Multilevel preconditioning techniques with applications
Yousef Saad
Department of Computer Science and Engineering

## University of Minnesota

## Purdue Univ., Math \& CS colloquium Purdue, Apr. 6, 2011

## Introduction: Linear System Solvers



## A few observations

> Problems are getting harder for Sparse Direct methods (more 3-D models, much bigger problems,..)
> Problems are also getting difficult for iterative methods Cause: more complex models - away from Poisson
> Researchers on both camps are learning each other's tricks to develop preconditioners.
> Much of recent work on solvers has focussed on:
(1) Parallel implementation - scalable performance
(2) Improving Robustness, developing more general preconditioners

## Algebraic Recursive Multilevel Solver (ARMS)

Reorder matrix using 'group-independent sets'. Result

$$
P A P^{T}=\left(\begin{array}{ll}
B & \boldsymbol{F} \\
\boldsymbol{E} & \boldsymbol{C}
\end{array}\right)=
$$

> Block factorize:


$$
\left(\begin{array}{ll}
B & \boldsymbol{F} \\
\boldsymbol{E} & \boldsymbol{C}
\end{array}\right)=\left(\begin{array}{cc}
\boldsymbol{L} & 0 \\
\boldsymbol{E} U^{-1} & \boldsymbol{I}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{U} & L^{-1} \boldsymbol{F} \\
0 & S
\end{array}\right)
$$

$>S=C-E B^{-1} \boldsymbol{F}=$ Schur complement + dropping to reduce fill
$>$ Next step: treat the Schur complement recursively

## Algebraic Recursive Multilevel Solver (ARMS)

Level l Factorization:

$$
\left(\begin{array}{ll}
\boldsymbol{B}_{l} & \boldsymbol{F}_{l} \\
\boldsymbol{E}_{l} & \boldsymbol{C}_{l}
\end{array}\right) \approx\left(\begin{array}{cc}
\boldsymbol{L}_{l} & 0 \\
\boldsymbol{E}_{l} \boldsymbol{U}_{l}^{-1} & \boldsymbol{I}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{I} & \mathbf{0} \\
\mathbf{0} & \boldsymbol{A}_{l+1}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{U}_{l} & \boldsymbol{L}_{l}^{-1} \boldsymbol{F}_{l} \\
\mathbf{0} & \boldsymbol{I}
\end{array}\right)
$$

$>$ L-solve $\sim$ restriction; U-solve $\sim$ prolongation.
$>$ Perform above block factorization recursively on $\boldsymbol{A}_{l+1}$
> Blocks in $\boldsymbol{B}_{l}$ treated as sparse. Can be large or small.
> Algorithm is fully recursive
> Stability criterion in block independent sets algorithm

## Group Independent Set reordering



Simple strategy: Level taversal until there are enough points to form a block. Reverse ordering. Start new block from non-visited node. Continue until all points are visited. Add criterion for rejecting "not sufficiently diagonally dominant rows."

Original matrix


## Block size of 6



## Block size of 20



## Related ideas

$>$ See Y. Notay, Algebraic Multigrid and algebraic multilevel techniques, a theoretical comparison, NLAA, 2005.
$>$ Some of these ideas are related to work by Axelsson and co-workers [e.g., AMLI] - see Axelsson's book
> Work by Bank \& Wagner on MLILU quite similar to ARMS - but uses AMG framework: [R. E. Bank and C. Wagner, Multilevel ILU decomposition, Numer. Mat. (1999)]
> Main difference with AMG framework: block ILU-type factorization to obtain Coarse-level operator. + use of relaxation.
$>\operatorname{In}$ AMG $S=\boldsymbol{P}^{T} \boldsymbol{A} \boldsymbol{P}$ with $\boldsymbol{P}$ of size $\left(n_{F}+n_{C}\right) \times n_{C}$

## NONSYMMETRIC REORDERINGS

## Enhancing robustness: One-sided permutations

> Very useful techniques for matrices with extremely poor structure. Not as helpful in other cases.

## Previous work:

- Benzi, Haws, Tuma '99 [compare various permutation algorithms in context of ILU]
- Duff '81 [Propose max. transversal algorithms. Basis of many other methods. Also Hopcroft \& Karp '73, Duff '88]
- Olchowsky and Neumaier '96 maximize the product of diagonal entries $\rightarrow$ LP problem
- Duff, Koster, '99 [propose various permutation algorithms. Also discuss preconditioners] Provide MC64


## Two-sided permutations with diagonal dominance

Idea: ARMS + exploit nonsymmetric permutations
> No particular structure or assumptions for $\boldsymbol{B}$ block
$>$ Permute rows * and * columns of $\boldsymbol{A}$. Use two permutations $\boldsymbol{P}$ (rows) and $\boldsymbol{Q}$ (columns) to transform $\boldsymbol{A}$ into

$$
P A Q^{T}=\left(\begin{array}{ll}
\boldsymbol{B} & \boldsymbol{F} \\
\boldsymbol{E} & \boldsymbol{C}
\end{array}\right)
$$

$\boldsymbol{P}, \boldsymbol{Q}$ is a pair of permutations (rows, columns) selected so that the $\boldsymbol{B}$ block has the 'most diagonally dominant' rows (after nonsym perm) and few nonzero elements (to reduce fill-in).

## Multilevel framework

$>$ At the $l$-th level reorder matrix as shown above and then carry out the block factorization 'approximately'

$$
\boldsymbol{P}_{l} A_{l} Q_{l}^{T}=\left(\begin{array}{cc}
\boldsymbol{B}_{l} & \boldsymbol{F}_{l} \\
\boldsymbol{E}_{l} & \boldsymbol{C}_{l}
\end{array}\right) \approx\left(\begin{array}{cc}
\boldsymbol{L}_{l} & 0 \\
\boldsymbol{E}_{l} \boldsymbol{U}_{l}^{-1} & \boldsymbol{I}
\end{array}\right) \times\left(\begin{array}{cc}
\boldsymbol{U}_{l} & \boldsymbol{L}_{l}^{-1} \boldsymbol{F}_{l} \\
\mathbf{0} & \boldsymbol{A}_{l+1}
\end{array}\right)
$$

where

$$
\begin{aligned}
B_{l} & \approx L_{l} U_{l} \\
A_{l+1} & \approx C_{l}-\left(E_{l} U_{l}^{-1}\right)\left(L_{l}^{-1} F_{l}\right)
\end{aligned}
$$

$>$ As before the matrices $\boldsymbol{E}_{l} \boldsymbol{U}_{l}^{-1}, \boldsymbol{L}_{l}^{-1} \boldsymbol{F}_{l}$ or their approximations

$$
G_{l} \approx E_{l} U_{l}^{-1}, \quad W_{l} \approx L_{l}^{-1} F_{l}
$$

need not be saved.

## Interpretation in terms of complete pivoting

Rationale: Critical to have an accurate and well-conditioned $\bar{B}$ block [Bollhöfer, Bollhöfer-YS'04]
$>$ Case when $\boldsymbol{B}$ is of dimension $1 \rightarrow$ a form of complete pivoting ILU. Procedure ~ block complete pivoting ILU

Matching sets: define $B$ block. $\mathcal{M}$ is a set of $\boldsymbol{n}_{M}$ pairs $\left(\boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{q}_{\boldsymbol{i}}\right)$ where $\boldsymbol{n}_{M} \leq \boldsymbol{n}$ with $1 \leq \boldsymbol{p}_{\boldsymbol{i}}, \boldsymbol{q}_{i} \leq \boldsymbol{n}$ for $\boldsymbol{i}=1, \ldots, \boldsymbol{n}_{M}$ and

$$
p_{i} \neq p_{j}, \text { for } i \neq j \quad q_{i} \neq q_{j}, \text { for } i \neq j
$$

$>$ When $n_{M}=n \rightarrow$ (full) permutation pair $(P, Q)$. A partial matching set can be easily completed into a full pair $(P, Q)$ by a greedy approach.

## Matching - preselection

Algorithm to find permutation consists of 3 phases.
(1) Preselection: to filter out poor rows (dd. criterion) and sort the selected rows.
(2) Matching: scan candidate entries in order given by preselection and accept them into the $\mathcal{M}$ set, or reject them. (3) Complete the matching set: into a complete pair of permutations (greedy algorithm)
$>$ Let $j(i)=\operatorname{argmax}_{j}\left|a_{i j}\right|$.
$>$ Use the ratio $\gamma_{i}=\frac{\left|a_{i, j(i)}\right|}{\left\|a_{i, i}\right\|_{1}}$ as a measure of diag. domin. of row $i$

## Matching: Greedy algorithm

$>$ Simple algorithm: scan pairs $\left(i_{k}, j_{k}\right)$ in the given order.
$>$ If $i_{k}$ and $j_{k}$ not already assigned, assign them to $\mathcal{M}$.


Matrix after preselection


Matrix after Matching perm.

# MATLAB DEMO 

## COARSENING

## Divide and conquer and coarsening (work in progress)

> Want to mix ideas from AMG with purely algebraic strategies based on graph coarsening

First step: Coarsen. We use matching: coalesce two nodes into one 'coarse' node


Second step: Get graph (+ weights) for the coarse nodes One way to define $\operatorname{Adj}[\operatorname{par}(\boldsymbol{i}, j)]:$

$$
\{\operatorname{par}(i, k) k \in \operatorname{Adj}(i)\} \bigcup\{\operatorname{par}(j, k) k \in \operatorname{Adj}(j)\}
$$

Third step: Repeat

## Illustration of the coarsening step



Example 1: A simple $16 \times 16$ mesh $(n=256)$.

Laplacean matrix of size $\mathrm{n}=256$-- original pattern


Matrix after 3 Levels of coarsening


## First idea: use ILU on the reordered matrix

> For example: use ILUT

## Illustration: Matrix Raj1 from the Florida collection

$>$ Size $n=263,743$. $N n z=1,302,464$ nonzero entries
$>$ Matrix is nearly singular poorly conditioned. Iterate to reduce residual by $10^{10}$.

> Reordering appears to be quite good for ILU.

## Saving memory with Pruned ILU

$>$ Let $A=\left(\begin{array}{ll}\boldsymbol{B} & \boldsymbol{F} \\ \boldsymbol{E} & \boldsymbol{C}\end{array}\right)=\left(\begin{array}{cc}\boldsymbol{I} & \boldsymbol{0} \\ \boldsymbol{E} \boldsymbol{B}^{-1} & \boldsymbol{I}\end{array}\right)\left(\begin{array}{cc}\boldsymbol{B} & \boldsymbol{F} \\ \mathbf{0} & \boldsymbol{S}\end{array}\right)$;
$>S=C-E B^{-1} \boldsymbol{F}=$ Schur complement

## Solve:

$$
\begin{aligned}
& \text { 1) } w_{1}=B^{-1} b_{1} \\
& \text { 2) } w_{2}=b_{2}-E * w_{1} \\
& \text { 3) } x_{2}=S^{-1} w_{2} \\
& \text { 4) } w_{1}=b_{1}-F * x_{2} \\
& \text { 5) } x_{1}=B^{-1} w_{1}
\end{aligned}
$$

$>$ Known result: LU factorization of $S==$ trace of LU factorization of $\boldsymbol{A}$.
$>$ Idea: exploit recursivity for $\boldsymbol{B}$-solves - keep only the blockdiagonals from ILU..

$$
\begin{aligned}
& \text { From L U }=\left[\begin{array}{c|c|c}
\boldsymbol{B}_{1} & \boldsymbol{B}_{1}^{-1} \boldsymbol{F}_{1} & \boldsymbol{B}_{2}^{-1} \boldsymbol{F}_{2} \\
\hline \boldsymbol{E}_{1} \boldsymbol{B}_{1}^{-1} & \boldsymbol{S}_{1} & \boldsymbol{S}_{2}
\end{array}\right] \\
& \text { Keep only } \boldsymbol{E}_{2} \boldsymbol{B}_{2}^{-1} \\
& \left.\hline \begin{array}{c|c|c}
\boldsymbol{B}_{1} & & \\
\hline & \boldsymbol{S}_{1} & \\
\hline & & \boldsymbol{S}_{2}
\end{array}\right]
\end{aligned}
$$

> Big savings in memory
> Additional computational cost
$>$ Expensive for more than a few levels (2 or 3)..

Example : A simple $16 \times 16$ mesh $(n=256)$.



Illustration: Back to Raj1 matrix from the Florida collection
Performance of ILUT + Mslu


## HELMHOLTZ

## Application to the Helmholtz equation

> Started from collaboration with Riyad Kechroud, Azzeddine Soulaimani (ETS, Montreal), and Shiv Gowda: [Math. Comput. Simul., vol. 65., pp 303-321 (2004)]
$>$ Problem is set in the open domain $\Omega_{e}$ of $\mathrm{R}^{d}$

$$
\left\{\begin{aligned}
\Delta u+k^{2} u & =f \text { in } \Omega \\
u & =-u_{i n c} \text { on } \Gamma \\
\text { or } \frac{\partial u}{\partial n} & =-\frac{\partial u_{\text {inc }}}{\partial n} \text { on } \Gamma
\end{aligned}\right.
$$

$\lim _{r \rightarrow \infty} \boldsymbol{r}^{(d-1) / 2}\left(\frac{\partial u}{\partial \vec{n}}-i k u\right)=0 \quad$ Sommerfeld cond. where: $\boldsymbol{u}$ the wave diffracted by $\Gamma, f=$ source function $=$ zero outside domain
> Issue: non-reflective boundary conditions when making the domain finite.
> Artificial boundary $\Gamma_{a r t}$ added - Need non-absorbing BCs.
$>$ For high frequencies, linear systems become very 'indefinite' - [eigenvalues on both sides of the imaginary axis]
$>$ Not very good for iterative methods

## Application to the Helmholtz equation

Test Problem Soft obstacle $=$ disk of radius $r_{0}=0.5 \mathrm{~m}$. Incident plane wave with a wavelength $\boldsymbol{\lambda}$; propagates along the $x$-axis. 2nd order Bayliss-Turkel boundary conditions used on $\Gamma_{a r t}$, located at a distance $2 r_{0}$ from obstacle. Discretization: isoparametric elements with 4 nodes. Analytic solution known.


## Use of complex shifts

> Several papers promoted the use of complex shifts [or very similar approaches] for Helmholtz
[1] X. Antoine - Private comm.
[2] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, SIAM J. Sci. Comput.,27, pp. 1471-1492, 2006
[3] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, SIAM J. Sci. Comput., Vol. 29, pp. 1942-1958, 2007
[4] M. Magolu Monga Made, R. Beauwens, and G. Warzée, Comm. in Numer. Meth. in Engin., 16(11) (2000), pp. 801-817.
$>$ Illustration with an experiment: finite difference discretization of $-\Delta$ on a $25 \times 20$ grid.
$>$ Add a negative shift of -1 to resulting matrix.
$>$ Do an ILU factorization of $\boldsymbol{A}$ and plot eigs of $\boldsymbol{L}^{-1} \boldsymbol{A} \boldsymbol{U}^{-1}$.
$>$ Used LUINC from matlab-no-pivoting and threshold $=0.1$.

Terrible spectrum:

$>$ Now plot eigs of $L^{-1} A U^{-1}$ where $L, U$ are inc. LU factors of $B=A+0.25 * i$
> Much better! Observed by many [PDE viewpoint]

## Idea:

Adapt technique to ILU:
Add complex shifts before ILU


## Explanation

## Question:

What if we do an exact factorization [droptol = 0]?
$>\quad \Lambda\left(L^{-1} A U^{-1}\right)=$ $\Lambda\left[(A+\alpha i I)^{-1} A\right]$
$>\Lambda=\left\{\frac{\lambda_{j}}{\lambda_{j}+i \alpha}\right\}$
> Located on a circle with a cluster at one.
$>$ Figure shows situation on the same example

$>$ Next figures approximate spectra for previous (real) example



Spectrum of $A M^{-1}, M=L U$ on shifted $A$ (dd-based scheme


Spectrum of $A M^{-1}, M=L U$ on shifted $A$ ( $\tau$-based scheme)


## Recent comparisons

$>$ Test problem seen earlier. Mesh size $1 / h=160 \rightarrow$ $n=28,980, n n z=260,280$

Convergence profiles of ARMS with different shifting schemes


ARMS \& shifted variants

Convergence profiles of ILUT with different shifting schemes


ILUT \& shifted variants ** Joint work with Daniel Osei-Kuffuor
> Wavenumber varied - tests with ILUT

| Preconditioner | $k$ | $\frac{\lambda}{h}$ | Iters. | Fill Factor | $\left\\|(L U)^{-1} e\right\\|_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ILUT (no shift) | $4 \pi$ | 60 | 134 | 2.32 | $3.65 e+03$ |
|  | $8 \pi$ | 30 | 263 | 2.25 | $1.23 e+04$ |
|  | $16 \pi$ | 15 | - | - | - |
|  | $24 \pi$ | 10 | - | - | - |
| ILUT (dd-based) | $4 \pi$ | 60 | 267 | 2.24 | $2.29 e+03$ |
|  | $8 \pi$ | 30 | 255 | 2.23 | $4.73 e+03$ |
|  | $16 \pi$ | 15 | 101 | 3.14 | $6.60 \mathrm{e}+02$ |
|  | $24 \pi$ | 10 | 100 | 3.92 | $2.89 \mathrm{e}+02$ |
| ILUT ( $\tau$-based) | $4 \pi$ | 60 | 132 | 2.31 | $2.98 e+03$ |
|  | $8 \pi$ | 30 | 195 | 2.19 | $4.12 \mathrm{e}+03$ |
|  | $16 \pi$ | 15 | 75 | 3.11 | $7.46 \mathrm{e}+02$ |
|  | $24 \pi$ | 10 | 86 | 3.85 | $2.73 \mathrm{e}+02$ |

> Wavenumber varied - tests with ARMS

| Preconditioner | $k$ | $\frac{\lambda}{h}$ | Iters. | Fill Factor | $\left\\|(\boldsymbol{L U})^{-1} e\right\\|_{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ARMS (no shift) | $4 \pi$ | 60 | 120 | 3.50 | $7.48 e+03$ |
|  | $8 \pi$ | 30 | 169 | 4.03 | $1.66 \mathrm{e}+04$ |
|  | $16 \pi$ | 15 | 282 | 4.50 | $2.44 \mathrm{e}+03$ |
|  | $24 \pi$ | 10 | - | - | - |
| ARMS (dd-based) | $4 \pi$ | 60 | 411 | 3.83 | $5.12 e+02$ |
|  | $8 \pi$ | 30 | 311 | 4.37 | $5.67 \mathrm{e}+02$ |
|  | $16 \pi$ | 15 | 187 | 4.71 | $3.92 \mathrm{e}+02$ |
|  | $24 \pi$ | 10 | 185 | 3.00 | $2.54 \mathrm{e}+02$ |
| ARMS ( $\tau$-based) | $4 \pi$ | 60 | 106 | 3.45 | $7.56 e+03$ |
|  | $8 \pi$ | 30 | 79 | 3.84 | $6.41 \mathrm{e}+03$ |
|  | $16 \pi$ | 15 | 39 | 3.95 | $1.26 \mathrm{e}+03$ |
|  | $24 \pi$ | 10 | 94 | 3.02 | $4.71 \mathrm{e}+02$ |

## DIAGONAL ESTIMATORS

## Application: Computing Diag[Inv[A]] **

> Many problems lead to the computation of Diag[lnv[A]] or (easier) Trace[Inv[A]]

## Examples:

> In Density Functional Theory (DFT): charge density is nothing but $\operatorname{Diag}[f(\boldsymbol{H})]$, where $f=$ step function. Approximating $f$ by a rational function leads to evaluating Diag[lnv[A]]
$>$ In Stastistics: $\operatorname{Trace}[\operatorname{Inv}[A]]$ is stochastically estimated to get parameters in Cross-Validation techniques. [Huntchinson '90]
** Joint work with J. Tang
$>$ In Dynamic Mean Field Theory (DMFT), we look for the diagonal of "Green's function" to solve Dyson's equation.. [see J. Freericks 2005]
> In uncertainty quantification, the diagonal of the inverse of a covariance matrix is needed [Bekas, Curioni, Fedulova '09]
> Stochastic estimations of Trace(f(A)) extensively used by quantum chemists to estimate Density of States ${ }^{1}$
1.Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15392 (1997)

## Stochastic Estimator

- $A=$ original matrix, $B=A^{-1}$.
- $\delta(B)=\operatorname{diag}(B)$ [matlab notation]


## Notation:

- $\mathcal{D}(B)=$ diagonal matrix with diagonal $\delta(B)$
- $\odot$ and $\oslash$ : Elementwise multiplication and division of vectors
- $\left\{v_{j}\right\}$ : Sequence of $s$ random vectors

Result:

$$
\boldsymbol{\delta}(\boldsymbol{B}) \approx\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{B} \boldsymbol{v}_{j}\right] \oslash\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{v}_{j}\right]
$$

Refs: C. Bekas, E. Kokiopoulou \& YS ('05), Recent: C. Bekas, A. Curioni, I. Fedulova '09.
$>$ Let $V_{s}=\left[v_{1}, v_{2}, \ldots, v_{s}\right]$. Then, alternative expression:

$$
\mathcal{D}(B) \approx \mathcal{D}\left(B V_{s} V_{s}^{\top}\right) \mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)
$$

## Question: When is this result exact?

## Main Proposition

- Let $V_{s} \in \mathbb{R}^{n \times n}$ with rows $\left\{v_{j,,}\right.$; and $B \in \mathbb{C}^{n \times n}$ with elements $\left\{b_{j k}\right\}$
- Assume that: $\left\langle v_{j,:}, v_{k,:}\right\rangle=0, \forall j \neq k$, s.t. $b_{j k} \neq 0$

Then:

$$
\mathcal{D}(B)=\mathcal{D}\left(B V_{s} V_{s}^{\top}\right) \mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)
$$

$>$ Approximation to $b_{i j}$ exact when rows $i$ and $j$ of $V_{s}$ are $\perp$

## Probing

## Goal:

Find $V_{s}$ such that (1) $s$ is small and (2) $V_{s}$ satisfies Proposition (rows $i \& j$ orthgonoal for any nonzero $b_{i j}$ )

## Difficulty:

Can work only for sparse matrices but $B=$ $\boldsymbol{A}^{-1}$ is usually dense
> $B$ can sometimes be approximated by a sparse matrix.

- Consider for some $\epsilon$ :

$$
\left(B_{\epsilon}\right)_{i j}= \begin{cases}b_{i j}, & \left|b_{i j}\right|>\epsilon \\ 0, & \left|b_{i j}\right| \leq \epsilon\end{cases}
$$

$>\boldsymbol{B}_{\epsilon}$ will be sparse under certain conditions, e.g., when $\boldsymbol{A}$ is diagonally dominant
$>$ In what follows we assume $B_{\epsilon}$ is sparse and set $B:=B_{\epsilon}$.
$>$ Pattern will be required by standard probing methods.

## Generic Probing Algorithm

## ALGORITHM : 1. Probing

Input: A, s
Output: Matrix $\mathcal{D}(B)$
Determine $V_{s}:=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right]$
for $j \leftarrow 1$ to $s$
Solve $A x_{j}=v_{j}$
end
Construct $\boldsymbol{X}_{s}:=\left[x_{1}, x_{2}, \ldots, x_{s}\right]$
Compute $\mathcal{D}(\boldsymbol{B}):=\mathcal{D}\left(\boldsymbol{X}_{s} \boldsymbol{V}_{s}^{\top}\right) \mathcal{D}^{-1}\left(\boldsymbol{V}_{s} \boldsymbol{V}_{s}^{\top}\right)$
$>$ Note: rows of $V_{s}$ are typically scaled to have unit 2-norm
$=1$., so $\mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)=I$.

## Standard probing (e.g. to compute a Jacobian)

> Several names for same method: "probing"; "CPR", "Sparse Jacobian estimators",..

Basis of the method: can compute Jacobian if a coloring of the columns is known so that no two columns in the same color overlap.

All entries of same color can be computed with one mat-vec.
Example: For all blue entries multiply $\boldsymbol{B}$ by the blue vector on right.


## What about Diag(inv(A))?

$>$ Define $\boldsymbol{v}_{\boldsymbol{i}}$ - probing vector associated with color $\boldsymbol{i}$ :

$$
\left[v_{i}\right]_{k}=\left\{\begin{array}{l}
1 \text { if } \operatorname{color}(k)==i \\
0 \text { otherwise }
\end{array}\right.
$$

> Will satisfy requirement of Proposition.... but
$>$... this coloring is not what is needed! [It is an overkill]

## Alternative:

$>$ Color the graph of $\boldsymbol{B}$ in the standard graph coloring algorithm [Adjacency graph, not graph of column-overlaps]

## Result:

 Graph coloring yields a valid set of probing vectors for $\mathcal{D}(B)$.
## Proof:

$>$ Column $v_{c}$ : one for each node $\boldsymbol{i}$ whose color is $\boldsymbol{c}$, zero elsewhere.
$>$ Row $\boldsymbol{i}$ of $\boldsymbol{V}_{s}$ : has a '1' in column $c$, where $c=\operatorname{color}(i)$, zero elsewhere.

$>$ If $b_{i j} \neq 0$ then in matrix $V_{s}$ :

- $i$-th row has a '1' in column color ( $i$ ), '0' elsewhere.
- $\boldsymbol{j}$-th row has a '1' in column color $(j)$, '0' elsewhere.
$>$ The 2 rows are orthogonal.


## Example:


$>$ Two colors required for this graph $\rightarrow$ two probing vectors
$>$ Standard method: 6 colors [graph of $B^{T} B$ ]

## Next Issue: Guessing the pattern of $B$

$>$ Recall that we are dealing with $B:=B_{\epsilon}[$ 'pruned' $B]$
> Assume $\boldsymbol{A}$ diagonally dominant
$>$ Write $A=D-E$, with $D=\mathcal{D}(A)$. Then :

$$
\begin{gathered}
A=D(I-F) \quad \text { with } \quad F \equiv D^{-1} E \quad \rightarrow \\
A^{-1} \approx \underbrace{\left(I+F+F^{2}+\cdots+F^{k}\right) D^{-1}}_{B^{(k)}}
\end{gathered}
$$

$>$ When $\boldsymbol{A}$ is D.D. $\left\|\boldsymbol{F}^{k}\right\|$ decreases rapidly.
$>$ Can approximate pattern of $B$ by that of $B^{(k)}$ for some $k$.
$>$ Interpretation in terms of paths of length $\boldsymbol{k}$ in graph of $\boldsymbol{A}$.

## Q: How to select $\boldsymbol{k}$ ?

A: Inspect $A^{-1} e_{j}$ for some $j$
$>$ Values of solution outside pattern of $\left(A^{k} e_{j}\right)$ should be small.
$>$ If during calculations we get larger than expected errors then redo with larger $\boldsymbol{k}$, more colors, etc..
> Can we salvage what was done? Question still open.

## Preliminary experiments

## Problem Setup

- DMFT: Calculate the imaginary time Green's function
- DMFT Parameters: Set of physical parameters is provided
- DMFT loop: At most 10 outer iterations, each consisting of 62 inner iterations
- Each inner iteration: Find $\mathcal{D}(B)$
- Each inner iteration: Find $\mathcal{D}(B)$
- Matrix: Based on a five-point stencil with $a_{j j}=\mu+i \omega-V-s(j)$


Probing Setup

- Probing tolerance: $\epsilon=10^{-10}$
- GMRES tolerance: $\delta=10^{-12}$


## Results

CPU times (sec) for one inner iteration of DMFT

| $\boldsymbol{n} \rightarrow$ | $\mathbf{2 1}^{2}$ | $\mathbf{4 1}^{\mathbf{2}}$ | $\mathbf{6 1}^{2}$ | $\mathbf{8 1}^{2}$ |
| :--- | :--- | :--- | :--- | :--- |
| LAPACK | 0.5 | 26 | 282 | $>\mathbf{1 0 0 0}$ |
| Lanczos | 0.2 | 9.9 | 115 | 838 |
| Probing | 0.02 | 0.19 | 0.79 | 2.0 |

$n=21 \times 21$

$n=81 \times 81$


Statistics for two mesh sizes

## Challenge: The indefinite case

> The DMFT code deals with a separate case which uses a "real axis" sampling..
$>$ Matrix $\boldsymbol{A}$ is no longer diagonally dominant - Far from it.
$>$ This is a much more challenging case.
$>$ Plan for now: solve $\boldsymbol{A} \boldsymbol{x}_{j}=\boldsymbol{e}_{j}$ FOR ALL $\boldsymbol{j}$ 's - with the ARMS solver using ddPQ ordering.

## Domain Decomposition approach

Domain decomposition with $p=3$ subdomains


Zoom into Subdomain 2


Under usual ordering [interior points then interface points]:

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
\boldsymbol{B}_{1} & & & & \boldsymbol{F}_{1} \\
& \boldsymbol{B}_{2} & & & \boldsymbol{F}_{2} \\
& & \cdots & & \vdots \\
& & & \boldsymbol{B}_{p} & \boldsymbol{F}_{p} \\
\boldsymbol{F}_{1}^{T} & \boldsymbol{F}_{2}^{T} & \cdots & \boldsymbol{F}_{p}^{T} & \boldsymbol{C}
\end{array}\right) \equiv\left(\begin{array}{cc}
\boldsymbol{B} & \boldsymbol{F} \\
\boldsymbol{F}^{T} & \boldsymbol{C}
\end{array}\right)
$$

Example of matrix $\boldsymbol{A}$ based on a DDM ordering with $p=4$ subdomains. ( $n=25^{2}$ )


Inverse of $\boldsymbol{A}$ [Assuming both $\boldsymbol{B}$ and $\boldsymbol{S}$ nonsingular]

$$
\begin{aligned}
\boldsymbol{A}^{-1} & =\left(\begin{array}{cc}
\boldsymbol{B}^{-1}+\boldsymbol{B}^{-1} \boldsymbol{F} \boldsymbol{S}^{-1} \boldsymbol{F}^{T} \boldsymbol{B}^{-1}-\boldsymbol{B}^{-1} \boldsymbol{F} \boldsymbol{S}^{-1} \\
-\boldsymbol{S}^{-1} \boldsymbol{F}^{T} \boldsymbol{B}^{-1} & \boldsymbol{S}^{-1}
\end{array}\right) \\
\boldsymbol{S} & =\boldsymbol{C}-\boldsymbol{F}^{T} \boldsymbol{B}^{-1} \boldsymbol{F},
\end{aligned}
$$

$$
\mathcal{D}\left(A^{-1}\right)=\left(\begin{array}{ll}
\mathcal{D}\left(B^{-1}\right)+\mathcal{D}\left(B^{-1} F S^{-1} F^{T} B^{-1}\right) & \\
& \mathcal{D}\left(S^{-1}\right)
\end{array}\right)
$$

> Note: each diagonal block decouples from others:

Inverse of $\boldsymbol{A}$ in $\boldsymbol{i}$ th block (domain)

$$
\begin{aligned}
\left(A^{-1}\right)_{i i} & =\mathcal{D}\left(B_{i}^{-1}\right)+\mathcal{D}\left(\boldsymbol{H}_{i} S^{-1} \boldsymbol{H}_{i}^{T}\right) \\
\boldsymbol{H}_{i} & =\boldsymbol{B}_{i}^{-1} \boldsymbol{F}_{i}
\end{aligned}
$$

Note: only nonzero columns of $\boldsymbol{F}_{i}$ are those related to interface vertices.
> Approach similar to Divide and Conquer but not recursive..

## Experiments

> Simple model problem for the DMFT application: Shifted 2-D Laplacien

$$
-\Delta-\tau(1+i), \quad \tau \in \mathbb{R}, \quad i^{2}=-1
$$

$>$ Time vs. $\sqrt{\boldsymbol{n}}$ (mesh-size in each direction)
$>$ PROBE: number of probing vectors in parentheses

| $\tau=$ |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| $\sqrt{\boldsymbol{n}}$ | 10. |  |  |  |
| 25 | INV | PROBE | D\&C | DD |
| 25 | .7 | $.1(52)$ | .1 | .1 |
| 50 | 12 | $.6(53)$ | 1.5 | .6 |
| 75 | 66 | $1.7(53)$ | 5.5 | 2.1 |
| 100 | n/a | $3.7(54)$ | 16 | 5.9 |
| 150 | n/a | $11(54)$ | 64 | 23 |
| 200 | n/a | $30(54)$ | 238 | 64 |


| $\boldsymbol{\tau}=1$ |  |  |  |  |
| ---: | ---: | ---: | ---: | ---: |
| $\sqrt{\boldsymbol{n}}$ | INV | PROBE | D\&C | DD |
| 25 | .7 | $.3(165)$ | .1 | .1 |
| 50 | 11 | $1.7(170)$ | 1.3 | .6 |
| 75 | 64 | $4.9(171)$ | 5.3 | 2.1 |
| 100 | n/a | $9.9(169)$ | 14 | 5.8 |
| 150 | n/a | $73(171)$ | 64 | 23 |
| 200 | n/a | n/a | 173 | 62 |

$\tau=$ 0.1.

| $\tau \sqrt{\boldsymbol{n}}$ | INV | PROBE | D\&C | DD |
| ---: | ---: | ---: | ---: | ---: |
| 25 | .6 | n/a | .1 | .1 |
| 50 | 11 | n/a | 1.2 | .6 |
| 75 | 62 | n/a | 5.0 | 2.0 |
| 100 | n/a | n/a | 14 | 6.1 |
| 150 | n/a | n/a | 66 | 24 |
| 200 | n/a | n/a | 189 | 67 |

## Sparse matrix computations with GPUs **

> GPUs Currently a very popular approach to: inexpensive supercomputing
> Can buy ~ one Teraflop peak power for around $\$ 1,350$.

## Tesla C1060


** Joint work with Ruipeng Li

## Tesla:



* 240 cores per GPU
* 4 GB memory
* Peak rate: 930 Gfl [single]
* Clock rate: 1.3 Ghz
* 'Compute Capability’: 1.3 [allows double precision]
> Fermi promises to be more impressive


## The CUDA environment: The big picture

> A host (CPU) and an attached device (GPU)

## Typical program:

1. Generate data on CPU
2. Allocate memory on GPU cudaMalloc(...)
3. Send data Host $\rightarrow$ GPU cudaMemcpy (...)
4. Execute GPU 'kernel':
kernel $\lll$ (...) $\ggg>$ (..)
5. Copy data GPU $\rightarrow$ CPU
cudaMemcpy (...)


## Sparse Matvecs on the Tesla

$>$ Preliminary results are mixed [high programming cost, very good performance for some calculations]
> Performance of matvec [GLOPS] on a Tesla C1060

| Matrices: | Matrix -name | N | NNZ |
| :--- | :--- | ---: | ---: |
|  | FEM/Cantilever | 62,451 | $4,007,383$ |
|  | Boeing/pwtk | 217,918 | $11,634,424$ |


| Single Precision |  |  |  | Double Precision |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Matrix | CSR | JAD | DIA | CSR | JAD | DIA |
| FEM/Cantilever | 9.4 | 10.8 | 25.7 | 7.5 | 5.0 | 13.4 |
| Boeing/pwtk | 8.9 | 16.6 | 29.5 | 7.2 | 10.4 | 14.5 |

## ILU: Sparse Forward/Backward Sweeps

- Exploit Level-Scheduling.. [Topological sort]
- Poor performance relative to CPU
- Extremely poor when \#levs is large
- In the worst case, \#levs=n, $\approx 2$ Mflops

| Matrix | N | CPU | GPU-Lev |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 23,052 | 627 | 4,457 |
| \#lev | Mflops |  |  |  |
| FEM/Cantilever | 62,451 | 653 | 2,397 | 168 |
| COP/CASEYK | 696,665 | 394 | 273 | 142 |
| COP/CASEKU | 208,340 | 373 | 272 | 115 |

GPU Sparse Triangular Solve with Level Scheduling

## Alternative: Polynomial Preconditioners

- $M^{-1}=s(A)$, where $s(t)$ is a polynomial of low degree
- Solve: $s(A) \cdot A x=s(A) \cdot b$
- $s(A)$ need not be formed explicitly
- $s(A) \cdot A v$ : Preconditioning Operation: a sequence of matrix-by-vector product to exploit high performance Spmv kernel
- Inner product on space $\mathbb{P}_{\mathrm{k}}(\boldsymbol{\omega} \geq 0$ is a weight on $(\alpha, \beta))$

$$
\langle p, q\rangle_{\omega}=\int_{\alpha}^{\beta} p(\lambda) q(\lambda) \omega(\lambda) d \lambda
$$

- Seek polynomial $s_{k-1}$ of degree $\leq k-1$ which minimizes

$$
\|1-\lambda s(\lambda)\|_{\omega}
$$

## L-S Polynomial Preconditioning

Tol=1.0e-6; Maxlts=1,000; *:MD reordering applied

| Matrix | ITSOL-ILU(3) |  | GPU-ILU(3) |  | L-S Polyn |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | iter. | sec. | iter. | sec. | iter. | sec. | Deg |
| bcsstk36 | FAILED |  | $\mathbf{3 5 1}^{*}$ | $\mathbf{1 0 . 5 8 *}^{*}$ | 31 | 1.34 | 100 |
| ct20stif | 27 | 9.4 | $\mathbf{2 1 *}^{*}$ | $\mathbf{2 . 2 2}^{*}$ | 16 | 0.70 | 50 |
| ship_003 | 27 | 25.8 | 27 | 21.1 | 10 | 2.90 | 100 |
| msc23052 | 181 | 18.5 | 181 | 6.0 | 37 | 1.28 | 80 |
| bcsstk17 | 46 | 1.8 | 46 | 2.8 | 22 | 0.55 | 120 |

ILU(3) \& L-S Polynomial Preconditioning

## Preconditioner Time

- High level fill-in ILU preconditioner can be very expensive to build
- L-S Polynomial preconditioner set-up time $\approx$ very low
- Example: ILU(3) and L-S Poly with 20-step Lanczos procedure (for estimating interval bounds).

| Matrix | N | ILU(3) <br> sec. | LS-Poly <br> sec. |
| :---: | :---: | :---: | :---: |
| Boeing/ct20stif | 23,052 | 15.63 | 0.26 |

Preconditioner Construction Time

## Conclusion

> General rule: ILU-based preconditioners not meant to replace tailored preconditioners. Can be very useful as parts of other techniques.
$>$ Recent work on generalizing nonsymmetric permutations to symmetric matrices [Duff-Pralet, 2006].
> Complex shifting strategy quite useful even for real matrices
$>$ Diag(inv(A)) problem - fairly easy for D.D case. Very challenging in indefinite case: $\boldsymbol{B}$ is dense and 'equimodular'
$>$ GPUs for irregular sparse matrix computations: Much remains to be done both in hardware and in algorithms/software
$\qquad$

## Software:

```
http://www.cs.umn.edu/~saad/software
```

> ARMS-C [C-code] - available from ITSOL package..
> Parallel version of ARMS available. pARMS3 released
> See also: ILUPACK - developed mainly by Matthias Bollhoefer and his team
http://www.tu-berlin.de/ilupack/.

