UNIVERSITY
 OF Minnesota twin cities

Divide and conquer algorithms for large eigenvalue problems

Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

> PMAA 14
> Lugano, July 4, 2014

Collaborators:

> Joint work with: Haw-ren Fang and Vassileos Kalantzis
> Grady Schoefield and Jim Chelikowsky [UT Austin] [windowing into PARSEC]
> Work supported in part by NSF (to 2012) and now by DOE

Introduction

Q. How do you compute eigenvalues in the middle of the spectrum of a large Hermitian matrix?

A:
Common practice: Shift and invert + some projection process (Lanczos, subspace iteration..)

Main

1) Select a shift (or sequence of shifts) σ;
2) Factor $A-\sigma I: \quad A-\sigma I=L D L^{T}$
3) Apply Lanczos algorithm to $(A-\sigma I)^{-1}$
$>$ Solves with $A-\sigma I$ carried out using factorization
> Limitation: factorization

QWhat if factoring \boldsymbol{A} is too expensive (e.g., Large 3-D similation)?

A: Obvious answer: Use iterative solvers ...
$>$ But: systems highly indefinite \rightarrow Won’t work well.
> Other common issue:
Need a very large number of eigenvalues and eigenvectors
> Applications: Excited states in quantum physics: TDDFT, GW, ... or just plain Density Functional Theory (DFT)
$>$ Example: in real-space code (PARSEC), Hamiltonian can be of size a few Millions, and number of ev's in the tens of thousands

I. Polynomial filtered Lanczos

> Possible solution: Use Lanczos with polynomial filtering.
$>$ In short: just replace $(A-\sigma I)^{-1}$ in S.I. Lanczos by $p_{k}(A)$ where $p_{k}(t)=$ polynomial of degree k
> Idea not new (and not too popular in the past)

What is new?

1. Very large problems;
2. (tens of) Thousands of eigenvalues;
3. Parallelism.
> Important application: compute the spectrum by pieces ['spectrum slicing' a term coined by B. Parlett]
> Main attraction: reduce cost of orthogonalization

Low-pass, high-pass, \& barrier (mid-pass) filters

$>$ See Reference on Lanczos + pol. filtering: Bekas, Kokiopoulou, YS (2008) for motivation, etc.
> H.-r Fang and YS "Filtlan" paper [SISC,2012] and code

Misconception: High degree polynomials are bad

'Spectrum slicing' or 'windowing'

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other :

> Idea: Get the spectrum by 'slices' or 'windows'
$>$ Can get a few hundreds or thousands of vectors at a time.

> Deceivingly simple looking idea.
> Issues:

- Deal with interfaces : duplicate/missing eigenvalues
- Window size [need estimate of eigenvalues]
- polynomial degree

Spectrum slicing in PARSEC

$>$ Implemented in our code:
Pseudopotential Algorithm for Real-Space Electronic Calcultions (PARSEC)
$>$ See:
'A Spectrum Slicing Method for the Kohn-Sham Problem', G. Schofield, J. R. Chelikowsky and YS, Computer Physics Comm., vol 183 (2011) pp. 487-505.
$>$ Refer to this paper for details on windowing and 'initial proof of concept'

Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson approximation of a function f :

$$
f(x) \approx \sum_{i=0}^{k} g_{i}^{k} \gamma_{i} \boldsymbol{T}_{i}(x)
$$

$\gamma_{i}=\frac{2-\delta_{i 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x) d x \quad \delta_{i 0}=$ Kronecker symbol $=$ explicitly known
$>$ The g_{i}^{k} 's for $\boldsymbol{k}=50,100,150$
$>$ The g_{i}^{k} 's dampen high order terms
> Alternative: Lanczos σ-damping

A mid-pass (barrier) filter-3 damping methods

Mid-pass polynom. filter [-1 . 3 . 6 1]; Degree $=30$

Tests - Test matrices

> Experiments on two dual-core AMD Opteron(tm) Processors 2214 @ 2.2GHz and 16GB memory.

Test matrices:

* Five Hamiltonians from electronic structure calculations,
* Andrews matrix $N=60,000, n \boldsymbol{n z} \approx 760 K$, interval $[4,5]$; nev $=1,844$ eigenvalues, (3,751 to the left of $\boldsymbol{\eta}$)
* A discretized Laplacian (FD) $n=10^{6}$, interval $=[1,1.01]$, nev=276, (>17,000 on the left of η)
> Here : report only on Andrews and Laplacean

Results for Andrews - set 1 of stats

method	degree	\# iter	\# matvecs	memory
filt. Lan. (mid-pass)	$d=20$	9,440	188,800	4,829
	$d=30$	6,040	180,120	2,799
	$d=50$	3,800	190,000	1,947
	$d=100$	2,360	236,000	1,131
filt. Lan. (high-pass)	$d=10$	5,990	59,900	2,799
	$d=20$	4,780	95,600	2,334
	$d=30$	4,360	130,800	2,334
	$d=50$	4,690	234,500	2,334
Part. \perp Lanczos		22,345	22,345	10,312
ARPACK		30,716	30,716	6,129

Results for Andrews - CPU times (sec.)

method	degree	$\rho(A) v$	reorth	eigvec	total
filt. Lan. (mid-pass)	$d=20$	2,797	192	4,834	9,840
	$d=30$	2,429	115	2,151	5,279
	$d=50$	3,040	65	521	3,810
	$d=100$	3,757	93	220	4,147
filt. Lan. (high-pass)	$d=10$	1,152	2,911	2,391	7,050
	$d=20$	1,335	1,718	1,472	4,874
	$d=30$	1,806	1,218	1,274	4,576
	$d=50$	3,187	1,032	1,383	5,918
Part. \perp Lanczos		217	30,455	64,223	112,664
ARPACK		345	423,492	†18,094	441,934

Results for Laplacian - Matvecs and Memory

method	degree	\# iter \# matvecs		memory
mid-pass filter	600	1,400	840,000	10,913
	1,000	950	950,000	7,640
	1,600	710	$1,136,000$	6,358

Results for Laplacian - CPU times

method	degree	$\rho(\boldsymbol{A}) \boldsymbol{v}$	reorth eigvec	total	
mid-pass filter	600	97,817	927	241	99,279
	1,000	119,242	773	162	120,384
	1,600	169,741	722	119	170,856

II. Domain decomposition ideas

> Main idea: Cauchy integral-based method [e.g. FEAST]
> ... within a domain-decomposition framework:

\leftarrow edgeseparators
vertex-
separators \rightarrow

Two classical ways of partitioning a graph.
> We use edge-separators (vertex-based partitioning)

Distributed graph and its matrix representation

$>$ Stack all interior variables $u_{1}, u_{2}, \cdots, u_{p}$ into a vector \boldsymbol{u}, then interface variables \boldsymbol{y}

Result:

$$
\underbrace{\left(\begin{array}{ccccc}
B_{1} & & & \ldots & E_{1} \\
& B_{2} & & \ldots & E_{2} \\
\vdots & & \ddots & & \vdots \\
& & & B_{p} & E_{p} \\
E_{1}^{T} & E_{2}^{T} & \ldots & E_{p}^{T} & C
\end{array}\right)}_{P A P^{T}}\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{p} \\
y
\end{array}\right)=\lambda\left(\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{p} \\
y
\end{array}\right)
$$

Notation:

Write as:
$\boldsymbol{A}=\left(\begin{array}{cc}\boldsymbol{B} & \boldsymbol{E} \\ \boldsymbol{E}^{T} & \boldsymbol{C}\end{array}\right)$

First idea: Schur complement techniques (On-going work)

$>$ Eliminate interior variables \boldsymbol{u}_{i} - Result:

$$
\underbrace{\left(\begin{array}{cccc}
\boldsymbol{S}_{1}(\lambda) & \boldsymbol{E}_{12} & \ldots & \boldsymbol{E}_{1 p} \\
\boldsymbol{E}_{21} & S_{2}(\lambda) & \ldots & \boldsymbol{E}_{2 p} \\
\vdots & & \ddots & \vdots \\
\boldsymbol{E}_{p 1} & \boldsymbol{E}_{p, 2} & \ldots & \boldsymbol{S}_{p}(\lambda)
\end{array}\right)}_{S(\lambda)} \underbrace{\left(\begin{array}{c}
\boldsymbol{y}_{1} \\
\boldsymbol{y}_{2} \\
\vdots \\
\boldsymbol{y}_{p}
\end{array}\right)}_{y}=0
$$

$S_{i}(\lambda)=C_{i}-E_{i}^{T}(B-\lambda I)^{-1} E_{i} \equiv$ Local Schur Complement
> Nonlinear eigenvalue problem.

$$
S(\lambda) y=0
$$

Involves only interface variables.
> Related to AMLS - see also Bekas and YS (2005)

Next: Schur complements + FEAST

$$
\begin{aligned}
A-s I & =\left(\begin{array}{cc}
\boldsymbol{B}-s \boldsymbol{I} & \boldsymbol{E} \\
\boldsymbol{E}^{T} & C-s \boldsymbol{I}
\end{array}\right) \rightarrow \\
(\boldsymbol{A}-s \boldsymbol{I})^{-1} & =\left[\begin{array}{cc}
* & -(\boldsymbol{B}-s \boldsymbol{I})^{-1} \boldsymbol{E} \boldsymbol{S}(s)^{-1} \\
\hline * & \boldsymbol{S}(s)^{-1}
\end{array}\right]
\end{aligned}
$$

> Then, Cauchy integral formula for spectral projector yields:

$$
\begin{gathered}
P=\frac{-1}{2 i \pi} \int_{\Gamma} R(s) d s \equiv\left[\begin{array}{c|c}
* & -W \\
\hline * & G
\end{array}\right] \text { with } \\
G=\frac{-1}{2 i \pi} \int_{\Gamma} S(s)^{-1} d s, \quad W=\frac{-1}{2 i \pi} \int_{\Gamma}(B-s I)^{-1} \boldsymbol{E} S(s)^{-1} d s
\end{gathered}
$$

> Advantage: Does not involve inverse of whole matrix
$>$ Let

$$
\boldsymbol{P}=\left[\boldsymbol{P}_{1}, \boldsymbol{P}_{2}\right] \equiv\left[\begin{array}{c|c}
* & -\boldsymbol{W} \\
\hline * & \boldsymbol{G}
\end{array}\right]
$$

$>$ We know how to compute \boldsymbol{P}_{2} or $\boldsymbol{P}_{2} \times$ randn $(\boldsymbol{s}, \boldsymbol{n} \boldsymbol{s})$
Q: How can we recover eigenvectors of \boldsymbol{A} from P_{2} ?
A: Write \boldsymbol{P} as $\boldsymbol{P}=\boldsymbol{V} \boldsymbol{V}^{\boldsymbol{T}}$, and $\boldsymbol{V}=\binom{V_{u}}{V_{s}}$ then note:

$$
P_{2}=V V_{s}^{T}
$$

$>$ Just capture the range of $\boldsymbol{P}_{\mathbf{2}}$
$>$ Can use Lanczos on $P_{2} P_{2}^{T}$ or just a random $X \in \mathbb{R}^{s \times n s}$
> Advantage of Lanczos: stops when dimension reached
$>$ Drawbacks: 1) sequential; 2) \approx Doubles the work
$>$ So far: Both idea tested in matlab

Need better poles

> Approach is a one-shot method [no easy way to iterate]
Q: How can we improve accuracy?
A: Select poles carefully.
> Current choices: trapezoidal rule, Gauss, Zolotarev,...
> None of these allows for repeated ('multiple') poles e.g.,

$$
r(z)=\frac{\alpha_{1}}{z-\sigma}+\frac{\alpha_{2}}{(z-\sigma)^{2}}+\cdots+\frac{\alpha_{k}}{(z-\sigma)^{k}}
$$

$>$ This can be useful for any rational filtering approach
$>$ Next: See what we can do with one double pole

Two double poles + comparison with compounding

Sigma $=+/-0.6+/-1 i ; \quad$ pow $=22$

Who needs a circle? Two poles ${ }^{2}$ far from the origin

Conclusion

Part I:

>FiltLan is appealing when number of eigenvectors to be computed is large and when Matvecs are not too expensise
> Will not work too well for generalized eigenvalue problem
> Code available here www.cs.umn.edu/~saad/software/
filtlan

Part II:

> Many ideas still to explore in Domain Decomposition for interior eigenvalue problems
> Viewpoint: look at rational filtering from angle of approx. theory

