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Introduction

ä ’Random Sampling’ or ’probabilistic methods’: use of ran-
dom data to solve a given problem.

ä Eigenvalues, eigenvalue counts, traces, ...

ä Many well-known algorithms use a form of random sam-
pling: The Lanczos algorithm

ä Recent work : probabilistic methods - See [Halko, Martins-
son, Tropp, 2010]

ä Huge interest spurred by ‘big data’

ä In this talk: Use of random sampling to obtain Eigenvalue
counts, spectral densities, and approximate ranks
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Important tool: Stochastic Trace Estimator

ä To estimate diagonal of B = f(A) (e.g., B = A−1), let:

Notation:

• d(B) = diag(B) [matlab notation]

•� and �: Elementwise multiplication and divi-
sion of vectors

• {vj}: Sequence of s random vectors

Result: d(B) ≈

 s∑
j=1

vj �Bvj

�
 s∑
j=1

vj � vj


C. Bekas , E. Kokiopoulou & YS (’05); C. Bekas, A. Curioni, I.
Fedulova ’09; ...
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Trace of a matrix

ä For the trace - take vectors of unit norm and

Trace(B) ≈
1

s

s∑
j=1

vTj Bvj

ä Hutchinson’s estimator : take random vectors with compo-
nents of the form±1/

√
n [Rademacher vectors]

ä Extensively studied in literature. See e.g.: Hutchinson ’89;
H. Avron and S. Toledo ’11; G.H. Golub & U. Von Matt ’97;
Roosta-Khorasani & U. Ascher ’15; ...
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Typical convergence curve for stochastic estimator

ä Estimating the diagonal of inverse of two sample matrices
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DENSITY OF STATES & APPLICATIONS



Computing Densities of States [Lin-Lin, Chao Yang, YS]

ä Formally, the Density Of States (DOS) of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where
• δ is the Dirac δ-function or Dirac distribution
• λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A

ä Note: µ[ab] can be obtained from φ

ä φ(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

ä Also known as the spectral density

ä Very important uses in Solid-State physics
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The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and
Röder’94 , Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Coefficients γk lead to evaluating Tr (Tk(A))

ä Use trace estimators [discovered independently] to get traces

A few details:

ä Assume change of variable done so eigenvalues lie in [−1, 1].

ä Include the weight function in the expansion so expand:

φ̂(t) =
√
1− t2φ(t) =

√
1− t2 ×

1

n

n∑
j=1

δ(t− λj).
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ä Then, (full) expansion is: φ̂(t) =
∑∞
k=0µkTk(t).

ä Expansion coefficients µk are formally defined by:

µk =
2− δk0
π

∫ 1

−1

1
√
1− t2

Tk(t)φ̂(t)dt

=
2− δk0
π

∫ 1

−1

1
√
1− t2

Tk(t)
√
1− t2φ(t)dt

=
2− δk0
nπ

n∑
j=1

Tk(λj). with δij = Dirac symbol

ä Note:
∑
Tk(λi) = Trace[Tk(A)]

ä Estimate this, e.g., via stochastic estimator

Trace(Tk(A)) ≈
1

nvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).
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ä To compute scalars of the form vTTk(A)v, exploit 3-term
recurrence of the Chebyshev polynomial ...

ä Use Jackson smoothing
for Gibbs oscillations
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An example with degree 80 polynomials
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Use of the Lanczos Algorithm

ä Background: The Lanczos algorithm generates an orthonor-
mal basis Vm = [v1, v2, · · · , vm] for the Krylov subspace:

span{v1, Av1, · · · , Am−1v1}

ä ... such that:
V H
m AVm = Tm - with Tm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .
. . .
βm αm



PASC-17, Lugano 12



ä Lanczos process builds orthogonal polynomials wrt to dot
product: ∫

p(t)q(t)dt ≡ (p(A)v1, q(A)v1)

ä Let θi, i = 1 · · · ,m be the eigenvalues of Tm [Ritz values]

ä yi’s associated eigenvectors; Ritz vectors: {Vmyi}i=1:m

ä Ritz values approximate eigenvalues

ä Could compute θi’s then get approximate DOS from these

ä Problem: θi not good enough approximations – especially
inside the spectrum.
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Better idea: exploit relation of Lanczos with (discrete) orthog-
onal polynomials and related Gaussian quadrature:∫

p(t)dt ≈
m∑
i=1

aip(θi) ai =
[
eT1 yi

]2
ä See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub
and Welsch ’69.

ä Formula exact when p is a polynomial of degree≤ 2m+1
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ä Consider now
∫
p(t)dt =< p, 1 >= (Stieljes) integral≡

(p(A)v, v) =
∑
β2
ip(λi) ≡< φv, p >

ä Then 〈φv, p〉 ≈
∑
aip(θi) =

∑
ai 〈δθi, p〉 →

φv ≈
∑

aiδθi

ä To mimick the effect of βi = 1, ∀i, use several vectors v
and average the result of the above formula over them..
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Other methods

ä The Lanczos spectroscopic approach : A sort of signal
processing approach to detect peaks using Fourier analysis

ä The Delta-Chebyshev approach: Smooth φ with Gaussians,
then expand Gaussians using Legendre polynomials

ä Haydock’s method: interesting ’classic’ approach in physics
- uses Lanczos to unravel ‘near-poles’ of (A− εiI)−1

For details see:

• Approximating spectral densities of large matrices, Lin Lin,
YS, and Chao Yang - SIAM Review ’16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]
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What about matrix pencils?

ä DOS for generalized eigen-
value problems

Ax = λBx

ä Assume: A is symmetric and B is SPD.

ä In principle: can just apply methods toB−1Ax = λx, using
B - inner products.

ä Requires factoring B. Too expensive [Think 3D Pbs]

? Observe: B is usually very *strongly* diagonally dominant.

ä Especially true after Left+Right Diag. scaling :

B̃ = S−1BS−1 S = diag(B)1/2
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General observation for FEM mass matrices [See, e.g., Wa-
then’87, Wathen Rees ’08]:
* Conforming tetrahedral (P1) elements in 3D→ κ(B̃) ≤ 5
* Rectangular bilinear (Q1) elements in 2D→ κ(B̃) ≤ 9.

Example: Matrix pair Kuu, Muu from Suite Sparse collection.

ä MatricesA andB have dimension n = 7, 102. nnz(A) =
340, 200 nnz(B) = 170, 134.

ä After scaling by diagonals to have diag. entries equal to
one, all eigenvalues of B are in interval

[0.6254, 1.5899]
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Approximation theory to the rescue.

? Idea: Compute the DOS for the standard problem

B−1/2AB−1/2u = λu

ä Use a very low degree polynomial to approximate B−1/2.

ä We use Chebyshev expansions.

ä Degree k determined automatically by enforcing

‖t−1/2 − pk(t)‖∞ < tol

ä Theoretical results establish convergence that is exponential
with respect to degree.
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Example: Results for Kuu-Muu example

ä Using polynomials of degree 3 (!) to approximate B−1/2

ä Krylov subspace of dim. 30 (== deg. of polynomial in KPM)

ä 10 Sample vectors used
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APPLICATIONS



Application 1: Eigenvalue counts

Problem: GivenA (Hermitian) find an estimate of the number
µ[a,b] of eigenvalues of A in [a, b].

Standard method: Sylvester inertia theorem→ expensive!

First alternative: integrate the Spectral Density in [a, b].

µ[a,b] ≈ n
(∫ b

a
φ̃(t)dt

)
= n

m∑
k=0

µk

(∫ b

a

Tk(t)√
1− t2

dt

)
= ...

Second method: Estimate trace
of the related spectral projector P
(→ ui’s = eigenvectors↔ λi’s)

P =
∑

λi ∈ [a b]

uiu
T
i .

ä It turns out that the 2 methods are identical.

PASC-17, Lugano 22



Application 2: “Spectrum Slicing”

ä Situation: very large number of eigenvalues to be computed

ä Goal: compute spectrum by slices by applying filtering

ä Apply Lanczos or Subspace iter-
ation to problem:

φ(A)u = µu

φ(t) ≡ polynomial or rational filter
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How do I slice my spectrum?

Answer: Use the DOS.
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Application 3: Estimating the rank

ä Very important problem in signal processing applications,
machine learning, etc.

ä Often: a certain rank is selected ad-hoc. Dimension reduc-
tion is application with this “guessed” rank.

ä Can be viewed as a particular case of the eigenvalue count
problem - but need a cutoff value..
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Approximate rank, Numerical rank

ä Notion defined in various ways. A common one:

rε = min{rank(B) : B ∈ Rm×n, ‖A−B‖2 ≤ ε},

rε = Number of sing. values ≥ ε

ä Two distinct problems:

1. Get a good ε 2. Estimate number of sing. values≥ ε

ä We will need a cut-off value (’threshold’) ε.

ä Could use ‘noise level’ for ε, but not always available

PASC-17, Lugano 26



Threshold selection

ä How to select a good threshold?

ä Answer: Obtain it from the DOS function
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ä To find: point immediatly following the initial sharp drop
observed.

ä Simple idea: use derivative of DOS function φ

ä For an n×n matrix with eigenvalues λn ≤ λn−1 ≤ · · · ≤
λ1:

ε = min{t : λn ≤ t ≤ λ1, φ
′(t) = 0}.

ä In practice replace by

ε = min{t : λn ≤ t ≤ λ1, |φ′(t)| ≥ tol}
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Experiments
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Tests with Matérn covariance matrices for grids

ä Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix # λi’s rε
Size ≥ ε KPM Lanczos

1D regular Grid (2048× 1) 2048 16 16.75 15.80
1D no structure Grid (2048× 1) 2048 20 20.10 20.46
2D regular Grid (64× 64) 4096 72 72.71 72.90
2D no structure Grid (64× 64) 4096 70 69.20 71.23
2D deformed Grid (64× 64) 4096 69 68.11 69.45

ä For all test M(deg) = 50, nv=30
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Application 4: The LogDeterminant

Evaluate the Log-determinant of A:

log det(A) = Trace(log(A)) =
∑n
i=1 log(λi).

A is SPD.

ä Estimating the log-determinant of a matrix equivalent to
estimating the trace of the matrix function f(A) = log(A).

ä Can invoke Stochastic Lanczos Quadrature (SLQ) to esti-
mate this trace.
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Numerical example: A graph Laplacian california of size
9664× 9664, nz ≈ 105 from the Univ. of Florida collection.

Rel. error vs degree

• 3 methods: Taylor Series,
Chebyshev expansion, SLQ

• # starting vectors nv = 100
in all three cases.
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Runtime comparisons
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Application 6: Log-likelihood.

Comes from parameter estimation for Gaussian processes

ä Objective is to maximize the log-likelihood function with
respect to a ‘hyperparameter’ vector ξ

log p(z | ξ) = −1
2

[
z>S(ξ)−1z + log detS(ξ) + cst

]
where z = data vector and S(ξ) == covariance matrix parame-
terized by ξ

ä Can use the same Lanczos runs to estimate z>S(ξ)−1z
and logDet term simultaneously.
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Application 7: calculating nuclear norm

ä ‖X‖∗ =
∑
σi(X) =

∑√
λi(XTX)

ä Generalization: Schatten p-norms

‖X‖∗,p = [
∑
σi(X)p]1/p

ä See:

J. Chen, S. Ubaru, YS, “Fast estimation of log-determinant and
Schatten norms via stochastic Lanczos quadrature”, (Submit-
ted).

PASC-17, Lugano 35



Conclusion

ä Estimating traces & Spectral densities are key ingredients
in many algorithms

ä Physics, machine learning, matrix algorithms, ..

ä .. many new problems related to ‘data analysis’ and ’statis-
tics’, and in signal processing,

ä A good instance of a method from physics finding its way in
numerical linear algebra

Q: Can we do better than standard random sampling?

PASC-17, Lugano 36


