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Introduction: Linear System Solvers

General
Purpose

 Specialized

Direct sparse 
Solvers

Iterative 

A x = b
∆ u = f− + bc

Methods 
Preconditioned Krylov

Fast Poisson
Solvers 

Multigrid
Methods 
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A few observations

ä Problems are getting harder for Sparse Direct methods
(more 3-D models, much bigger problems,..)

ä Problems are also getting difficult for iterative methods
Cause: more complex models - away from Poisson

ä Researchers on both camps are learning each other’s tricks
to develop preconditioners.

ä Much of recent work on solvers has focussed on:

(1) Parallel implementation – scalable performance

(2) Improving Robustness, developing more general precondi-
tioners
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Algebraic Recursive Multilevel Solver (ARMS)

ä Reorder matrix using
‘group-independent sets’. Re-
sult

PAP T =

(
B F
E C

)
=

ä Block factorize:
E

C

F

B

(
B F
E C

)
=

(
L 0

EU−1 I

) (
U L−1F
0 S

)
ä S = C − EB−1F = Schur complement + dropping to
reduce fill

ä Next step: treat the Schur complement recursively
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Algebraic Recursive Multilevel Solver (ARMS)

Level l Factorization:(
Bl Fl
El Cl

)
≈
(

Ll 0

ElU
−1
l I

)(
I 0
0 Al+1

)(
Ul L

−1
l Fl

0 I

)
ä L-solve∼ restriction; U-solve∼ prolongation.

ä Perform above block factorization recursively on Al+1

ä Blocks in Bl treated as sparse. Can be large or small.

ä Algorithm is fully recursive

ä Stability criterion in block independent sets algorithm
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Group Independent Set reordering

Separator
First Block 

Simple strategy: Level taversal until there are enough points
to form a block. Reverse ordering. Start new block from
non-visited node. Continue until all points are visited. Add
criterion for rejecting “not sufficiently diagonally dominant
rows.”
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Original matrix



Block size of 6
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Block size of 20
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Related ideas

ä See Y. Notay, Algebraic Multigrid and algebraic multilevel
techniques, a theoretical comparison, NLAA, 2005.

ä Some of these ideas are related to work by Axelsson and
co-workers [e.g., AMLI] – see Axelsson’s book

ä Work by Bank & Wagner on MLILU quite similar to ARMS
– but uses AMG framework: [R. E. Bank and C. Wagner, Multi-
level ILU decomposition, Numer. Mat. (1999)]

ä Main difference with AMG framework: block ILU-type factor-
ization to obtain Coarse-level operator. + use of relaxation.

ä In AMG S = P TAP with P of size (nF + nC)× nC
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NONSYMMETRIC REORDERINGS



Enhancing robustness: One-sided permutations

ä Very useful techniques for matrices with extremely poor
structure. Not as helpful in other cases.

Previous work:

• Benzi, Haws, Tuma ’99 [compare various permutation algo-
rithms in context of ILU]

• Duff ’81 [Propose max. transversal algorithms. Basis of
many other methods. Also Hopcroft & Karp ’73, Duff ’88]

• Olchowsky and Neumaier ’96 maximize the product of diag-
onal entries→ LP problem

• Duff, Koster, ’99 [propose various permutation algorithms.
Also discuss preconditioners] Provide MC64

Purdue 04/05/2011 12



Two-sided permutations with diagonal dominance

Idea: ARMS + exploit nonsymmetric permutations

ä No particular structure or assumptions for B block

ä Permute rows * and * columns of A. Use two permutations
P (rows) and Q (columns) to transform A into

PAQT =

(
B F
E C

)

P,Q is a pair of permutations (rows, columns) selected so
that the B block has the ‘most diagonally dominant’ rows
(after nonsym perm) and few nonzero elements (to reduce
fill-in).
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Multilevel framework

ä At the l-th level reorder matrix as shown above and then
carry out the block factorization ‘approximately’

PlAlQ
T
l =

(
Bl Fl
El Cl

)
≈
(

Ll 0

ElU
−1
l I

)
×
(
Ul L

−1
l Fl

0 Al+1

)
,

where

Bl ≈ LlUl
Al+1 ≈ Cl − (ElU

−1
l )(L−1

l Fl) .

ä As before the matrices ElU
−1
l , L−1

l Fl or their approxima-
tions

Gl ≈ ElU−1
l , Wl ≈ L−1

l Fl

need not be saved.
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Interpretation in terms of complete pivoting

Rationale: Critical to have an accurate and well-conditioned
B block [Bollhöfer, Bollhöfer-YS’04]

ä Case when B is of dimension 1 → a form of complete
pivoting ILU. Procedure∼ block complete pivoting ILU

Matching sets: defineB block. M is a set ofnM pairs (pi, qi)

where nM ≤ n with 1 ≤ pi, qi ≤ n for i = 1, . . . , nM and

pi 6= pj, for i 6= j qi 6= qj, for i 6= j

ä When nM = n → (full) permutation pair (P,Q). A partial
matching set can be easily completed into a full pair (P,Q) by
a greedy approach.
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Matching - preselection

Algorithm to find permutation consists of 3 phases.
(1) Preselection: to filter out poor rows (dd. criterion) and
sort the selected rows.
(2) Matching: scan candidate entries in order given by

preselection and accept them into the M set, or reject them.
(3) Complete the matching set: into a complete pair of

permutations (greedy algorithm)

ä Let j(i) = argmaxj|aij|.

ä Use the ratio γi =
|ai,j(i)|
‖ai,:‖1

as a measure of diag. domin. of
row i
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Matching: Greedy algorithm

ä Simple algorithm: scan pairs (ik, jk) in the given order.

ä If ik and jk not already assigned, assign them to M.
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Matrix after preselection Matrix after Matching perm.
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MATLAB DEMO



COARSENING



Divide and conquer and coarsening (work in progress)

ä Want to mix ideas from AMG with purely algebraic strategies
based on graph coarsening

First step: Coarsen. We use
matching: coalesce two nodes
into one ‘coarse’ node

i j

aij

par(i,j)

or

i

par(i)

Second step: Get graph (+ weights) for the coarse nodes -
One way to define Adj[par(i, j)] :

{par(i, k) k ∈ Adj(i)}
⋃
{par(j, k) k ∈ Adj(j)}

Third step: Repeat
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Illustration of the coarsening step

i j

par(j)par(i)

k

l

par(l)

par(k)
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Example 1: A simple 16× 16 mesh (n = 256).
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nz = 1215

Laplacean matrix of size n=256 −− original pattern
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Matrix after 3 Levels of coarsening
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First idea: use ILU on the reordered matrix

ä For example: use ILUT

Illustration: Matrix Raj1 from the Florida collection

ä Size n = 263, 743.
Nnz = 1, 302, 464 nonzero
entries
ä Matrix is nearly singular –
poorly conditioned. Iterate to
reduce residual by 1010.
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ILUT+order(5 levels)
ILUT

ä Reordering appears to be quite good for ILU.
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Saving memory with Pruned ILU

ä Let A =

(
B F
E C

)
=

(
I 0

EB−1 I

)(
B F
0 S

)
;

ä S = C − EB−1F = Schur complement

Solve:(
I 0

EB−1 I

)(
B F
0 S

)(
x1

x2

)
= ..

1) w1 = B−1b1

2) w2 = b2 − E ∗ w1

3) x2 = S−1w2

4) w1 = b1 − F ∗ x2

5) x1 = B−1w1

ä Known result: LU factorization of S == trace of LU factoriza-
tion of A.

ä Idea: exploit recursivity for B-solves - keep only the block-
diagonals from ILU..
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From L U =

 B1 B−1
1 F1

E1B
−1
1 S1

B−1
2 F2

E2B
−1
2 S2



Keep only

 B1

S1

S2


ä Big savings in memory

ä Additional computational cost

ä Expensive for more than a few levels (2 or 3)..
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Example : A simple 16× 16 mesh (n = 256).
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ILUT factorization with tol=0.01
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Pruned ILUT factorization
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Illustration: Back to Raj1 matrix from the Florida collection
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GMRES(50) iterations
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Performance of ILUT + Mslu 
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ILUT+order
ILUT
Mslu(5lev)
Mslu(4lev)
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HELMHOLTZ



Application to the Helmholtz equation

ä Started from collaboration with Riyad Kechroud, Azzeddine
Soulaimani (ETS, Montreal), and Shiv Gowda: [Math. Comput.
Simul., vol. 65., pp 303–321 (2004)]

ä Problem is set in the open domain Ωe of Rd
∆u+ k2u = f in Ω

u = −uinc on Γ

or ∂u
∂n

= −∂uinc
∂n

on Γ

limr→∞ r
(d−1)/2

(
∂u
∂~n
− iku

)
= 0 Sommerfeld cond.

where: u the wave diffracted by Γ, f = source function = zero
outside domain
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ä Issue: non-reflective boundary conditions when making the
domain finite.

ä Artificial boundary Γart added – Need non-absorbing BCs.

ä For high frequencies, linear systems become very ‘indefi-
nite’ – [eigenvalues on both sides of the imaginary axis]

ä Not very good for iterative methods
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Application to the Helmholtz equation

Test Problem Soft obstacle = disk of radius r0 = 0.5m.
Incident plane wave with a wavelength λ; propagates along the
x-axis. 2nd order Bayliss-Turkel boundary conditions used on
Γart, located at a distance 2r0 from obstacle. Discretization:
isoparametric elements with 4 nodes. Analytic solution known.

Γ

Γ
art

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Helmholtz computational domain
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Use of complex shifts

ä Several papers promoted the use of complex shifts [or very
similar approaches] for Helmholtz

[1] X. Antoine – Private comm.

[2] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, SIAM J. Sci.
Comput.,27, pp. 1471-1492, 2006

[3] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, SIAM J. Sci.
Comput., Vol. 29, pp. 1942-1958, 2007

[4] M. Magolu Monga Made, R. Beauwens, and G. Warzée,
Comm. in Numer. Meth. in Engin., 16(11) (2000), pp. 801-817.
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ä Illustration with an experiment: finite difference discretiza-
tion of−∆ on a 25× 20 grid.

ä Add a negative shift of−1 to resulting matrix.

ä Do an ILU factorization of A and plot eigs of L−1AU−1.

ä Used LUINC from matlab - no-pivoting and threshold = 0.1.
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ä Terrible spectrum:
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ä Now plot eigs of L−1AU−1 where L,U are inc. LU factors
of B = A+ 0.25 ∗ i

ä Much better!
Observed by many
[PDE viewpoint]

Idea:

Adapt technique to
ILU:
Add complex shifts
before ILU
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Explanation

Question:
What if we do an exact
factorization [droptol = 0]?
ä Λ(L−1AU−1) =
Λ[(A+ αiI)−1A]

ä Λ =
{

λj
λj+iα

}
ä Located on a circle –
with a cluster at one.
ä Figure shows situation
on the same example
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0.5

ä Next figures approximate spectra for previous (real) example
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Recent comparisons

ä Test problem seen earlier. Mesh size 1/h = 160→
n = 28, 980, nnz = 260, 280
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ILUT & shifted variants
** Joint work with Daniel Osei-Kuffuor
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ä Wavenumber varied - tests with ILUT

Preconditioner k λ
h

Iters. Fill Factor ||(LU)−1e||2

ILUT (no shift)

4π 60 134 2.32 3.65e+ 03
8π 30 263 2.25 1.23e+04
16π 15 − - -
24π 10 − - -

ILUT (dd-based)

4π 60 267 2.24 2.29e+ 03
8π 30 255 2.23 4.73e+03
16π 15 101 3.14 6.60e+02
24π 10 100 3.92 2.89e+02

ILUT (τ -based)

4π 60 132 2.31 2.98e+ 03
8π 30 195 2.19 4.12e+03
16π 15 75 3.11 7.46e+02
24π 10 86 3.85 2.73e+02
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ä Wavenumber varied - tests with ARMS

Preconditioner k λ
h

Iters. Fill Factor ||(LU)−1e||2

ARMS (no shift)

4π 60 120 3.50 7.48e+ 03
8π 30 169 4.03 1.66e+04
16π 15 282 4.50 2.44e+03
24π 10 − - -

ARMS (dd-based)

4π 60 411 3.83 5.12e+ 02
8π 30 311 4.37 5.67e+02
16π 15 187 4.71 3.92e+02
24π 10 185 3.00 2.54e+02

ARMS (τ -based)

4π 60 106 3.45 7.56e+ 03
8π 30 79 3.84 6.41e+03
16π 15 39 3.95 1.26e+03
24π 10 94 3.02 4.71e+02
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DIAGONAL ESTIMATORS



Application: Computing Diag[Inv[A]] ∗∗

ä Many problems lead to the computation of Diag[Inv[A]] or
(easier) Trace[Inv[A]]

Examples:

ä In Density Functional Theory (DFT): charge density is noth-
ing but Diag[f(H)], where f = step function. Approximating
f by a rational function leads to evaluating Diag[Inv[A]]

ä In Stastistics: Trace[Inv[A]] is stochastically estimated
to get parameters in Cross-Validation techniques. [Huntchinson
’90]

** Joint work with J. Tang
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ä In Dynamic Mean Field Theory (DMFT), we look for the
diagonal of “Green’s function” to solve Dyson’s equation.. [see
J. Freericks 2005]

ä In uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]

ä Stochastic estimations of Trace(f(A)) extensively used by
quantum chemists to estimate Density of States1

1.Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15392 (1997)
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Stochastic Estimator

Notation:

•A = original matrix, B = A−1.

• δ(B) = diag(B) [matlab notation]

•D(B) = diagonal matrix with diagonal δ(B)

•� and �: Elementwise multiplication and
division of vectors

• {vj}: Sequence of s random vectors

Result: δ(B) ≈

 s∑
j=1

vj �Bvj

�
 s∑
j=1

vj � vj


Refs: C. Bekas , E. Kokiopoulou & YS (’05), Recent: C. Bekas,
A. Curioni, I. Fedulova ’09.

Purdue 04/05/2011 44



ä Let Vs = [v1, v2, . . . , vs]. Then, alternative expression:

D(B) ≈ D(BVsV
>
s )D−1(VsV

>
s )

Question: When is this result exact?

Main Proposition

• Let Vs ∈ Rn×n with rows {vj,:}; and B ∈ Cn×n with
elements {bjk}

• Assume that: 〈vj,:, vk,:〉 = 0, ∀j 6= k, s.t. bjk 6= 0

Then:
D(B)=D(BVsV

>
s )D−1(VsV

>
s )

ä Approximation to bij exact when rows i and j of Vs are⊥
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Probing

Goal:
Find Vs such that (1) s is small and (2) Vs
satisfies Proposition (rows i & j orthgonoal for
any nonzero bij)

Difficulty: Can work only for sparse matrices but B =
A−1 is usually dense

ä B can sometimes be approximated by a sparse matrix.

ä Consider for some ε : (Bε)ij =

{
bij, |bij| > ε
0, |bij| ≤ ε

ä Bε will be sparse under certain conditions, e.g., when A is
diagonally dominant

ä In what follows we assume Bε is sparse and set B := Bε.

ä Pattern will be required by standard probing methods.
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Generic Probing Algorithm

ALGORITHM : 1 Probing
Input: A, s
Output: Matrix D (B)
Determine Vs := [v1, v2, . . . , vs]
for j ← 1 to s

Solve Axj = vj
end
Construct Xs := [x1, x2, . . . , xs]
Compute D (B) := D

(
XsV

>
s

)
D−1(VsV

>
s )

ä Note: rows of Vs are typically scaled to have unit 2-norm
=1., so D−1(VsV

>
s ) = I.
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Standard probing (e.g. to compute a Jacobian)

ä Several names for same method: “probing”; “CPR”, “Sparse
Jacobian estimators”,..

Basis of the method: can compute Jacobian if a coloring of
the columns is known so that no two columns in the same
color overlap.

All entries of same color
can be computed with
one mat-vec.
Example: For all blue

entries multiply B by the
blue vector on right.

1 3 16
1

1

(1)

(3)

 (12)

(15)

1

1

5 20

1

1

1

(5)

(13)

  (20)

12 13

Purdue 04/05/2011 48



What about Diag(inv(A))?

ä Define vi - probing vector associated with color i:

[vi]k =

{
1 if color(k) == i
0 otherwise

ä Will satisfy requirement of Proposition.... but

ä ... this coloring is not what is needed! [It is an overkill]

Alternative:

ä Color the graph of B in the standard graph coloring algo-
rithm [Adjacency graph, not graph of column-overlaps]

Result: Graph coloring yields a valid set of probing
vectors for D(B).
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Proof:

ä Column vc: one for each
node i whose color is c, zero
elsewhere.

ä Row i of Vs: has a ’1’ in
column c, where c = color(i),
zero elsewhere.

1

1

0 0 0 0 0

0 0 0 0 0 0

0 i

j

i

j

color red color black

ä If bij 6= 0 then in matrix Vs:

• i-th row has a ’1’ in column color(i), ’0’ elsewhere.

• j-th row has a ’1’ in column color(j), ’0’ elsewhere.

ä The 2 rows are orthogonal.
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Example:

ä Two colors required for this graph→ two probing vectors

ä Standard method: 6 colors [graph of BTB]
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Next Issue: Guessing the pattern of B

ä Recall that we are dealing with B := Bε [‘pruned’ B]

ä Assume A diagonally dominant

ä Write A = D − E , with D = D(A). Then :

A = D(I − F ) with F ≡ D−1E →

A−1 ≈ (I + F + F 2 + · · ·+ F k)D−1︸ ︷︷ ︸
B(k)

ä When A is D.D. ‖F k‖ decreases rapidly.

ä Can approximate pattern of B by that of B(k) for some k.

ä Interpretation in terms of paths of length k in graph of A.
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Q: How to select k?

A: Inspect A−1ej for some j

ä Values of solution outside pattern of (Akej) should be small.

ä If during calculations we get larger than expected errors –
then redo with larger k, more colors, etc..

ä Can we salvage what was done? Question still open.
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Preliminary experiments

Problem Setup

• DMFT: Calculate the imaginary time Green’s function

• DMFT Parameters: Set of physical parameters is provided

• DMFT loop: At most 10 outer iterations, each consisting of
62 inner iterations

• Each inner iteration: Find D(B)
• Each inner iteration: Find D(B)
• Matrix: Based on a five-point stencil
with ajj = µ+ iω − V − s(j)

1 1

1

1

ajj

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Probing Setup • Probing tolerance: ε = 10−10

• GMRES tolerance: δ = 10−12
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Results

CPU times (sec)
for one inner itera-
tion of DMFT

n→ 212 412 612 812

LAPACK 0.5 26 282 > 1000
Lanczos 0.2 9.9 115 838
Probing 0.02 0.19 0.79 2.0

n = 21× 21
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Challenge: The indefinite case

ä The DMFT code deals with a separate case which uses a
“real axis” sampling..

ä Matrix A is no longer diagonally dominant – Far from it.

ä This is a much more challenging case.

ä Plan for now: solveAxj = ej FOR ALL j’s - with the ARMS
solver using ddPQ ordering.
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Domain Decomposition approach

Domain decomposition with
p = 3 subdomains

Ω Ω Ω1 32

Zoom into Subdomain 2

Ω Ω1 3

Γ Γ12
23

2Ω

Under usual ordering [interior points then interface points]:

A =


B1 F1

B2 F2
. . . ...

Bp Fp
F T

1 F T
2 · · · F T

p C

 ≡
(
B F
F T C

)
,



Example of matrix A
based on a DDM or-
dering with p = 4 sub-
domains. (n = 252)
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nz = 3025

Inverse of A [Assuming both B and S nonsingular]

A−1 =

(
B−1 +B−1FS−1F TB−1 −B−1FS−1

−S−1F TB−1 S−1

)
S = C − F TB−1F,



D(A−1) =

(
D(B−1) +D(B−1FS−1F TB−1)

D(S−1)

)

ä Note: each diagonal block decouples from others:

Inverse of A in i-
th block (domain)

(A−1)ii = D(B−1
i ) +D(HiS

−1HT
i )

Hi = B−1
i Fi

ä Note: only nonzero columns of Fi are those related to
interface vertices.

ä Approach similar to Divide and Conquer but not recursive..
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Experiments

ä Simple model problem for the DMFT application: Shifted
2-D Laplacien

−∆− τ (1 + i), τ ∈ R, i2 = −1,

ä Time vs.
√
n (mesh-size in each direction)

ä PROBE: number of probing vectors in parentheses
τ = 10.√
n INV PROBE D&C DD

25 .7 .1 (52) .1 .1
50 12 .6 (53) 1.5 .6
75 66 1.7 (53) 5.5 2.1

100 n/a 3.7 (54) 16 5.9
150 n/a 11 (54) 64 23
200 n/a 30 (54) 238 64

τ = 1√
n INV PROBE D&C DD

25 .7 .3 (165) .1 .1
50 11 1.7 (170) 1.3 .6
75 64 4.9 (171) 5.3 2.1

100 n/a 9.9 (169) 14 5.8
150 n/a 73 (171) 64 23
200 n/a n/a 173 62



τ = 0.1.√
n INV PROBE D&C DD

25 .6 n/a .1 .1
50 11 n/a 1.2 .6
75 62 n/a 5.0 2.0

100 n/a n/a 14 6.1
150 n/a n/a 66 24
200 n/a n/a 189 67
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SPARSE MATRIX COMPUTATIONS ON GPUS



Sparse matrix computations with GPUs ∗∗

ä GPUs Currently a very popular approach to: inexpensive
supercomputing

ä Can buy∼ one Teraflop peak power for around $1,350.

Tesla C1060

** Joint work with Ruipeng Li
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Tesla:

* 240 cores per GPU
* 4 GB memory
* Peak rate: 930 Gfl [single]
* Clock rate: 1.3 Ghz
* ‘Compute Capability’: 1.3 [allows
double precision]

ä Fermi promises to be more impressive
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The CUDA environment: The big picture

ä A host (CPU) and an attached device (GPU)

Typical program:

1. Generate data on CPU
2. Allocate memory on GPU

cudaMalloc(...)
3. Send data Host→ GPU

cudaMemcpy(...)
4. Execute GPU ‘kernel’:
kernel <<<(...)>>>(..)
5. Copy data GPU→CPU

cudaMemcpy(...)
C P U

G
 P

 U
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Sparse Matvecs on the Tesla

ä Preliminary results are mixed [high programming cost, very
good performance for some calculations]

ä Performance of matvec [GLOPS] on a Tesla C1060

ä Matrices:
Matrix -name N NNZ
FEM/Cantilever 62,451 4,007,383
Boeing/pwtk 217,918 11,634,424

Single Precision Double Precision
Matrix CSR JAD DIA CSR JAD DIA

FEM/Cantilever 9.4 10.8 25.7 7.5 5.0 13.4
Boeing/pwtk 8.9 16.6 29.5 7.2 10.4 14.5
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ILU: Sparse Forward/Backward Sweeps

• Exploit Level-Scheduling.. [Topological sort]

• Poor performance relative to CPU

• Extremely poor when #levs is large

• In the worst case, #levs=n,≈ 2 Mflops

Matrix N
CPU GPU-Lev

Mflops #lev Mflops
Boeing/bcsstk36 23,052 627 4,457 43
FEM/Cantilever 62,451 653 2,397 168
COP/CASEYK 696,665 394 273 142
COP/CASEKU 208,340 373 272 115

GPU Sparse Triangular Solve with Level Scheduling
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Alternative: Polynomial Preconditioners

• M−1 = s(A), where s(t) is a polynomial of low degree

• Solve: s(A) ·Ax = s(A) · b

• s(A) need not be formed explicitly

• s(A) ·Av: Preconditioning Operation: a sequence of matrix-
by-vector product to exploit high performance Spmv kernel

• Inner product on space Pk (ω ≥ 0 is a weight on (α, β))

〈p, q〉ω =
∫ β
α p(λ)q(λ)ω (λ) dλ

• Seek polynomial sk−1 of degree≤ k − 1 which minimizes

‖1− λs(λ)‖ω
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L-S Polynomial Preconditioning

Tol=1.0e-6; MaxIts=1,000; *:MD reordering applied

Matrix
ITSOL-ILU(3) GPU-ILU(3) L-S Polyn
iter. sec. iter. sec. iter. sec. Deg

bcsstk36 FAILED 351∗ 10.58∗ 31 1.34 100
ct20stif 27 9.4 21∗ 2.22∗ 16 0.70 50

ship_003 27 25.8 27 21.1 10 2.90 100
msc23052 181 18.5 181 6.0 37 1.28 80
bcsstk17 46 1.8 46 2.8 22 0.55 120

ILU(3) & L-S Polynomial Preconditioning
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Preconditioner Time

• High level fill-in ILU preconditioner can be very expensive to
build

• L-S Polynomial preconditioner set-up time≈ very low

• Example: ILU(3) and L-S Poly with 20-step Lanczos proce-
dure (for estimating interval bounds).

Matrix N
ILU(3) LS-Poly
sec. sec.

Boeing/ct20stif 23,052 15.63 0.26

Preconditioner Construction Time
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Conclusion

ä General rule: ILU-based preconditioners not meant to re-
place tailored preconditioners. Can be very useful as parts of
other techniques.

ä Recent work on generalizing nonsymmetric permutations to
symmetric matrices [Duff-Pralet, 2006].

ä Complex shifting strategy quite useful even for real matrices

ä Diag(inv(A)) problem - fairly easy for D.D case. Very chal-
lenging in indefinite case: B is dense and ‘equimodular’

ä GPUs for irregular sparse matrix computations: Much re-
mains to be done both in hardware and in algorithms/software
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Software:

http://www.cs.umn.edu/∼saad/software

ä ARMS-C [C-code] - available from ITSOL package..

ä Parallel version of ARMS available. pARMS3 released

ä See also: ILUPACK – developed mainly by Matthias Boll-
hoefer and his team

http://www.tu-berlin.de/ilupack/.
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