UNIVERSITY
 OF Minnesota twin cities

Spectral densities: computations and applications in linear algebra

Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

PASC1 7 - Lugano June 28, 2017

Introduction

> 'Random Sampling' or 'probabilistic methods': use of random data to solve a given problem.
> Eigenvalues, eigenvalue counts, traces, ...
> Many well-known algorithms use a form of random sampling: The Lanczos algorithm
> Recent work : probabilistic methods - See [Halko, Martinsson, Tropp, 2010]
$>$ Huge interest spurred by 'big data'
> In this talk: Use of random sampling to obtain Eigenvalue counts, spectral densities, and approximate ranks

Important tool: Stochastic Trace Estimator

$>$ To estimate diagonal of $B=f(A)$ (e.g., $B=A^{-1}$), let:

- $d(B)=\operatorname{diag}(B)$ [matlab notation]

Notation: $\bullet \odot$ and \oslash : Elementwise multiplication and division of vectors

- $\left\{v_{j}\right\}$: Sequence of s random vectors

Result:

$$
\boldsymbol{d}(\boldsymbol{B}) \approx\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{B} \boldsymbol{v}_{j}\right] \oslash\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{v}_{j}\right]
$$

C. Bekas, E. Kokiopoulou \& YS ('05); C. Bekas, A. Curioni, I. Fedulova '09; ...

Trace of a matrix

$>$ For the trace - take vectors of unit norm and

$$
\operatorname{Trace}(B) \approx \frac{1}{s} \sum_{j=1}^{s} v_{j}^{T} B v_{j}
$$

$>$ Hutchinson's estimator : take random vectors with components of the form $\pm 1 / \sqrt{n}$ [Rademacher vectors]
> Extensively studied in literature. See e.g.: Hutchinson '89; H. Avron and S. Toledo '11; G.H. Golub \& U. Von Matt '97; Roosta-Khorasani \& U. Ascher '15; ...

Typical convergence curve for stochastic estimator

$>$ Estimating the diagonal of inverse of two sample matrices

DENSITY OF STATES \& APPLICATIONS

Computing Densities of States [Lin-Lin, Chao Yang, YS]

$>$ Formally, the Density Of States (DOS) of a matrix \boldsymbol{A} is

$$
\phi(t)=\frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

- δ is the Dirac δ-function or Dirac distribution
where
- $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of A
$>$ Note: $\boldsymbol{\mu}_{[a b]}$ can be obtained from ϕ
$>\phi(t)==$ a probability distribution function == probability of finding eigenvalues of \boldsymbol{A} in a given infinitesimal interval near t.
> Also known as the spectral density
$>$ Very important uses in Solid-State physics

The Kernel Polynomial Method

> Used by Chemists to calculate the DOS - see Silver and Röder'94, Wang '94, Drabold-Sankey'93, + others
> Basic idea: expand DOS into Chebyshev polynomials
$>$ Coefficients γ_{k} lead to evaluating $\operatorname{Tr}\left(T_{k}(A)\right)$
$>$ Use trace estimators [discovered independently] to get traces

A few details:

$>$ Assume change of variable done so eigenvalues lie in $[-1,1]$.
> Include the weight function in the expansion so expand:

$$
\hat{\phi}(t)=\sqrt{1-t^{2}} \phi(t)=\sqrt{1-t^{2}} \times \frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

$>$ Then, (full) expansion is: $\hat{\phi}(t)=\sum_{k=0}^{\infty} \mu_{k} T_{k}(t)$.
$>$ Expansion coefficients μ_{k} are formally defined by:

$$
\begin{aligned}
\mu_{k} & =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \hat{\phi}(t) d t \\
& =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \sqrt{1-t^{2}} \phi(t) d t \\
& =\frac{2-\delta_{k 0}}{n \pi} \sum_{j=1}^{n} T_{k}\left(\lambda_{j}\right) . \quad \text { with } \quad \delta_{i j}=\text { Dirac symbol }
\end{aligned}
$$

$>$ Note: $\sum T_{k}\left(\lambda_{i}\right)=\operatorname{Trace}\left[T_{k}(A)\right]$
> Estimate this, e.g., via stochastic estimator

$$
\operatorname{Trace}\left(T_{k}(A)\right) \approx \frac{1}{n_{\text {vec }}} \sum_{l=1}^{n_{\text {vec }}}\left(\boldsymbol{v}^{(l)}\right)^{T} T_{k}(A) \boldsymbol{v}^{(l)} .
$$

$>$ To compute scalars of the form $\boldsymbol{v}^{T} \boldsymbol{T}_{k}(\boldsymbol{A}) \boldsymbol{v}$, exploit 3-term recurrence of the Chebyshev polynomial ...

An example with degree 80 polynomials

Left: Jackson damping; right: without Jackson damping.

Use of the Lanczos Algorithm

$>$ Background: The Lanczos algorithm generates an orthonormal basis $V_{m}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \cdots, \boldsymbol{v}_{m}\right]$ for the Krylov subspace:

$$
\operatorname{span}\left\{v_{1}, A v_{1}, \cdots, A^{m-1} v_{1}\right\}
$$

$>$... such that:
$V_{m}^{H} A V_{m}=T_{m}$ - with

$$
\boldsymbol{T}_{m}=\left(\begin{array}{cccccc}
\boldsymbol{\alpha}_{1} & \boldsymbol{\beta}_{2} & & & & \\
\boldsymbol{\beta}_{2} & \alpha_{2} & \boldsymbol{\beta}_{3} & & & \\
& \boldsymbol{\beta}_{3} & \alpha_{3} & \boldsymbol{\beta}_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \boldsymbol{\beta}_{m} & \alpha_{m}
\end{array}\right)
$$

> Lanczos process builds orthogonal polynomials wrt to dot product:

$$
\int p(t) q(t) d t \equiv\left(p(A) v_{1}, q(A) v_{1}\right)
$$

$>$ Let $\theta_{i}, i=1 \cdots, m$ be the eigenvalues of T_{m} [Ritz values]
$>\boldsymbol{y}_{i}$'s associated eigenvectors; Ritz vectors: $\left\{\boldsymbol{V}_{m} \boldsymbol{y}_{i}\right\}_{i=1: m}$
> Ritz values approximate eigenvalues
$>$ Could compute θ_{i} 's then get approximate DOS from these
$>$ Problem: $\boldsymbol{\theta}_{i}$ not good enough approximations - especially inside the spectrum.

Better idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

$$
\int p(t) d t \approx \sum_{i=1}^{m} a_{i} p\left(\theta_{i}\right) \quad a_{i}=\left[e_{1}^{T} y_{i}\right]^{2}
$$

$>$ See, e.g., Golub \& Meurant '93, and also Gautschi'81, Golub and Welsch '69.
$>$ Formula exact when p is a polynomial of degree $\leq 2 m+1$
$>$ Consider now $\int p(t) d t=<p, 1>=($ Stieljes $)$ integral \equiv

$$
(p(A) v, v)=\sum \beta_{i}^{2} p\left(\lambda_{i}\right) \equiv<\phi_{v}, p>
$$

$>$ Then $\left\langle\phi_{v}, p\right\rangle \approx \sum a_{i} p\left(\theta_{i}\right)=\sum a_{i}\left\langle\delta_{\theta_{i}}, p\right\rangle \rightarrow$

$$
\phi_{v} \approx \sum a_{i} \delta_{\theta_{i}}
$$

$>$ To mimick the effect of $\beta_{i}=1, \forall i$, use several vectors v and average the result of the above formula over them..

Other methods

> The Lanczos spectroscopic approach : A sort of signal processing approach to detect peaks using Fourier analysis
$>$ The Delta-Chebyshev approach: Smooth ϕ with Gaussians, then expand Gaussians using Legendre polynomials
> Haydock's method: interesting 'classic' approach in physics - uses Lanczos to unravel 'near-poles' of $(\boldsymbol{A}-\boldsymbol{\epsilon i I})^{-1}$

For details see:

- Approximating spectral densities of large matrices, Lin Lin, YS, and Chao Yang - SIAM Review '16. Also in: [arXiv: http://arxiv.org/abs/1308.5467]

What about matrix pencils?

$>$ DOS for generalized eigenvalue problems

$\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{B x}$

$>$ Assume: \boldsymbol{A} is symmetric and \boldsymbol{B} is SPD.
$>$ In principle: can just apply methods to $\boldsymbol{B}^{-1} \boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{x}$, using \boldsymbol{B} - inner products.
$>$ Requires factoring \boldsymbol{B}. Too expensive [Think 3D Pbs]

* Observe: \boldsymbol{B} is usually very *strongly* diagonally dominant.
$>$ Especially true after Left+Right Diag. scaling :

$$
\tilde{B}=S^{-1} B S^{-1} \quad S=\operatorname{diag}(B)^{1 / 2}
$$

General observation for FEM mass matrices [See, e.g., Wathen'87, Wathen Rees '08]:

* Conforming tetrahedral (P1) elements in 3D $\rightarrow \kappa(\tilde{\boldsymbol{B}}) \leq 5$
* Rectangular bilinear (Q1) elements in 2D $\rightarrow \kappa(\tilde{\boldsymbol{B}}) \leq \mathbf{9}$.

Example: Matrix pair Kuu, Muu from Suite Sparse collection.
$>$ Matrices \boldsymbol{A} and \boldsymbol{B} have dimension $\boldsymbol{n}=7,102$.nnz $(\boldsymbol{A})=$ $340,200 \mathrm{nnz}(B)=170,134$.
$>$ After scaling by diagonals to have diag. entries equal to one, all eigenvalues of \boldsymbol{B} are in interval
[0.6254, 1.5899]

Approximation theory to the rescue.

* Idea: Compute the DOS for the standard problem

$$
B^{-1 / 2} A B^{-1 / 2} u=\lambda u
$$

$>$ Use a very low degree polynomial to approximate $B^{-1 / 2}$.
> We use Chebyshev expansions.
$>$ Degree k determined automatically by enforcing

$$
\left\|t^{-1 / 2}-p_{k}(t)\right\|_{\infty}<t o l
$$

$>$ Theoretical results establish convergence that is exponential with respect to degree.

Example: Results for Kuu-Muu example

> Using polynomials of degree 3 (!) to approximate $B^{-1 / 2}$
$>$ Krylov subspace of dim. 30 (== deg. of polynomial in KPM)
> 10 Sample vectors used

KPM-Chebyshev

APPLICATIONS

Application 1: Eigenvalue counts

Problem: Given \boldsymbol{A} (Hermitian) find an estimate of the number $\boldsymbol{\mu}_{[a, b]}$ of eigenvalues of \boldsymbol{A} in $[\boldsymbol{a}, \quad b]$.
Standard method: Sylvester inertia theorem \rightarrow expensive!
First alternative: integrate the Spectral Density in $[a, b]$.
$\mu_{[a, b]} \approx n\left(\int_{a}^{b} \tilde{\phi}(t) d t\right)=n \sum_{k=0}^{m} \mu_{k}\left(\int_{a}^{b} \frac{T_{k}(t)}{\sqrt{1-t^{2}}} d t\right)=\ldots$
Second method: Estimate trace of the related spectral projector \boldsymbol{P} ($\rightarrow u_{i}$'s $=$ eigenvectors $\leftrightarrow \lambda_{i}$'s)

$$
P=\sum_{\lambda_{i} \in[a b]} u_{i} u_{i}^{T}
$$

$>$ It turns out that the 2 methods are identical.

Application 2: "Spectrum Slicing"

$>$ Situation: very large number of eigenvalues to be computed
> Goal: compute spectrum by slices by applying filtering
> Apply Lanczos or Subspace iteration to problem:

$$
\phi(A) u=\mu u
$$

$\phi(t) \equiv$ polynomial or rational filter

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other \rightarrow reduced orthogonalization costs

How do I slice my spectrum?

Answer: Use the DOS.

Slice spectrum into 8 with the DOS

$$
\int_{t_{i}}^{t_{i+1}} \phi(t) d t=\frac{1}{n_{\text {slices }}} \int_{a}^{b} \phi(t) d t
$$

Application 3: Estimating the rank

> Very important problem in signal processing applications, machine learning, etc.
$>$ Often: a certain rank is selected ad-hoc. Dimension reduction is application with this "guessed" rank.
$>$ Can be viewed as a particular case of the eigenvalue count problem - but need a cutoff value..

Approximate rank, Numerical rank

$>$ Notion defined in various ways. A common one:

$$
r_{\epsilon}=\min \left\{\operatorname{rank}(B): B \in \mathbb{R}^{m \times n},\|A-B\|_{2} \leq \epsilon\right\}
$$

$r_{\epsilon}=$ Number of sing. values $\geq \epsilon$
> Two distinct problems:

1. Get a good $\epsilon \quad$ 2. Estimate number of sing. values $\geq \epsilon$
$>$ We will need a cut-off value ('threshold') ϵ.
$>$ Could use 'noise level' for ϵ, but not always available

Threshold selection

$>$ How to select a good threshold?
$>$ Answer: Obtain it from the DOS function

(A)

(B)

(C)

Exact DOS plots for three different types of matrices.
$>$ To find: point immediatly following the initial sharp drop observed.
$>$ Simple idea: use derivative of DOS function ϕ
$>$ For an $n \times n$ matrix with eigenvalues $\boldsymbol{\lambda}_{n} \leq \boldsymbol{\lambda}_{n-1} \leq \cdots \leq$ λ_{1} :

$$
\epsilon=\min \left\{t: \lambda_{n} \leq t \leq \lambda_{1}, \phi^{\prime}(t)=0\right\}
$$

> In practice replace by

$$
\epsilon=\min \left\{t: \lambda_{n} \leq t \leq \lambda_{1},\left|\phi^{\prime}(t)\right| \geq \text { tol }\right\}
$$

Experiments

(A)

(B)
(A) The DOS found by KPM.
(B) Approximate rank estimation by The Lanczos method for the example netz4504.

Tests with Matérn covariance matrices for grids

> Important in statistical applications
Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension)	Matrix	$\# \lambda_{i} ' \mathrm{~S}$	r_{ϵ}	
	Size	$\geq \epsilon$	KPM	Lanczos
1D regular Grid (2048×1)	2048	16	16.75	15.80
1D no structure Grid (2048×1)	2048	20	20.10	20.46
2D regular Grid (64×64)	4096	72	72.71	72.90
2D no structure Grid (64×64)	4096	70	69.20	71.23
2D deformed Grid (64×64)	4096	69	68.11	69.45

$>$ For all test $M(\operatorname{deg})=50, n_{v}=30$

Application 4: The LogDeterminant

Evaluate the Log-determinant of A :

$$
\log \operatorname{det}(A)=\operatorname{Trace}(\log (A))=\sum_{i=1}^{n} \log \left(\lambda_{i}\right)
$$

A is SPD.

$>$ Estimating the log-determinant of a matrix equivalent to estimating the trace of the matrix function $f(A)=\log (A)$.
> Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace.

Numerical example: A graph Laplacian california of size $9664 \times 9664, n z \approx 10^{5}$ from the Univ. of Florida collection.

Rel. error vs degree

- 3 methods: Taylor Series, Chebyshev expansion, SLQ
- \# starting vectors $n \boldsymbol{v}=100$ in all three cases.

Runtime comparisons

Application 6: Log-likelihood.

Comes from parameter estimation for Gaussian processes
$>$ Objective is to maximize the log-likelihood function with respect to a 'hyperparameter' vector $\boldsymbol{\xi}$

$$
\log p(z \mid \xi)=-\frac{1}{2}\left[z^{\top} S(\xi)^{-1} z+\log \operatorname{det} S(\xi)+\mathrm{cst}\right]
$$

where $z=$ data vector and $S(\xi)==$ covariance matrix parameterized by $\boldsymbol{\xi}$
$>$ Can use the same Lanczos runs to estimate $z^{\top} S(\xi)^{-1} z$ and logDet term simultaneously.

Application 7: calculating nuclear norm

$>\|X\|_{*}=\sum \sigma_{i}(X)=\sum \sqrt{\lambda_{i}\left(X^{T} X\right)}$
$>$ Generalization: Schatten p-norms

$$
\|\boldsymbol{X}\|_{*, p}=\left[\sum \sigma_{i}(X)^{p}\right]^{1 / p}
$$

$>$ See:
J. Chen, S. Ubaru, YS, "Fast estimation of log-determinant and Schatten norms via stochastic Lanczos quadrature", (Submitted).

Conclusion

> Estimating traces \& Spectral densities are key ingredients in many algorithms
$>$ Physics, machine learning, matrix algorithms, ..
> .. many new problems related to 'data analysis' and 'statistics', and in signal processing,
$>$ A good instance of a method from physics finding its way in numerical linear algebra

Q: Can we do better than standard random sampling?

