a linear model
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» This talk: take the viewpoint of extending nonsymmetric Krylov methods
[GCR, ORTHOMIN, ..] to nonlinear setting

» Many many possible options and viewpoints

» (Can exploit models that are locally more accurate; can exploit known
results on global convergence; etc.

» Possible to derive methods that emcompass all three viewpoints (a), (b),
(c) shown above.

» One specific goal: unravel algorithms with short-term recurrence

... Let us begin with some background
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Extrapolation and Acceleration: A few historal landmarks

Extraplotion: given sequence (s;)
- define extrapolated sequence:

t,(j) = Zf:o QS+t with E a; =1

Richardson’s ‘deferred approach to the limit’ 1910, 1927.

Aitken [1926] — initially to compute zeros of polynomials.

Romberg [1955] — integration, ...

Shanks [1955] generalizes Aitken’s method

Wynn [1956]: Elegant implementation of Shanks transform — e-algorithm

Discovery ignited substantial following in late 1960s - early 1970s

Y Y Y VY VY VYY

C. Brezinski, H. Sadok, K. Jbilou, M. Redivo Zaglia, Germain-Bonne, G.
Walz, A. Sidi and co-workers, ...



» |n physics: Different approaches - e.g., Anderson mixing, DIIS, ..., were
developed - with a similar goal

» Viewpoint closer to quasi-Newton than to extrapolation

» In Numerical Linear Algebra: Acceleration for linear systems : Chebyshev
acceleration (old), but also Minimal Polynomial Extrapolation (MPE- Cabay-
Jackson); Reduced Rank Extrapolation, many others
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Acceleration

» Common situation: A (complex) physical simulation leading to a sequence
of a physical quantity (charge densities, potentials, pressures, ...)

» Common approach: fixed point iteration Tr+1 = g(Tk)

e Acceleration methods try to solve the system = — g(x) = 0 Dby creating
a sequence that invokes function g and the previous iterates.

e In essence we seek to solve f(x) = 0 where [f(x) =z — g(x)

e With one restriction: use only function evaluations and lin. combinations
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Acceleration, Extrapolation, Quasi-Newton

|Extrapolation

T, gy "y Ty —>
tim n=1,2,..
Shanks formula,
e-Algorithm, ...

Quasi—Newton:|
(f(z)=0)

r <+ x— M 1f(x)
M  approximates
Jacobian using
Axy, Axy, - -, Ax;
Afi,Afay -, ﬁfj

Anderson-Pulay
(f(z) = 0)

~ Min||f(z + AXy)]|
Approximate

f(x + AXy) using
Az, Axy, -+, Ax;
Afr,Afz- -, ‘&.fj
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Inexact Newton, Quasi-Newton, Krylov-Newton

We now focus on solving f(xz) =0 (f:R™ — R™) Newton Approach

Set 2y = an initial guess. — f(zj +06) = f(x;) + J(x;)0

Forn =0,1,2,... until conv. doi with J(z;) = #'(x;) = Jacobian at z;
Solve: J(x;)6; = —f(xz;) (%)

Set: x;,1 = x; + 0, Standard Newton: solve (*) exactly

Inexact Newton methods: solve system (*) approximately.

Quasi-Newton methods: solve system (*) in which Jacobian is replaced by
an estimate obtained from previous iterates.

Newton-Krylov methods: solve system (*) by a Krylov subspace method

NASCAZ23, Jul 3-6, 2023



Note: In Krylov-Newton, Jacobian of f not needed explicitly.

» Compute Jv via finite difference approximation:

» (Can use Newton-Krylov to accelerate sequence:

.. by solving f(x) =0 where f(xz)=x— g(x)

3oV =

f(ztev)—f(z)

xjr1 = g(x;)

Important consideration: need to compute f(x; 4+ ev) for arbitrary v ..

» ... Instead of using only the z;'s and f;’s that are available
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Inexact Newton, Quasi-Newton, Anderson Acceleration

Problem: Find € R™ such that f(x) =0
Or solve: min ¢(x); Then f(x) = Vo (x)

Recall: Newton Krylov: «x;,1 = x; + d; Where

d; = approx. solutionof| J(x;)6 + f(x;) = 0 |by aKrylov subspace method

» Notation J = J(z;) - So Newton system is

Jo = —f(z;)




» Let V;is an orthonormal basis of the Krylov subspace

K; = span{v, Jv,: - - , Jl_lv}, where v = —f(z;)

» Then approximate solution is in the form| é;, = Viy,

» For example, if the method
invoked is FOM, then:

8; = Vi(VTIV)'VT(—f(x;))

» |n essence: inverse Jacobian
approximated by the matrix

Bjom = Vi(VTIV)~ V[T

» For GMRES / GCR, inverse
Jacobian approximation is:

B;cmres = Vi(JV)T.

Important observation: approximations are for step 5 only — discarded in
next step. The process has no ‘memory’
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Inexact Newton, Quasi-Newton, Anderson Acceleration

» Quasi-Newton (QN) methods: build approximations to J(x;) or J(xz;)~*,
progressively using previous iterates

> Notation:  Az; =z — z; Afi = f(zjr1) — f(z;),

» Secant condition: » No-change condition:

Jj_|_1AZBj = Afj, Jir19 = Jjq, Vq such that qTA$j = 0.

» Broyden: 3! J;; that satisfies both conditions. Calculated as:

Aw?
Jjiv1=J;+ (Af; — JjAmj)A;n]T.’Amj'
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» Type |l Broyden: Inverse Jacobian approximated by G; at step j
» Secant condition: » No-change condition:

Gj_|_1Afj = Ail’:j, Gj—l—lq — qu, Vq such that qTAfj = 0.

» Broyden (ll): 3! G, that satisfies both conditions. Calculated as:
AfT

G, 1 =G, Ax;: — G:AT; ,
J+1 i+ (Ax; J fJ)AfJIAfj

Note: Common feature of QN methods: The sequence of pairs of Axz;, A f;
used to update previous approximation to J(x;) or J(xz;) .

» Progressive low-rank approximation ...

» ... ‘Onerank at a time’
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Anderson Acceleration

» Want fixed point of g(x) : R® — R”. Let f(x) = g(x) — .
» Select o and define 1 = =y + Bfy [3 is a parameter]
Given: x;and f; = f(x;))fori =35 —my,--- ,j

Let: Awi:$i+1—$i, Afz:fz-|—1_fz for 1=0,1,---,7 —m
Xj=[Axjpm -+ Amja],  Fj=[Afjm -+ Afjal]

Compute: | z;., = &; + Bf;| where: | &; = =; — &; 0Y), f; = f;, — F; 6U)

And: 0U) = argming g || fi — F; 0|2




Note: Original article formulated problem in the standard ‘acceleration’ form

J
T; = Z u,z(.J)a:z- with Zp,,gj) =1

i=j—k

. . . 2
» The 1%’s must now minimize HZ”-_-_k w f;
? 1=) 7 9

» Mathematically equivalent to previous formulation
Q Any relation to extrapolation?
» Above formulation is very similar to expressions used for extrapolation.

» Anderson was very much inspired by litterature in extrapolation methods.
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Relation with other methods

» In “generalized Broyden methods” [Louis & Vanderbilt'84, Eyert'96] ap-
proximate Jacobian G; satisfies m secant conditions at once:

GjAfi:Awiforizj—m,...,j—1.

» Matrix form: G;F; = X

» No-change condition:
(Gj — Gj—m)g =0 Vq € Span{Afj_m,...,Afj_1}"
» After calculations we get a rank-k update formula:
Gj = Gj-m + (Xj — Gj—nF))(F{ F;) ' F;.
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... and an update of the form:

i1 =x; — Gimf; — (Xj — Gi_mFj)vj5 v = f}fj

» Setting G;_,, = —pI yields exactly Anderson’s original method [which
Includes a parameter 3]

» Result shown by Eyert (1996) [See also H-r Fang and YS (2009)]
» Note #; = z; — Xjf}fj and  fj = f; — fjf}fj

» Walker and Ni'11: Equivalence with GMRES in linear case.
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NONLINEAR TRUNCATED GCR I



Revisiting old friends: The GCR method

Recall main goal: start with accelerators in linear case - then see how to
extend them to nonlinear case

Class of Krylov subspace methods:

Conjugate gradient (Hestenes and Stiefel, '51), Conjugate Residual (Stiefel
'55), Lanczos (51), Bi-CG (Fletcher 76)

Accelerators developed in 1980s, 1990s: GCR, ORTHOMIN, GMRES,
BiCGSTAB, IDR, ..

» We consider the Generalized Conjugate Residual (GCR) [Eisenstat, EI-
man, Schultz, '83]
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GCR for linear case: Ax = b

ALGORITHM : 1. GCR
- Input: Matrix A, RHS b, initial .
2 Setpy =rg = b — Axy.
« forj =0,1,2,---, Until convergence do
« oy = (rj, Ap;)/(Apj, Apj)

s Tjy1l = Tj + Q;p;

6: ’l"j_|_1 = ’I“j — ajApj

7 Pj+1 = Tjt1 — > 1_oBijpi  Where (Bi; := (Arji1, Api)/(Api, Ap;)
. end for

» Recall: the set {Ap;}i—o....; IS orthogonal




» Two practical variants
Restarting GCR(k) - restart every k steps

Truncation TGCR(m,k) - Truncated GCR: Orthogonalize against m
most recent vectors only + restart dimension of k

» In TGCR(m,k) Line 7 becomes: [Notation: j,, = max{0,5 — m + 1}]
j
Djt1 = Tjp1 — Z Bijp; Where B := (Ar;i11, Ap;)/(Api, Ap;)
» GCR(k): Eisenstat, EIman and Schultz [83] - equivalent to GMRES(k)

» TGCR initially developed by Vinsome 76 (as ORTHOMIN), analyzed in
1983 GCR paper

NASCAZ23, Jul 3-6, 2023



Properties of (full) GCR in linear case

Notation: P, = [p09p1’ t 7pk] Ry, = [rOarla *ee ’rk]: Vi, = APk

Property: (Eisenstat-ElIman-Schultz) The residual vectors produced by (full)
GCR are semi-conjugate, i.e., (rj, Ar;) =0 fori < j.

Corollary: When A = AT residuals are conjugate

Property: When A is symmetric real, then the matrix (ARy)T (APy) is lower
bidiagonal.

Property: When A is nonsingular, (full) GCR breaks down iff it produces an
exact solution.
breakdown < ‘lucky breakdown’
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Property: Approximate solution at k-th step is

T
Tpr1 = To + PV, 1o

» We say that the algorithm induces the 'approximate inverse’ B, = P, V"

- a rank-k matrix. Let|L£, = Span(V4)

and

U VkV;cT

. Then

ABk:ﬂ'.

B, = A~'mr — By inverts A exactly in £, i.e., Bym = A7 1.

When A is symmetric then By is self-adjoint when restricted to L,.

BpAx = x for any x € Span{P.}, i.e., B, inverts A exactly from
the left when A is restricted to the range of P.

By A is the projector onto Span{ P} and orthogonally to AT L.

» Reminescent of Moore-Penrose properties
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Nonlinear case: Inexact-Newton with GCR

Problem : f(x) =0

Ljt1 = T; —+ 5j where: fj — f(wj)
|J6; + fill < m;ll £l J = Df(z;))

» Dembo-Eisenstat-Steihaug ‘82, Dembo-Steihaug '83, ...,

Inexact Newton:

» Inexact-Newton GCR : solve systems approximately with TGCR(m,k)
» Inexact Newton is a simple, well-understood framework.
» Lots of results with linesearch + trust-region global strategies.

» Newton-GMRES [Brown & YS, 1990]; Convergence results [Brown & YS,
1994, Eisenstat & Walker '94]
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Next: Multisecant viewpoint

» Linear TGCR builds m

{Ap;,, ., - Ap;} Is orthogonal
directions such that:

» |n nonlinear case we can still use this basis— where A is ‘some’ Jacobian.

» This is done in inexact Newton where: [A = J(x)| - fixed.

» Here: we assume that at step 5 we have a set of (at most) m current

‘search’ directions {p;} for i = jmy jm + 1, -+ , j
) o Along with v; = J(Q}i)pz‘, = JmsJm +1,-++,7]
» Set:
Pj = [Djps Pimt15*** 5051y Vi = [Ujpns Viputas  + + 5 5]

» Note: In Linear Case or Inexact Newton case v; = Jp; (J is fixed)



» Here J varies with iterate - v; = J(x;)p; (== Ap; in TGCR)

» p; and v; are ‘paired’ much like the A f; and Ax; of QN and AA

» Notation V; = [J]P;

Main Idea of Nonlinear Extension: I

» Just build orthonormal basis V; as in TGCR

» Do usual projection step to minimize ‘linear residual’ - i.e.,

T = z; + Pjy;  where  y; = argmin, || f(x;) + Vjy||
» Note: Vj orthonormal — y; = V' (—f(x;)) = V)'r;
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ALGORITHM : 2. nITGCR(m,kK)

1

N

w

A

- Input: f(x), initial x.
- Setryg = —f(xo).
- Compute v = Jry; > Use Frechet

vo = v/||v|l, po = To/|v]];

= forj =0,1,2,---, Until convergence do

: y; = Vi'r;

» X1 = x; + Pjy; > Scalar o.; becomes vector y;
rit1 = —f(xj41) > Replaces linear update: rj 1 = r; — Vjy,
0 Set:p :=rj1;and iy = max(0,7 — m + 1)

Compute v = Jp > Use Frechet

11:

12:

13

28

Compute [p;+1,vj+1] = bOrth(P;, V;,v, m)
If mod(j,k) == O, restart

. end for

NASCAZ23, Jul 3-6, 2023




A few properties

~

» Notation: ,,’Zj_|_1 =T; — ‘/jyj (Linear ReSiduaI) ; Z; =T; —Tj

The following properties are satisfied by the vectors produced by nI TGCR:

1. The system [v,,_,v; +1,-+ ,v;41] IS Orthonormal.

2. (Fj41,v:) =0 for g, <i<j,ie, Vi, =0.

3. [|7+1ll2 = miny || f(2;) + [J]Pjy||2 = miny || f(xz;) + Viyl|2

4. (vj41, Tj11) = (V41 ,75)

D. V;.T'rj = (v, Tj)e1r — V;.sz where e; = [1,0,---,0]" € R™ with m; =
min{m,j + 1}.

» What can we say about the deviation z;?
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A few properties (cont.)

sj = f(xj1) — f(x5) — J(x5) (21 — xj).

Define: w; = (J(mj)—J(mz))pz ; and Wj — [wjm7 co ,wj]'

The difference z;,1 = 7,41 — r;4+1 Satifies the relation:
Fiy1 — i1 = Wiy +s; = W;Vir; +s;  and therefore:
17541 — mjall < [[Will2 [Irjll2 + [s5l2
» All this means is that the difference is of “second order”
» Hence: can switch to linear form of residual at some point

» Saves one fun. eval
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» Letd; = x;11 — x; = Pjy;. One may ask: Is this a descent direction?

Let f(x) = 3|/ f(=)||3 and let ©;,,,- - - , b; be the columns of:
V; = J(x;)F;.
Then,

71—1

(VF(x5),dj) = —(vj,75)° = > (05, 75) (Biy ;)
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»  Multisecant property

» Observe that the update at step 5 takes the form:

zj1 = xj + PiVir; = z; + BV (—f(z)))

» Thus, we are in effect using a secant-type method

. . . . Gj+1 = PV}
with the Approximate inverse Jacobien:
The unique solution to the problem
» |n addition: min{||B||r subjectto: BV, = P;}

is achieved by the matrix G, = P;V.'.

» Yet another multi-secant type method, but ...
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» The method shares also characteristics of inexact Newton

» In particular: possible to add global convergence strategies — e.g. back-
tracking [unlike AA]

» The relation v; = J(x;)p; is accurate - [Frechet diff.]
» (Contrast with the relation A f; = JAz,; (Anderson, QN)
» Two function evaluations per iteration but ...

» ... can be reduced to one as soon as r; becomes close to 7; (linear)
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General GCR framework

» There are situations where Anderson does amazingly well..

» Example Picard iteration for Navier Stokes. [A form of Preconditioned
fixed-pt iter.]

Q: Can we implement Anderson acceleration in the form of GCR? The two
are fairly close

A: Yes -
» Details skipped -




Experiments - Bratu problem

» |llustrates the importance of exploiting symmetry [Recall: in linear sym-
metric case GCR becomes CR, requires window-size of 2]

» .. and importance of adaptive version

Nonlinear eigenvalue |
problem (Bratu) —Au = Ae" In 2 =(0,1) x (0,1)
» Take A = 0.5. u(z,y) = 0, for (z,y) € ON

» FD discretization with grid of size 100 x 100 —r Problem size = n =
10, 000

» Tested: nITGCR, anderson, and a basic adapftive gradient method (step-
length dynamically adapted)
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The Adaptive update version

» Bratu problem is almost linear — also true for all problems near conver-
gence

» |dea: exploit the linearized update version of nITGCR to cut number of
func. evals. by =~ half

» Need an adaptive mechanism: switch from the nonlinear to linear updates
- [~ linear regime]

» and switch back when needed

. . l

» Define the nonlinear and r = —f(xj41),
'  ; i l

nonlinear res. at step j: rlin = r™ — Viy,.




»  Criterion will use the angular d. — 1 —
, i J 5 2 |75 (|2
distance between the two vectors:

» Linear updates turned on when d; < =, where 7 is a threshold
» Check d; regurlarly, for example, every 10 iterations,
»  Switch back to nonlinear updates when d; > r

» |n experiments, we set the threshold to = = 0.01.
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» Window size m =1,

10°% 10°%
— X — .
= 10° 1 = 10° 1
Ko Ko
= =
= =
..'(7; 10'10 \ 4 m 10-10 B
S 4 S
A
—e—nITGCR ‘A —e—nITGCR \A
15 =V nITGCR linear \ 15 =V nITGCR linear \
10" [|=4A--nITGCR adaptive| 1 10 [|=£--nITGCR adaptive A, 1
1 1 ﬁ I I I 1 1 I I A I
0 200 400 600 800 1000 1200 0 100 200 300 400 500 600
Function evaluation Iteration
Function evaluations. Iterations
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Exploiting symmetry

1009y

Bratu problem with: R e
AA, L-BFGS, Nonlinear CG £
(NCG), [fletcher reeves], and g 10°
Inexact Newton with CG g
(NeWton_CG)' ° 10°® :?-_rl\]llgsc'?;sv(mzl)

~0--L-BFGS

=4 AA

—v—NCG

—8-- Newton-CG

10-8 ]

0 50 100 150 200 250 300
Function evaluation
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Molecular optimization with Lennard-Jones potential ()

» lllustrates the importance of a global strategy - linesearch / backtracking
+ exploiting the Jacobian at multiple points

» (@Goal: find atom positions that minimize total potential enery:

Lennard-Jones Poten- R

tial (@; = position of B =33 4x [ _ 1

atom 1) = = |lzs — z5]|*2 ||z — x;]|°

Initial Config |— | lterate to mininmize ||VE||? |— | Final Config
» Difficult problem due to high powers — Backtracking essential

(*) Thanks: Stefan Goedecker’s course site - Basel Univ.
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o o = N w = ul

o o = N w = ul

» Initial geometry: 'Face-Centered Cube’ + perturbation

» Adaptive gradient method: «;,; = «; — t;VE(x;) — with ¢t; adapted —
can be made to work fairly well.

»  AA will fail unless underlying fixed point iteration selected carefully:
z;1 = x; — pVE(xz;) wherepu~ 1072, Also musttake 8 ~ 1072



min

Cost: E-E

10 E ‘ ;
F ——nITGCR (1)
—v—nITGCR (10)
107 F —-+—- Nesterov 3
0 F AA (10, 40) ]
” | —8-- Newton-GMRES (20, 40)/| |
107 ;
mé 109 ]
- b m— 7

105 B 10 E
2 10 S E

o \\.
1011 fane N 3
—e—nITGCR (m=1) °~ ; \.\.\.\ E
.10 ||~ nITGCR (m=10) . N
10 —+-- Nesterov - S 0% ?

AA S T
—&-- Newton-GMRES 7 i
1 I I | -13 L : : : ‘
50 100 150 200 "% 00 120 140 160 180 200 220

Function evaluation

Lennard-Jones problem. )

Func. evaluation: n

Zoom near convergence

NASCAZ23, Jul 3-6, 2023



Graph Convolutional Network

Dataset: Cora [2708 scientific pubs., 5429 links, 7 classes]. Goal: node
classification [topic of paper from words and links]

2.00 - 0.80
—8— nlTGCR [1,15] —8— nITGCR [1,15]
175 —#— nlTGCR [10,15] —#— nlTGCR [10,15]
—¥— Adam (Ir=0.01) 0.78 —¥— Adam (Ir=0.01)
150 —4— Adam (Ir=0.001) —4— Adam (Ir=0.001)
n 1.25 [
n 3 0.76 -
- (W)
2 1.00 e
= S
o = _
= 0.75 E 0.74 )
™
0.50 - -
0.72 1
0.25
0.00
T T T T T T 0?0 T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Epoch Epoch

nITGCR vs. Adam: training loss and validation accuracy
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Concluding remarks

Method can be adapted to context of stochastic gradient-type methods
In deep learning: build P;, V; across different batches

l.e., ignore the fact that the objective function varies with each batch
Challenge: QN-type methods exploit smoothness but ...

... Stochastic character limits smoothness.

Y Y Y Y Y'Y

Future:
e 1) Adapt a few more of the Krylov methods developed in the 1980s

e 2) Adapt nltgcr to non-smooth context [more to be done here]
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