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Introduction

» ’'Random Sampling’ or 'probabilistic methods’: use of ran-
dom data to solve a given problem.

» Eigenvalues, eigenvalue counts, traces, ...

» Many well-known algorithms use a form of random sam-
pling: The Lanczos algorithm

» Recent work : probabilistic methods - See [Halko, Martins-
son, Tropp, 2010]

» Huge interest spurred by ‘big data’

» In this talk: Use of random sampling to obtain Eigenvalue
counts, spectral densities, and approximate ranks
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Important tool: Stochastic Trace Estimator

» To estimate diagonal of B = f(A) (e.g., B = A1), let:

e d(B) = diag(B) [matlab notation]
Notation: | e » and ©: Elementwise multiplication and divi-

sion of vectors

e {v,}: Sequence of s random vectors

I—?esu/t:l d(B) ~ i”ﬂ' ® B,

j=1

%

S
2_vi O
j=1

C. Bekas , E. Kokiopoulou & YS ('05); C. Bekas, A. Curioni, .

Fedulova '09:; ...
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Trace of a matrix

» For the trace - take vectors of unit norm and

1 S

~/ T .

Trace(B) ~ . E 1fvj Bo;
J:

» Hutchinson’s estimator : take random vectors with compo-
nents of the form +1/4/n [Rademacher vectors]

» Extensively studied in literature. See e.g.: Hutchinson '89;
H. Avron and S. Toledo '11; G.H. Golub & U. Von Matt '97;
Roosta-Khorasani & U. Ascher ’15; ...
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Typical convergence curve for stochastic estimator

» Estimating the diagonal of inverse of two sample matrices
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Computing Densities of States [Lin-Lin, Chao Yang, YS]

» Formally, the Density Of States (DOS) of a matrix A is

e 0 is the Dirac d-function or Dirac distribution
o N\ < X\ < ... < )\, arethe eigenvalues of A

» Note: pqp can be obtained from ¢

where

» ¢(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

» Also known as the spectral density

» \Very important uses in Solid-State physics
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The Kernel Polynomial Method

» Used by Chemists to calculate the DOS — see Silver and
Roder'94 , Wang '94, Drabold-Sankey’93, + others

» Basic idea: expand DOS into Chebyshev polynomials
» Coefficients ~ lead to evaluating Tr (7 (A))

» Use trace estimators [discovered independently] to get traces

A few details: |

» Assume change of variable done so eigenvalues liein [—1, 1].

» Include the weight function in the expansion so expand:
- 1 &
P(t) = V1 —8(t) = V1 —12 x = > &(t — Aj).
n -
J=1
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> Then, (full) expansion is: ¢(t) = S°2°  ppTi(t).

» Expansion coefficients u are formally defined by:

2 — 1o 1 )
o = /. mn(t)qxwdt
2 — 5k0 /
= T.(t)V/1 — t?¢p(t)dt
2 — 5
= <0 Z Tr(N;) with  d;; = Dirac symbol
nw

» Note: > Ti(\;) = Trace|T(A)]

» Estimate this, e.g., via stochastic estimator

nvec

S (v Tu(A).

vec =1

Trace(Tr(A)) =
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» To compute scalars of the form vI'T;,(A)v, exploit 3-term
recurrence of the Chebyshev polynomial ...

18
lel === Fxact |
6r .2 -w /o Jackson

14+ —w/ Jackson [
12r
10+

» Use Jackson smoothing=
for Gibbs oscillations

O N & OV ®
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An example with degree 80 polynomials

KPM, deg = 80 KPM, deg = 80
0.18f - I ! LN 02F T ¥ T T
o | —— Exact . Y —&— Exact
0.16¢ oo | —e— KPM w/ Jackson| 1 d | —e— KPM w/o Jackson
0.14} |
0.15¢
0.12¢
= 0.1r =
= = 0.1
= 0.08} <
0.06¢
0.05¢

0.04 |

0.02}

Left: Jackson damping; right: without Jackson damping.
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Use of the Lanczos Algorithm

» Background: The Lanczos algorithm generates an orthonor-
mal basis V,,, = [vy, v, -+ , ] for the Krylov subspace:

span{vy, Avy,--- , A" v}

(Ot1 B2 \
B2 oz O3
» ... such that: B3 ag By
VHAV,, = T,, - with T = o
\ Bm Cm )
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» Lanczos process builds orthogonal polynomials wrt to dot
product:

[ p®a)dt = (A1, a(4)0r)

» LetB;, 1 = 1--.-,m bethe eigenvalues of T, [Ritz values]
» y,;’s associated eigenvectors; Ritz vectors: {V,,vy; }i—1.m

» Ritz values approximate eigenvalues

» Could compute 6;’s then get approximate DOS from these

» Problem: 8; not good enough approximations — especially
iInside the spectrum.
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Better idea: exploit relation of Lanczos with (discrete) orthog-
onal polynomials and related Gaussian quadrature:

/ p(t)dt = Zaip(&-) a; = [eTy,]’

» See, e.g., Golub & Meurant '93, and also Gautschi’81, Golub
and Welsch '69.

» Formula exact when p is a polynomial of degree < 2m + 1
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» Consider now | p(t)dt =< p,1 >= (Stieljes) integral =
(P(A)v,v) =3 Bip(Ni) =< o, p >

» Then (¢, p) = > a;p(0;) = > a; (dg,p) —
qbv ~ Z a’i59i

» To mimick the effect of 3; = 1, V1, use several vectors v
and average the result of the above formula over them..
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Other methods

» The Lanczos spectroscopic approach : A sort of signal
processing approach to detect peaks using Fourier analysis

» The Delta-Chebyshev approach: Smooth ¢ with Gaussians,
then expand Gaussians using Legendre polynomials

» Haydock’s method: interesting ‘classic’ approach in physics
- uses Lanczos to unravel ‘near-poles’ of (A — eil)~!

For details see:

e Approximating spectral densities of large matrices, Lin Lin,
YS, and Chao Yang - SIAM Review '16. Also in:
[arXiv: http://arxiv.org/abs/1308.5467]
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What about matrix pencils?

» DOS for generalized eigen- Axr — \Bx
value problems

» Assume: A is symmetric and B is SPD.

» In principle: can just apply methods to B~1Ax = Az, using
B - inner products.

» Requires factoring B. Too expensive [Think 3D Pbs]
* Observe: B is usually very *strongly* diagonally dominant.

» Especially true after Left+Right Diag. scaling :

~

B=S"'BS™! S =diag(B)Y?
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General observation for FEM mass matrices [See, e.g., Wa-
then’87, Wathen Rees ’08]:

* Conforming tetrahedral (P1) elements in 3D — (B) < 5

* Rectangular bilinear (Q1) elements in 2D — &(B) < 9.

Example: | Matrix pair Kuu, Muu from Suite Sparse collection.

» Matrices A and B have dimensionn = 7,102. nnz(A) =
340, 200 nnz(B) = 170, 134.

» After scaling by diagonals to have diag. entries equal to
one, all eigenvalues of B are in interval

(0.6254, 1.5899]
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Approximation theory to the rescue.

* Idea: Compute the DOS for the standard problem
B 12AB 12y = \u

» Use a very low degree polynomial to approximate B~1/2.
» We use Chebyshev expansions.

» Degree k determined automatically by enforcing

[t7/2 — pi(t)l|oo < tol

» Theoretical results establish convergence that is exponential
with respect to degree.
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Example: | Results for Kuu-Muu example

» Using polynomials of degree 3 (!) to approximate B~1/2
» Krylov subspace of dim. 30 (== deg. of polynomial in KPM)

» 10 Sample vectors used

. Kuu-Muu test —— m=30 Pol. Deg for B=3,n_ =10 . Kuu-Muu pair -—— m=30 Pol. Deg for B=3,n =10 . Kuu-Muu pair -—— m=30 Pol. Deg for B=3,n =30
x10° vec X107 vec x10° vec

T T T T 1.8 T T T T T T T 1.8 T T T T T T T
—— DOS from Lanczos algorithm A ——DOS from KPM - —— DOS from KPM-Legendre,
- - - From histogram H o 1ef / \ - - - From histogram{{ 16} a - - - From histogram H

Lanczos KPM-Chebyshev KPM-Legendre
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Application 1: Eigenvalue counts

Problem: Given A (Hermitian) find an estimate of the number
It[a,p Of eigenvalues of Ain [a, b].

Standard method: Sylvester inertia theorem — expensive!

First alternative: integrate the Spectral Density in [a, b].

Wiap] = N (/a é(t)dt) = nZuk ( ) \/I;C(Tt)tzdt> = ...

Second method: Estimate trace p_ Z T
of the related specitral projector P NS Ta b ¢
(— u;’s = eigenvectors <+ \;’s) .

» |t turns out that the 2 methods are identical.
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Application 2: “Spectrum Slicing”

» Situation: very large number of eigenvalues to be computed

» (Goal: compute spectrum by slices by applying filtering

Pol. of degree 32 approxd(.5) in [-1 1]

»  Apply Lanczos or Subspace iter-
ation to problem:

P(A)u = pu o

¢(t) = polynomial or rational filter

Rationale. Eigenvectors on both ends of wanted spectrum
need not be orthogonalized against each other — reduced or-
thogonalization costs
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How do I slice my spectrum?

Slice spectrum into 8 with the DOS

0.025

0.02-

0.015

Answer: Use the DOS.

0.005

-0.005

tir1

» We must have: o(t)dt = / o(t)dt

t; Nglices
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Application 3: Estimating the rank

» Very important problem in signal processing applications,
machine learning, etc.

» QOften: a certain rank is selected ad-hoc. Dimension reduc-
tion is application with this “guessed” rank.

» (Can be viewed as a particular case of the eigenvalue count
problem - but need a cutoff value..
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Approximate rank, Numerical rank

» Notion defined in various ways. A common one:

re = min{rank(B) : B € R™*",||A — B||2 < €},

r. = Number of sing. values > €

» Two distinct problems:
1. Get a good € 2. Estimate number of sing. values > €
» We will need a cut-off value (‘threshold’) €.

» (Could use ‘noise level’ for €, but not always available
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Threshold selection

» How to select a good threshold?

» Answer: Obtain it from the DOS function

Exact DOS by KPM, deg = 30 Exact DOS by KPM, deg = 30 Exact DOS by KPM, deg = 30
' ' ' ' | 18 ‘ ‘ ‘ ‘ ‘ ‘ ‘ he) | N ' ' ' ' ' ' ;(PM Chleb shevl |
1.6 1 :
| 14 | 3
2 1 25
‘3 g i 1 g 2
< =2 <
i | 15
1 061 1
114
1 0.4 1
0.2M
1 1?5 é 0‘.5 1‘ 1.‘5 é 215 é 3.5 A‘t 111111111
A A A

Exact DOS plots for three different types of matrices.
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» To find: point immediatly following the initial sharp drop
observed.

» Simple idea: use derivative of DOS function ¢

» For an n X n matrix with eigenvalues A, < A1 < - -
Al:

IA

e =min{t: A\, <t < A, ¢'(t) = 0}.

» In practice replace by

e =min{t: \, <t < Ay, |¢/'(t)| > tol}
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DOS with KPM, deg = 50

3

Lanczos Approximation (matrix size=1961)
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< . .
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A Number of vectors (1 —> 30)
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(A) The DOS found by KPM.
(B) Approximate rank estimation by The Lanczos method for
the example netz4504.
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Tests with Matern covariance matrices for grids

» Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix | # \;’s Te

Size n > € KPM Lanczos
1D regular Grid (2048 X 1) 2048 | 16 16.75 15.80
1D no structure Grid (2048 x 1) 2048 | 20 20.10| 20.46
2D reqgular Grid (64 X 64) 4096 | 72 72.71 72.90
2D no structure Grid (64 x 64) | 4096 70 69.20 71.23
2D deformed Grid (64 X 64) 4096 | 69 68.11 69.45

» For all test M (deg) = 50, n,=30
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Application 4: The LogDeterminant

Evaluate the Log-determinant of A:

log det(A) = Trace(log(A)) = > ., log(A;).

A is SPD.

» Estimating the log-determinant of a matrix equivalent to
estimating the trace of the matrix function f(A) = log(A).

» (Can invoke Stochastic Lanczos Quadrature (SLQ) to esti-
mate this trace.
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Numerical example: A graph Laplacian california of size
9664 X 9664, nz ~ 10° from the Univ. of Florida collection.

Comparison nv=100

Rel. error vs degree

e 3 methods: Taylor Series,
Chebyshev expansion, SLQ

Relative error
=

—=—Taylor
10 | |—=—Chebyshev
e # starting vectors nv = 100 ——Lanczos

in all three cases.

10 20 30 40 50
Degree (5 —> 50)
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4 Runtime comparison

10
Runtime comparisons -
0 .2
f”i 10 |
0]
E
5 100 : —v—Cholesky
- Talyor
—e— Chebyshev
) —e—Lanczos
10 ' '
0 2 4 6
Matrix Size « 10"
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Application 6: Log-likelihood.

Comes from parameter estimation for Gaussian processes

» QObjective is to maximize the log-likelihood function with
respect to a ‘hyperparameter’ vector &

logp(z | &) = —3 [275(&) 'z + log det S(&) + cst]

where z = data vector and S (&) == covariance matrix parame-
terized by &

» Can use the same Lanczos runs to estimate z'S(&) 1z
and logDet term simultaneously.
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Application 7: calculating nuclear norm

> | Xl =2 0i(X) = 3 VA(XTX)

» Generalization: Schatten p-norms

1X [[p = [ @a(X)PIP

» See:

J. Chen, S. Ubaru, YS, “Fast estimation of log-determinant and
Schatten norms via stochastic Lanczos quadrature”, (Submit-
ted).
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Conclusion

» Estimating traces & Speciral densities are key ingredients
In many algorithms

» Physics, machine learning, matrix algorithms, ..

» .. many new problems related to ‘data analysis’ and ’statis-
tics’, and in signal processing,

» A good instance of a method from physics finding its way in
numerical linear algebra

Can we do better than standard random sampling?
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