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Introduction: Linear System Solvers

»w Problem considered: Linear systems
Ax = 0b

w Can view the problem from somewhat different angles:
¢ Discretized problem coming from a PDE

e An algebraic system of equations [ighore origin]

e Sometimes a system of equations where A is not explicitly avail-

able




Direct sparse lterative Methods

Solvers Preconditioned Krylov
/ General
¢ Purpose
-A u=f +bc
/ \ ¢ Specialized
Fast Poisson Multigrid

Solvers Methods
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Introduction: Linear System Solvers

w Much of recent work on solvers has focussed on:
(1) Parallel implementation — scalable performance

(2) Improving Robustness, developing more general precondition-

ers
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A few observations

» Problems are getting harder for Sparse Direct methods

(more 3-D models, much bigger problems,..)

w Problems are also getting difficult for iterative methods Cause:

more complex models - away from Poisson

» Researchers in iterative methods are borrowing techniques from

direct methods: — preconditioners

w The inverse is also happening: Direct methods are being adapted

for use as preconditioners




Background on preconditioned Krylov methods

w Krylov subspace methods: projection methods which extract ap-
proximate solutions to Az = b from the subspace (initial guess
xo = 0)

span{b, Ab,---, A™ b}

w Essentially: solution is approximated in some optimal way by

Pm—1(A)b, where p,,,_1 = polyn. of degree m — 1

w For x( # 0, approximation is in affine space

xo + {ro, Arg, -+, A™ 'ro}




Preconditioning I

Use Krylov subspace method on a modified system such as
M~1Ax = M~1b.

e Matrix M ! A need not be formed explicitly; only need to solve

Mw = v whenever needed.

e Requirement: M ~1v inexpensive to evaluate V v

Three different forms:

Left preconditioning M~1tAxz = M~1'b

Right preconditioning AM 'y =b r = My

Split preconditioning | M;'A Mz'y = M;'b|x = Mjz'y




Standard preconditioners

w Most common ‘general purpose’ methods used:
1. ILU(0) or ILU(k)
2. ILUT

3. New trend: Multilevel ILU, e.g., ARMS .




An overview of recent progress on ILU

w Bollhofer defined rigorous dropping strategies [Bollhofer 2002]
w Approximate inverse methods [limited success]
w Use of different forms of LU factorizations [ILUC, N. Li, YS, Chow]

w Vaidya preconditioners — for problems in structures [very suc-

cessful in industry]
w Support theory for preconditioners

»w Nonsymmetric permutations —




ILU(0) and IC(0) preconditioners

»  Notation: I NZ(X)={(7)| Xi; #0}

fig A=LU+ R
Formal definition of ILU(0) NZ(LYoNZ(U) = NZ(A)
(Does not define ILU(0) ina r;; =0for(z,5) € NZ(A)

unique way)

Constructive definition: Compute the LU factorization of A but

drop any fill-in in L and U outside of Struct(A).

w Typical eigenvalue distribution for preconditoned matrix :




ILU(p) factorization — level of fill

w Higher accuracy incomplete Cholesky: for regularly structured

problems, IC(p) allows p additional diagonals in L.

w Can be generalized to irregular sparse matrices using the notion
of level of fill-in [Watts Ill, 1979]

0 for a;; #0
[ |n|t|a"y Lefvz-j = ! #

oo for a;; == 0
e At a given step ¢ of Gaussian elimination:

Levy; = min{Lewvy;; Levy; + Lev;; + 1}

w ILU(p) Strategy = drop anything with level of fill-in exceeding p.




LU - standard (K1LJ) version

w At step & :

Q Pivot
fOI‘ k=1 :n'1 Rowk | N\

fori=k+1:n
for j=k+1:n

a(i,j) = ...




ILUT - based on the IK] version of GE

for i=1:n-1
for k = 1:i-1
forj=i+1:n

a(i,j) = ...

13

w At step : :

Accessed but not
modified

Accessed and

-~ modified

Not accessed
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ILU with threshold: ILUT (k, €)

e Do the i, k, 5 version of Gaussian Elimination (GE).
e Discard any pivot or fill-in whose value is below ¢||row;(A)||.

e Once the :-th row of L + U, (L-part + U-part) is computed retain

only the k largest elements in both parts.

w Advantages: controlled fill-in. Smaller memory overhead.

w Easy to implement — much more so than preconditioners derived

from direct solvers.

w Can be quite inexpensive for accurate factorizations (high fill) —

Solution : Crout versions of ILU




Crout-based ILUT (ILUTC)

Terminology: Crout versions of LU compute the k-th row of U and
the k-th column of L at the k-th step.

Computational pattern

Red = part computed at step &
Blue = part accessed .‘

1. Less expensive than ILUT (avoids sorting)

Main advantages: _
2. Allows better techniques for dropping
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Crout ILUT

w Can derive incomplete versions — by adding dropping.

w Data structure from [Jones-Platzman] - clever implementation

Preconditioning time vs. Lfil for RAEFSKY3
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NONSYMMETRIC REORDERINGS




Enhancing robustness: One-sided permutations

w Very useful techniques for matrices with extremely poor struc-

ture. Not as helpful in other cases.

Previous work:

e Benzi, Haws, Tuma ’99 [compare various permutation algorithms

in context of ILU]

e Duff, Koster, ‘99 [propose various permutation algorithms. Also

discuss preconditioners]

e Duff ‘81 [Propose max. transversal algorithms. Basis of many
other methods. Also Hopcroft & Karp 73, Duff "88]




Transversals - bipartite matching: Find (maximal) set of ordered

pairs (¢,5) s.t. a;; # 0 and 2 and ; each appear only once (one

diagonal element per row/column). Basis of many algorithms.

O O

O x O

Bipartite representation After reordering Maximum transversal




Criterion: I Find a (column) permutation 7 such that

n
11 |az-,7r(z-)| — max
1=1

Olchowsky and Neumaier '96 translate this into

DL ; _ |aij
min > ¢ ;) Withe;; = J
1 +o0 else

1=

w Dual problem is solved:

maX{ fj u; + jil Uj} SUbiECt to: Cij — U; — U, Z 0

UgyUj 51

w Algorithms utilize depth-first-search to find max transversals.

w Many variants. Best known code: Duff & Koster’s MC64
Pau - Dec. 13th, 2007
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NONSYMMETRIC REORDERINGS: MULTILEVEL FRAMEWORK




Background: Independent sets, ILUM, ARMS

Independent set orderings permute a matrix into the form
o
E C
where B is a diagonal matrix.

»w Unknowns associated with the B block form an independent set
(IS).

w IS is maximal if it cannot be augmented by other nodes to form

another IS.

» Finding a maximal independentg set is inexpensive




Main observation: Reduced system obtained by eliminating the

unknowns associated with the IS, is still sparse since its coefficient
matrix is the Schur complement
S=C—-EB'F
w Idea: apply IS set reduction recursively.
w When reduced system small enough solve by any method
w ILUM: ILU factorization based on this strategy. YS '92-94.

e See work by [Botta-Wubbs 96, 97, YS’94, 96, Leuze ’89,..]




Group Independent Sets / Aggregates

Main goal:| generalize independent sets to improve robustness
Main idea:| use “cliques”, or “aggregates”. No coupling between
the aggregates.

N
@ . . No Coupling
@ B

w Label nodes of independent sets first

25
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Algebraic Recursive Multilevel Solver (ARMS)

» Typical shape of reordered «F
. B—
matrix:
B F
pAP = (E C) B c
e

B F L 0 U L 'F
» Block factorize:( ) — ( ) ( )
E C EU ' T 0 S

w» S = C — EB'F = Schur complement + dropping to reduce fill

» Next step: treat the Schur complement recursively




Algebraic Recursive Multilevel Solver (ARMS)

Level [ Factorization:

& a)=lao o anlle 1)
B, ¢) \BUu™ 1)lo Ap)lo 1

» L-solve ~ restriction; U-solve ~ prolongation.

w Perform above block factorization recursively on A; .,
w Blocks in B, treated as sparse. Can be large or small.
w Algorithm is fully recursive

w Stability criterion in block independent sets algorithm




Group Independent Set reordering

Separator

First Block

Simple strategy: Level taversal until there are enough points to form

a block. Reverse ordering. Start new block from non-visited node.
Continue until all points are visited. Add criterion for rejecting “not

sufficiently diagonally dominant rows.”




Original matrix




Block size of 6
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Block size of 20
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Two-sided permutations with diag. dominance

Idea: I ARMS + exploit nonsymmetric permutations

w No particular structure or assumptions for B block

» Permute rows * and * columns of A. Use two permutations P
(rows) and (@ (columns) to transform A into
B F)

PAQT =
=[5 o

P, Q is a pair of permutations (rows, columns) selected so that the
B block has the ‘most diagonally dominant’ rows (after nhonsym

perm) and few nonzero elements (to reduce fill-in).
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Multilevel framework

w At the [-th level reorder matrix as shown above and then carry out

the block factorization ‘approximately’

B, F Ly O U, L7'F;
PlAlQlT — ~ X l ’
E;, C ElUl_l 1 0 Al_|_1
where
Bl ~ LlUl
Al_|_1 ~ C] — (ElUl_l)(Ll_lﬂ) .

» As before the matrices E,U;"!, L, ' F; or their approximations
Gl ~ ElUl_l ’ VVl ~ Ll_lﬂ

need not be saved.




Interpretation in terms of complete pivoting

Rationale: | Critical to have an accurate and well-conditioned B
block [Bollhofer, Bollhofer-YS’04]

w Case when B is of dimension 1 — a form of complete pivoting

ILU. Procedure ~ block complete pivoting ILU

Matching sets: | define B block. M is a set of n,, pairs (p;, q;)

where ny; < nwithl < p;,q; <nfor:=1,...,ny and

Di # pj, fori #£ j qi; # qj, fori # j

w When n,, = n — (full) permutation pair (P, Q). A partial match-
ing set can be easily completed into a full pair (P, Q) by a greedy

approach.




Matching - preselection

Algorithm to find permutation consists of 3 phases.

(1) | Preselection: I to filter out poor rows (dd. criterion) and sort

the selected rows.

(2) | Matching: |scan candidate entries in order given by preselec-
tion and accept them into the M set, or reject them.

(3) | Complete the matching set: | into a complete pair of permuta-

tions (greedy algorithm)

» Let j(i) = argmax;|a;;|.

» Use the ratio v; = 'ﬁ;{‘ﬁ)ll as a measure of diag. domin. of row :




Matching: Greedy algorithm

w Simple algorithm: scan pairs (ix, ji) in the given order.

w If 2;, and ;. not already assighed, assign them to M.

0 ! © . m ]
LB @ | IR ONLINE
@ = s ] @ i m:
BLIBBOIENE B G e
************ m | B®|s . ® | s
****************** CE (s @ | im | m|s
******** B @ | © : B@|7
********* = 0 s o ia s
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Matrix after preselection Matrix after Matching perm.




w Many heuristics explored — see in particular, recent work with S.

MacLachlan '06.

»w Main advantage over MC64: inexpensive and more dynamic pro-

cedure.
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MATLAB DEMO




‘REAL’ TESTS




Numerical illustration

Matrix order nonzeros Application (Origin)
barrier2-9 115,625 3,897,557 Device simul. (Schenk)
matrix 9 103,430 2,121,550 | Device simul. (Schenk)
mat-n 3* 125,329 2,678,750 Device simul. (Schenk)
ohne2 181,343 11,063,545 | Device simul. (Schenk)
para-4 153,226 | 5,326,228 Device simul. (Schenk)
cir2a 482,969 | 3,912,413 circuit simul.

scircuit 170998 958936 | circuit simul. (Hamm)
circuit 4 80209 307604 | Circuit simul. (Bomhof)
wang3.rua| 26064 177168 Device simul. (Wang)
wang4.rua| 26068 177196 | Device simul. (Wang)

* mat-n_3* = matrix-new_3
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Parameters I

Drop tolerance

Fill gz

nlev,,q

40

tOlDD

0.1

LU-B GW S LU-S
0.01 0.01 0.01 1.e-05

LU-B GW S LU-S

3

3 3

20

1
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Fill Set-up GMRES(60) GMRES(100)
Matrix  Factor Time | Its. Time Its. Time
barr2-9 0.62 4.01e+00 113 3.29e+01 93 3.02e+01
mat-n 3 0.89 7.53e+00| 40 1.02e+01 40|1.00e+01
matrix 9| 1.77 5.53e+00 160 4.94e+01 82| 2.70e+01
ohne2 0.62 4.34e+01| 99 6.35e+01 80|5.43e+01
para-4 0.62|5.70e+00| 49 |1.94e+01 49|1.93e+01
wang3 2.33 | 8.90e-01 45 2.09e+00 45 1.95e+00
wang4 1.86| 5.10e-01 31|1.25e+00 31 |1.20e+00
scircuit 0.90 1.86e+00 | Fail | 7.08e+01 | Fail | 8.80e+01
circuit 4| 0.75/1.60e+00| 199 1.69e+01| 96 1.07e+01
circ2a 0.76 2.19e+02| 18|1.08e+01 18| 1.03e+01

Results for the 10 systems - ARMS-ddPQ + GMRES(60) & GMRES(100)




Fill Set-up GMRES(60) GMRES(100)

Factor Time | Its. Time | Its. Time

Same param’s| 0.89 1.81/400 9.13e+01 297  8.79e+01
Droptol = .001 1.00 1.89 98 2.23e+01| 82 2.27e+01

Solution of the system scircuit — no scaling + two different sets

43

of parameters.
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Application to the Helmholtz equation

w Collaboration with Riyad Kechroud, Azzeddine Soulaimani (ETS,
Montreal), and Shiv Gowda: [Math. Comput. Simul., vol. 65., pp
303-321 (2004)]

» Problem is set in the open domain (2. of R?

Au+Kku = f in Q
U = —Ujp. ON T
ou __ OUinc
or oan —  on on r
lim,_ o, r(@=1/2 (g; — zk:u) - 0 Sommerfeld condition

where: u the wave diffracted by I', f = source function = zero outside

domain
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w Issue: non-reflective boundary conditions when making the do-

main finite I',,.; = artificial boundary — Many techniques available.

w For high frequencies, linear systems beccome very ‘indefinite’ —

[eigenvalues on both sides of the imaginary axis]

» Not very good for iterative methods




Application to the Helmholtz equation

Problem 1:

Au+ k*>u = 0in Q.

ou 4 iku

w Domain: 2 = (0,1) x (0,1)

g in Fart

w Function g selected so that exact solution is u(x, y) = exp[ik cos(0)x+
k sin(0)y].

w Structured meshes used for the discretization



Problem 2. The soft obstacle == disk of radius ry = 0.5m. Incident
plane wave with a wavelength \; propagates along the xz-axis. 2nd
order Bayliss-Turkel boundary conditions used on I',,,;, located at
a distance 27, from the obstacle. Discretization uses isoparametric

elements with 4 nodes.

» The analytic solution is known

ah
v

art




Impact of the dropping strategy in ILUT

Pb 1. Convergence of ILUT-GMRES for different values of 1 fl
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Using a preconditioner from a lower wavenumber

w Good strategy for high frequencies. Test with Problem 2 —

Convergence History

k = 10*pi (1.977)
100 E_ =
: k = 8*pi (1.207)
_1 I
~— 10 E -
£ -
CZD i
J— 10_2 E -
S SEp————
S i = 0*pi (0.902)
8 107 3 E
e E
N L
g i
- 10_4 3 3
10°F _ .
g k = 2*pi (0.908) k = 4*pi (0.924)
10°F .
10‘7 | | | | | | | | | |
0 50 100 150 200 250 300 350 400 450
Iterations
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Solution found — (Thanks: R. Kechroud)

50
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Recent comparisons

w Thanks: Daniel Osei-Kuffuor

» Setting: Problem 2. Mesh size fixed to h = 1/80. Problem size =

n = 29, 160, Number of nonzeroes nnz = 260, 280
w For each preconditioner [fil = 5 X nnz/n

w Wavenumber varied [until convergence fails]




ILUT with droptol = 0.001

k 2 No. iters | Setup Time (s) | Iter. Time (s) | Fill Factor

27 | 80 43 0.38 1.88 4.67

47 | 40 87 0.91 4.45 6.97
ILUTP with droptol = 0.001

k 2 No. iters | Setup Time (s) | Iter. Time (s) | Fill Factor

27 | 80 41 0.57 1.92 5.73

4740, 193 1.02 10.4 7.31

52
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ARMS-ddPQ

53

k 2 No. iters | Setup Time (s) | Iter. Time (s) | Fill Factor
2w |80 100 0.52 5.07 1.98
4w 40| 148 0.57 7.58 2.08
8w 20| 998 0.75 52.3 4.6
167t 10| 190 4.70 1.41 8.7
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PARALLEL KRYLOV METHODS




Distributed Sparse Systems: Simple illustration

N,
\\\\
\
N
.

0

N
B N
N,
i
N

| e, ko

i k" o o

AV
¥

»w Naive partitioning of equations - does not work well in practice

(performance)

55
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» Best idea is to use the adjacency graph of A:

Vertices = {1,2,.--,n};

Edges: i — jiffa;; # 0

Graph partitioning problem: |

i

w

—-

e Want a partition of the vertices of the graph so that

(1) partitions have ~ the same sizes

(2) interfaces are small in size

56
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General Partitioning of a sparse linear system

S, = {1,2,6,7,11,12}: This
1 1 1 means equations and unknowns
(© © @ @9 |
10 R I 1,2,3,6,7,11, 12 are assigned to
a ——0 @ s Domain 1.
e R - S, ={3,4,5,8,9,10,13}

® D ® ® 0 S, ={16,17,18, 21, 22, 23}

S, = {14,15,19, 20, 24, 25}

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

w Partitioners : Metis, Chaco, Scotch, ..

w More recent: Zoltan, H-Metis, PaToH
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w Standard dual objective: “minimize” communication + “balance”

partition sizes
» Recent trend: use of hypergraphs [PaToh, Hmetis,...]
w Hypergraphs are very general.. Ideas borrowed from VLSI work

» Main motivation: to better represent communication volumes when

partitioning a graph. Standard models face many limitations

w Hypergraphs can better express complex graph partitioning prob-
lems and provide better solutions. Example: completely honsym-

metric patterns.




A distributed sparse system

\\ / 5:::;‘;1al interface
\ Al
v\ Xi Xj
L
o
/1
Graph representation Matrix representation

» In each domain [Local interface variables ordered last]:
B, F;)\ (u; 0 i
o))t Lo ) -
E; C;)\y; Sien; Eijy;j gi

A; Yext
w u; : Internal variables; y; : Interface variables
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Global viewpoint I Order all interior variables first

B1 Fl
B, F,
BP FP
E, C, Eip --- Elp
E5 Eyy Cy --- By,
E, E, Ep --- C,
Interior Interface
«— — — —
variables variables

61

Y1
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f2
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g1
g2
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Parallel implementation

w Preliminary work — with Zhongze Li

w Ideally would use hypergraph partitioning [in the plans]
w We used only a local version of ddPQ

w Schur complement version not yet available

w In words: Construct the local matrix, extend it with overlapping

data and use ddPQ ordering on it.

w Can be used with Standard Schwarz procedures — or with restric-

tive version [RAS]




Restricted Additive Schwarz Preconditioner(RAS)

. Domain

2 Domain 1 local matrix

Domain 1

................................

: Domain
9 Domain 1 local matrix

Extended .
Domain 1

......................................




» RAS + ddPQ uses arms-ddPQ on extended matrix - for each do-

main.

w ddPQ Improves robustness enormously in spite of simple (local)

implementation.

w Test with problem from MHD problem.




Example: a system from MHD simulation example

w Source of problem: Coupling of Maxwell equations with Navier-
Stokes.

w Matrices arises from solving Maxwell’s equation:

OB V X (u x B) L VXx(VxB)+V 0
_ — u —_— _—
ot Re,, .

V-B

|
o

w See [Ben-Salah, Soulaimani, Habashi, Fortin, IJNMF 1999]
w Cylindrical domain, tetrahedra used.

w Not an easy problem for iterative methods.




RAS+ILUT RAS+ddPQ
np its tset tit np|its | t,. tit
1 107 236.58 | 320.74 || 1 60 |204.06 187.05
2 118 136.28 | 232.78 || 2/104|/108.45 162.34
4 354 72.66 | 326.03 | 4109 60.24 | 86.25
8| 2640 40.06 1303.16 8|119 41.56 | 52.11
16| 3994 21.87 [1029.88 | 16 418 22.84 | 97.88
32> 10,000 - = 32537| 12.34 | 65.77

w Simple Schwarz (RAS) : very poor performance

» severe deterioration of performance with higher np

66
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Conclusion

»w ARMS+DDpq works well as a “general-purpose” solver.
w Far from being a 100% robust iterative solver ...

» Recent work on generalizing nonsymmetric permutations to sym-

metric matrices [Duff-Pralet, 2006].

w As a general rule: ILU-based preconditioners are not meant to
replace taylored preconditioners — but they can be used as general

purpose tools as parts of other techniqges.




Direct sparse Iterative Methods

68

Solvers Preconditioned Krylov
/ General
Purpose
-A u=f +bc
/ \ ¢ Specialized
Fast Poisson Multigrid
Solvers Methods

What is missing from this picture?
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»w 1. Intermediate methods which lie in between general purpose
and specialized — exploit some information from origin of the prob-

lem.

w 2. Considerations related to parallelism. Development of ‘robust’

solvers remains limited to serial algorithms in general.

» Problem: parallel implementations of iterative methods are less

effective than their serial counterparts.




Software: |

w ARMS-C [C-code] - available from ITSOL package..

http://www.cs.umn.edu/~saad/software

w More comprehensive package: ILUPACK — developed mainly by

Matthias Bollhoefer and his team

http://www.tu-berlin.de/ilupack/.




