OF MINNESOTA TWIN CITIES

Spectral densities: computations and applications in linear algebra

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

PASC17 - Lugano June 28, 2017

Introduction

'Random Sampling' or 'probabilistic methods': use of random data to solve a given problem.

Eigenvalues, eigenvalue counts, traces, ...

Many well-known algorithms use a form of random sampling: The Lanczos algorithm

Recent work : probabilistic methods - See [Halko, Martinsson, Tropp, 2010]

Huge interest spurred by 'big data'

In this talk: Use of random sampling to obtain Eigenvalue counts, spectral densities, and approximate ranks

Important tool: Stochastic Trace Estimator

> To estimate diagonal of B = f(A) (e.g., $B = A^{-1}$), let:

• d(B) = diag(B) [matlab notation]

- $\{v_j\}$: Sequence of s random vectors

Result:
$$d(B) \approx \left[\sum_{j=1}^{s} v_j \odot B v_j\right] \oslash \left[\sum_{j=1}^{s} v_j \odot v_j\right]$$

C. Bekas, E. Kokiopoulou & YS ('05); C. Bekas, A. Curioni, I. Fedulova '09; ...

Trace of a matrix

For the trace - take vectors of unit norm and

$$\mathsf{Trace}(B) pprox rac{1}{s} \, \sum_{j=1}^s v_j^T B v_j$$

> Hutchinson's estimator : take random vectors with components of the form $\pm 1/\sqrt{n}$ [Rademacher vectors]

Extensively studied in literature. See e.g.: Hutchinson '89; H. Avron and S. Toledo '11; G.H. Golub & U. Von Matt '97; Roosta-Khorasani & U. Ascher '15; ... Typical convergence curve for stochastic estimator

Estimating the diagonal of inverse of two sample matrices

5

DENSITY OF STATES & APPLICATIONS

Computing Densities of States [Lin-Lin, Chao Yang, YS]

 \blacktriangleright Formally, the Density Of States (DOS) of a matrix A is

$$\phi(t) = rac{1}{n} \sum_{j=1}^n \delta(t-\lambda_j),$$

where

- δ is the Dirac δ-function or Dirac distribution
 λ₁ < λ₂ < · · · < λ_n are the eigenvalues of A
- Note: $\mu_{[ab]}$ can be obtained from ϕ

 $\blacktriangleright \phi(t) ==$ a probability distribution function == probability of finding eigenvalues of A in a given infinitesimal interval near t.

- Also known as the spectral density
- Very important uses in Solid-State physics

The Kernel Polynomial Method

Used by Chemists to calculate the DOS – see Silver and Röder'94, Wang '94, Drabold-Sankey'93, + others

- Basic idea: expand DOS into Chebyshev polynomials
- Coefficients γ_k lead to evaluating $\text{Tr}(T_k(A))$
- Use trace estimators [discovered independently] to get traces
 A few details:
- > Assume change of variable done so eigenvalues lie in [-1, 1].

Include the weight function in the expansion so expand:

$$\hat{\phi}(t)=\sqrt{1-t^2}\phi(t)=\sqrt{1-t^2} imesrac{1}{n}\sum_{j=1}^n\delta(t-\lambda_j).$$

- \blacktriangleright Then, (full) expansion is: $\hat{\phi}(t) = \sum_{k=0}^{\infty} \mu_k T_k(t)$.
- > Expansion coefficients μ_k are formally defined by:

$$egin{aligned} \mu_k &= rac{2-\delta_{k0}}{\pi} \int_{-1}^1 rac{1}{\sqrt{1-t^2}} T_k(t) \hat{\phi}(t) dt \ &= rac{2-\delta_{k0}}{\pi} \int_{-1}^1 rac{1}{\sqrt{1-t^2}} T_k(t) \sqrt{1-t^2} \phi(t) dt \ &= rac{2-\delta_{k0}}{n\pi} \sum_{j=1}^n T_k(\lambda_j). \quad ext{ with } \delta_{ij} = ext{Dirac symbol} \end{aligned}$$

 \blacktriangleright Note: $\sum T_k(\lambda_i) = Trace[T_k(A)]$

Estimate this, e.g., via stochastic estimator

$$ext{Trace}(T_k(A)) pprox rac{1}{n_{ ext{vec}}} \sum_{l=1}^{n_{ ext{vec}}} \left(v^{(l)}
ight)^T T_k(A) v^{(l)}.$$

PASC-17, Lugano 9

> To compute scalars of the form $v^T T_k(A)v$, exploit 3-term recurrence of the Chebyshev polynomial ...

➤ Use Jackson smoothing for Gibbs oscillations

An example with degree 80 polynomials

Left: Jackson damping; right: without Jackson damping.

Use of the Lanczos Algorithm

> Background: The Lanczos algorithm generates an orthonormal basis $V_m = [v_1, v_2, \cdots, v_m]$ for the Krylov subspace:

 $ext{span}\{v_1, Av_1, \cdots, A^{m-1}v_1\}$

Lanczos process builds orthogonal polynomials wrt to dot product:

$$\int p(t)q(t)dt \equiv (p(A)v_1,q(A)v_1)$$

► Let θ_i , $i = 1 \cdots, m$ be the eigenvalues of T_m [Ritz values]

- > y_i 's associated eigenvectors; Ritz vectors: $\{V_m y_i\}_{i=1:m}$
- Ritz values approximate eigenvalues
- > Could compute θ_i 's then get approximate DOS from these
- > Problem: θ_i not good enough approximations especially inside the spectrum.

Better idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

$$\int p(t)dt pprox \sum_{i=1}^m a_i p(heta_i) \quad a_i = \left[e_1^T y_i
ight]^2$$

See, e.g., Golub & Meurant '93, and also Gautschi'81, Golub and Welsch '69.

 \blacktriangleright Formula exact when p is a polynomial of degree $\leq 2m+1$

► Consider now $\int p(t)dt = \langle p, 1 \rangle =$ (Stieljes) integral \equiv $(p(A)v, v) = \sum \beta_i^2 p(\lambda_i) \equiv \langle \phi_v, p \rangle$

 $\begin{array}{l} \blacktriangleright \ \, \text{Then} \; \langle \phi_v, p \rangle \approx \sum a_i p(\theta_i) = \sum a_i \left< \delta_{\theta_i}, p \right> \rightarrow \\ \\ \phi_v \approx \sum a_i \delta_{\theta_i} \end{array}$

> To mimick the effect of $\beta_i = 1, \forall i$, use several vectors v and average the result of the above formula over them..

Other methods

► The Lanczos spectroscopic approach : A sort of signal processing approach to detect peaks using Fourier analysis

> The Delta-Chebyshev approach: Smooth ϕ with Gaussians, then expand Gaussians using Legendre polynomials

> Haydock's method: interesting 'classic' approach in physics - uses Lanczos to unravel 'near-poles' of $(A - \epsilon i I)^{-1}$

For details see:

 Approximating spectral densities of large matrices, Lin Lin, YS, and Chao Yang - SIAM Review '16. Also in: [arXiv: http://arxiv.org/abs/1308.5467]

What about matrix pencils?

DOS for generalized eigenvalue problems

$$Ax = \lambda Bx$$

> Assume: A is symmetric and B is SPD.

► In principle: can just apply methods to $B^{-1}Ax = \lambda x$, using *B* - inner products.

- Requires factoring B. Too expensive [Think 3D Pbs]
- ★ Observe: B is usually very *strongly* diagonally dominant.

Especially true after Left+Right Diag. scaling :

$$ilde{B}=S^{-1}BS^{-1}$$
 $S=diag(B)^{1/2}$

General observation for FEM mass matrices [See, e.g., Wathen'87, Wathen Rees '08]:

* Conforming tetrahedral (P1) elements in 3D $\rightarrow \kappa(\tilde{B}) \leq 5$

* Rectangular bilinear (Q1) elements in 2D $\rightarrow \kappa(B) \leq 9$.

Example: Matrix pair Kuu, Muu from Suite Sparse collection.

Matrices A and B have dimension n = 7, 102. nnz(A) = 340, 200 nnz(B) = 170, 134.

> After scaling by diagonals to have diag. entries equal to one, all eigenvalues of B are in interval

 $[0.6254, \ 1.5899]$

Approximation theory to the rescue.

★ Idea: Compute the DOS for the standard problem

$$B^{-1/2}AB^{-1/2}u=\lambda u$$

> Use a very low degree polynomial to approximate $B^{-1/2}$.

> We use Chebyshev expansions.

 \blacktriangleright Degree k determined automatically by enforcing

$$\|t^{-1/2} - p_k(t)\|_{\infty} < tol$$

Theoretical results establish convergence that is exponential with respect to degree. Example: Results for Kuu-Muu example
 Using polynomials of degree 3 (!) to approximate B^{-1/2}
 Krylov subspace of dim. 30 (== deg. of polynomial in KPM)
 10 Sample vectors used

APPLICATIONS

Application 1: Eigenvalue counts

Problem: Given A (Hermitian) find an estimate of the number $\mu_{[a,b]}$ of eigenvalues of A in [a, b].

Standard method: Sylvester inertia theorem \rightarrow expensive!

First alternative: integrate the Spectral Density in [a, b].

$$\mu_{[a,b]}pprox n\left(\int_a^b ilde{\phi}(t)dt
ight)=n\sum_{k=0}^m\mu_k\left(\int_a^brac{T_k(t)}{\sqrt{1-t^2}}dt
ight)=...$$

Second method: Estimate trace of the related spectral projector P $(\rightarrow u_i$'s = eigenvectors $\leftrightarrow \lambda_i$'s)

$$oldsymbol{P} = \sum_{\lambda_i \ \in \ [a \ b]} u_i u_i^T oldsymbol{.}$$

It turns out that the 2 methods are identical.

Application 2: "Spectrum Slicing"

- Situation: very large number of eigenvalues to be computed
- Goal: compute spectrum by slices by applying filtering

Apply Lanczos or Subspace iteration to problem:

$$\phi(A)u=\mu u$$

 $\phi(t) \equiv$ polynomial or rational filter

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other \rightarrow reduced orthogonalization costs

How do I slice my spectrum?

Application 3: Estimating the rank

Very important problem in signal processing applications, machine learning, etc.

Often: a certain rank is selected ad-hoc. Dimension reduction is application with this "guessed" rank.

Can be viewed as a particular case of the eigenvalue count problem - but need a cutoff value.. Approximate rank, Numerical rank

Notion defined in various ways. A common one:

 $r_{\epsilon} = \min\{rank(B) : B \in \mathbb{R}^{m imes n}, \|A - B\|_2 \le \epsilon\},$

 $r_{\epsilon}=$ Number of sing. values $\geq\epsilon$

- Two distinct problems:
- 1. Get a good ϵ 2. Estimate number of sing. values $\geq \epsilon$
- > We will need a cut-off value ('threshold') ϵ .
- > Could use 'noise level' for ϵ , but not always available

Threshold selection

How to select a good threshold?

Exact DOS plots for three different types of matrices.

► To find: point immediatly following the initial sharp drop observed.

> Simple idea: use derivative of DOS function ϕ

For an $n \times n$ matrix with eigenvalues $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$:

$$\epsilon = \min\{t: \lambda_n \leq t \leq \lambda_1, \phi'(t) = 0\}.$$

► In practice replace by $\epsilon = \min\{t : \lambda_n < t < \lambda_1, |\phi'(t)| > \text{tol}\}$

Experiments

(A) The DOS found by KPM.

(B) Approximate rank estimation by The Lanczos method for the example netz4504.

Tests with Matérn covariance matrices for grids

Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension)	Matrix	# λ_i 's	r_ϵ	
	Size	$\geq \epsilon$	KPM	Lanczos
1D regular Grid ($2048 imes 1$)	2048	16	16.75	15.80
1D no structure Grid (2048×1)	2048	20	20.10	20.46
2D regular Grid ($64 imes 64$)	4096	72	72.71	72.90
2D no structure Grid ($64 imes 64$)	4096	70	69.20	71.23
2D deformed Grid ($64 imes 64$)	4096	69	68.11	69.45

For all test $M(deg) = 50, n_v$ =30

Application 4: The LogDeterminant

Evaluate the Log-determinant of A:

$$\log \det(A) = \operatorname{Trace}(\log(A)) = \sum_{i=1}^n \log(\lambda_i).$$

A is SPD.

Estimating the log-determinant of a matrix equivalent to estimating the trace of the matrix function $f(A) = \log(A)$.

Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace. Numerical example: A graph Laplacian california of size 9664 imes 9664, $nz \approx 10^5$ from the Univ. of Florida collection.

Application 6: Log-likelihood.

Comes from parameter estimation for Gaussian processes

> Objective is to maximize the log-likelihood function with respect to a 'hyperparameter' vector $\boldsymbol{\xi}$

$$\log p(z \mid \xi) = -\frac{1}{2} \left[z^{ op} S(\xi)^{-1} z + \log \operatorname{det} S(\xi) + \operatorname{cst}
ight]$$

where z = data vector and $S(\xi) == covariance matrix parameterized by <math>\xi$

> Can use the same Lanczos runs to estimate $z^{\top}S(\xi)^{-1}z$ and logDet term simultaneously. Application 7: calculating nuclear norm

$$\blacktriangleright \|X\|_* = \sum \sigma_i(X) = \sum \sqrt{\lambda_i(X^T X)}$$

Generalization: Schatten p-norms

$$\|X\|_{*,p} = \left[\sum \sigma_i(X)^p
ight]^{1/p}$$

J. Chen, S. Ubaru, YS, "Fast estimation of log-determinant and Schatten norms via stochastic Lanczos quadrature", (Submitted).

Conclusion

Estimating traces & Spectral densities are key ingredients in many algorithms

Physics, machine learning, matrix algorithms, ...

many new problems related to 'data analysis' and 'statistics', and in signal processing,

A good instance of a method from physics finding its way in numerical linear algebra

Q: Can we do better than standard random sampling?