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Introduction: Linear System Solvers

II Much of recent work on solvers has focussed on:

(1) Parallel implementation – scalable performance

(2) Improving robustness, developing more general preconditioners
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A few observations

II Problems are getting harder for Sparse Direct methods

(more 3-D models, much bigger problems,..)

II Problems are also getting difficult for iterative methods Cause:

more complex models - away from Poisson

II Researchers in iterative methods are borrowing techniques from

direct methods: → preconditioners

II The inverse is also happening: Direct methods are being adapted

for use as preconditioners
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Difficult linear systems

II Traditionally: two areas have been difficult for iterative solvers:

(a) Problems from circuit simulation

(b) Problems from structures

II Recently, there has been excellent progress made in developing

good preconditioners for both classes of problems..

One of the main tools: use of nonsymmetric permutations.
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An overview of recent progress on ILU

II Bollhöfer defined rigorous dropping strategies [Bollhöfer 2002]

II Approximate inverse methods [limited success]

II Use of different forms of LU factorizations [ILUC, N. Li, YS, Chow]

II Vaidya preconditioners – for problems in structures [very suc-

cessful in industry]

II Support theory for preconditioners

II Nonsymmetric permutations –
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CROUT VERSIONS OF ILUT
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Crout-based ILUT (ILUTC)

Background: ILU codes use so-called ikj- version of Gaussian elim-

ination [equiv. to left looking column LU]

ALGORITHM : 1 GE – IKJ Variant
1. For i = 2, . . . , n Do:

2. For k = 1, . . . , i − 1 Do:

3. aik := aik/akk

4. For j = k + 1, . . . , n Do:

5. aij := aij − aik ∗ akj

6. EndDo

7. EndDo

8. EndDo

Pb: entries in L must be accessed from left to right
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Terminology: Crout versions of LU compute the k-th row of U and

the k-th column of L at the k-th step.

Computational pattern

Red = part computed at step k

Blue = part accessed

Main advantages:
1. Less expensive than ILUT (avoids sorting)

2. Allows better techniques for dropping
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Crout LU (dense case)

II Go back to delayed update algorithm (IKJ alg.) and observe: we

could do both a column and a row version

II Left: U computed by rows. Right: L computed by columns

Note: The entries 1 : k − 1 in the k-th row in left figure need not be

computed. Available from already computed columns of L. Similar

observation for L (right).
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ALGORITHM : 2 Crout LU Factorization (dense case)
1. For k = 1 : n Do :

2. For i = 1 : k − 1 and if aki 6= 0 Do :

3. ak,k:n = ak,k:n − aki ∗ ai,k:n

4. EndDo

5. For i = 1 : k − 1 and if aik 6= 0 Do :

6. ak+1:n.k = ak+1:n,k − aik ∗ ak+1:n,i

7. EndDo

8. aik = aik/akk for i = k + 1, ..., n

9. EndDo
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Crout ILUT

II Can derive incomplete versions – by adding dropping.

II Data structure from [Jones-Platzman] - clever implementation
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Inverse-based dropping strategies

II Method developed mainly by Matthias Bollhöffer

Observation: norm of inverses of the factors is more important than

the errors in the factors themselves: If A = L̃Ũ + E then

L̃−1AŨ−1 = I + L̃−1EŨ−1

II In many cases ‖L̃−1‖ and ‖Ũ−1‖ are *very* large → Bad.

II In contrast assume A = LU = exact LU factorization and

L̃−1 = L−1 + X Ũ−1 = U−1 + Y, Then:

L̃−1AŨ−1 = (L−1 + X)A(U−1 + Y ) = I + AY + XA + XY.

II X, Y small −→ preconditioned matrix close to identity
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II Let Lk = matrix of the first k rows of L and the last n − k rows of

the identity matrix.

II Consider a term ljk with j > k that is dropped at step k. Perturbed

matrix L̃k differs from Lk by ljkeje
T
k . Note: Lkej = ej so

L̃k = Lk − ljkeje
T
k = Lk(I − ljkeje

T
k ) →

L̃−1
k = (I − ljkeje

T
k )−1L−1

k = L−1
k + ljkeje

T
k L−1

k .

II j-th row of inverse of Lk perturbed by ljk times k-th row of L−1
k .

II Need to limit the norm of this perturbing row, i.e.,

|ljk| ‖eT
k L−1

k ‖∞ should be small

II L−1 is not available. Bollhöfer’s idea: use techniques for estimat-

ing condition numbers
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ALGORITHM : 3 Estimating the norms ‖eT
k L−1‖∞

1. Set ξ1 = 1, νi = 0, i = 1, . . . , n

2 For k = 2, . . . , n do

3 ξ+ = 1 − νk ; ξ− = −1 − νk ;

4 if |ξ+| > |ξ−| then ξk = ξ+ else ξk = ξ−

5 For j = k + 1 : n and for ljk 6= 0 Do

6 νj = νj + ξkljk

7 EndDo

8. EndDo

II Idea fits very well with Crout ILU [Na Li, YS, E. Chow, 2004]
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APPROXIMATE INVERSES
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Approximate Inverse preconditioners

Motivation:
• L - U solves in ILU may be ‘unstable’

• Parallelism in L-U solves limited

Idea: Approximate the inverse of A directly M ≈ A−1

Different forms:

II Right preconditioning: Find M such that

AM ≈ I

II Left preconditioning: Find M such that

MA ≈ I

II Factored approximate inverse: Find L and U s.t.

LAU ≈ D
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Some references

• Benson and Frederickson (’82): approximate inverse using stencils

• Grote and Simon (’93): Choose M to be banded

• Cosgrove, Dı́az and Griewank (’91) : Procedure to add fill-ins to M

• Kolotilina and Yeremin (’93) : Factorized symmetric precondition-

ings M = GT
LGL

• Huckle and Grote (’95) : Procedure to find good pattern for M

• Chow and Saad (’95): Find pattern dynamically by using dropping.

• M. Benzi & Tuma (’96, ’97,..): Factored app. inv.
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One (of many) options: try to find M which minimizes

‖I − AM‖F

Note: Minimization problem to find M decouples

II Problem decouples into n independent least-squares systems

II In each of these systems the matrix and RHS are sparse

Two paths:

1. Can find a good sparsity pattern for M first then compute M

using this patters.

2. Can find the pattern dynamically [similar to ILUT]
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Approximate inverses for block-partitioned matrices

Motivation. Domain Decomposition



B1 F1

B2 F2

. . . ...

Bn Fn

E1 E2 · · · En C



≡

B F

E D



Note:

B F

E C

 =


B 0

E S



I B−1F

0 I


in which S is the Schur complement,

S = C − EB−1F.
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One idea: Compute M = LU in which

L =


B 0

E MS

 and U =


I B−1F

0 I



II MS = some preconditioner to S.

One option: MS = S̃ = sparse approximation to S

S̃ = C − EY where Y ≈ B−1F

II Need to find a sparse matrix Y such that

BY ≈ F

where F and B are sparse.
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NONSYMMETRIC REORDERINGS
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Enhancing robustness: One-sided permutations

II Very useful techniques for matrices with extremely poor struc-

ture. Not as helpful in other cases.

Previous work:

• Benzi, Haws, Tuma ’99 [compare various permutation algorithms

in context of ILU]

• Duff, Koster, ’99 [propose various permutation algorithms. Also

discuss preconditioners]

• Duff ’81 [Propose max. transversal algorithms. Basis of many

other methods. Also Hopcroft & Karp ’73, Duff ’88]
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Transversals - bipartite matching: Find (maximal) set of ordered

pairs (i, j) s.t. aij 6= 0 and i and j each appear only once (one

diagonal element per row/column). Basis of many algorithms.

x

x

x

x x

x

xx

x

xx

x

x

x

x

x

Bipartite representation 

Original matrix

After reordering Maximum transversal
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Criterion: Find a (column) permutation π such that
n∏

i=1
|ai,π(i)| = max

Olchowsky and Neumaier ’96 translate this into

min
π

n∑
i=1

ci,π(i) with cij =


log

‖a:,j‖∞
|aij|

 if aij 6= 0

+∞ else

II Dual problem is solved:

max
ui,uj

{
n∑

i=1
ui +

n∑
j=1

uj} subject to: cij − ui − uj ≥ 0

II Algorithms utilize depth-first-search to find max transversals.

II Many variants. Best known code: Duff & Koster’s MC64
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NONSYMMETRIC REORDERINGS: MULTILEVEL FRAMEWORK
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Background: Independent sets, ILUM, ARMS

Independent set orderings permute a matrix into the form
B F

E C


where B is a diagonal matrix.

II Unknowns associated with the B block form an independent set

(IS).

II IS is maximal if it cannot be augmented by other nodes to form

another IS.

II Finding a maximal independentg set is inexpensive
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Main observation: Reduced system obtained by eliminating the

unknowns associated with the IS, is still sparse since its coefficient

matrix is the Schur complement

S = C − EB−1F

II Idea: apply IS set reduction recursively.

II When reduced system small enough solve by any method

II ILUM: ILU factorization based on this strategy. YS ’92-94.

• See work by [Botta-Wubbs ’96, ’97, YS’94, ’96, Leuze ’89,..]
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Group Independent Sets / Aggregates

Main goal: generalize independent sets to improve robustness

Main idea: use “cliques”, or “aggregates”. No coupling between

the aggregates.

No Coupling

II Label nodes of independent sets first
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Algebraic Recursive Multilevel Solver (ARMS)

II Typical shape of reordered

matrix:

PAP T =


B F

E C

 =

E

C

F

B

II Block factorize:

B F

E C

 =


L 0

EU−1 I



U L−1F

0 S



II S = C − EB−1F = Schur complement + dropping to reduce fill

II Next step: treat the Schur complement recursively
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Algebraic Recursive Multilevel Solver (ARMS)

Level l Factorization:
Bl Fl

El Cl

 ≈


Ll 0

ElU
−1
l I



I 0

0 Al+1



Ul L−1

l Fl

0 I


II L-solve ∼ restriction; U-solve ∼ prolongation.

II Perform above block factorization recursively on Al+1

II Blocks in Bl treated as sparse. Can be large or small.

II Algorithm is fully recursive

II Stability criterion in block independent sets algorithm
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Group Independent Set reordering

Separator
First Block 

Simple strategy: Level taversal until there are enough points to form

a block. Reverse ordering. Start new block from non-visited node.

Continue until all points are visited. Add criterion for rejecting “not

sufficiently diagonally dominant rows.”
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Original matrix

  0.10E-06

  0.19E+07
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Block size of 6

  0.10E-06

  0.19E+07

Block size of 20
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  0.10E-06

  0.19E+07
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Two-sided permutations with diag. dominance

Idea: ARMS + exploit nonsymmetric permutations

II No particular structure or assumptions for B block

II Permute rows * and * columns of A. Use two permutations P

(rows) and Q (columns) to transform A into

PAQT =


B F

E C



P, Q is a pair of permutations (rows, columns) selected so that the

B block has the ‘most diagonally dominant’ rows (after nonsym

perm) and few nonzero elements (to reduce fill-in).
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Multilevel framework

II At the l-th level reorder matrix as shown above and then carry out

the block factorization ‘approximately’

PlAlQ
T
l =


Bl Fl

El Cl

 ≈


Ll 0

ElU
−1
l I

 ×


Ul L−1

l Fl

0 Al+1

 ,

where

Bl ≈ LlUl

Al+1 ≈ Cl − (ElU
−1
l )(L−1

l Fl) .

II As before the matrices ElU
−1
l , L−1

l Fl or their approximations

Gl ≈ ElU
−1
l , Wl ≈ L−1

l Fl

need not be saved.
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Interpretation in terms of complete pivoting

Rationale: Critical to have an accurate and well-conditioned B

block [Bollhöfer, Bollhöfer-YS’04]

II Case when B is of dimension 1 → a form of complete pivoting

ILU. Procedure ∼ block complete pivoting ILU

Matching sets: define B block. M is a set of nM pairs (pi, qi)

where nM ≤ n with 1 ≤ pi, qi ≤ n for i = 1, . . . , nM and

pi 6= pj, for i 6= j qi 6= qj, for i 6= j

II When nM = n → (full) permutation pair (P, Q). A partial match-

ing set can be easily completed into a full pair (P, Q) by a greedy

approach.
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Matching - preselection

Algorithm to find permutation consists of 3 phases.

(1) Preselection: to filter out poor rows (dd. criterion) and sort

the selected rows.

(2) Matching: scan candidate entries in order given by preselec-

tion and accept them into the M set, or reject them.

(3) Complete the matching set: into a complete pair of permuta-

tions (greedy algorithm)

II Let j(i) = argmaxj|aij|.

II Use the ratio γi =
|ai,j(i)|
‖ai,:‖1

as a measure of diag. domin. of row i
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Matching: Greedy algorithm

II Simple algorithm: scan pairs (ik, jk) in the given order.

II If ik and jk not already assigned, assign them to M.
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II Many heuristics explored – see in particular, recent work with S.

MacLachlan ’06.

II Main advantage over MC64: inexpensive and more dynamic pro-

cedure.
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MATLAB DEMO
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’REAL’ TESTS
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Numerical illustration

Matrix order nonzeros Application (Origin)

barrier2-9 115,625 3,897,557 Device simul. (Schenk)

matrix 9 103,430 2,121,550 Device simul. (Schenk)

mat-n 3* 125,329 2,678,750 Device simul. (Schenk)

ohne2 181,343 11,063,545 Device simul. (Schenk)

para-4 153,226 5,326,228 Device simul. (Schenk)

cir2a 482,969 3,912,413 circuit simul.

scircuit 170998 958936 circuit simul. (Hamm)

circuit 4 80209 307604 Circuit simul. (Bomhof)

wang3.rua 26064 177168 Device simul. (Wang)

wang4.rua 26068 177196 Device simul. (Wang)

* mat-n 3* = matrix-new 3
45 QUT - Sept. 14th, 2007

45



Parameters

Drop tolerance Fillmax

nlevmax tolDD LU-B GW S LU-S LU-B GW S LU-S

40 0.1 0.01 0.01 0.01 1.e-05 3 3 3 20
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Fill Set-up GMRES(60) GMRES(100)

Matrix Factor Time Its. Time Its. Time

barr2-9 0.62 4.01e+00 113 3.29e+01 93 3.02e+01

mat-n 3 0.89 7.53e+00 40 1.02e+01 40 1.00e+01

matrix 9 1.77 5.53e+00 160 4.94e+01 82 2.70e+01

ohne2 0.62 4.34e+01 99 6.35e+01 80 5.43e+01

para-4 0.62 5.70e+00 49 1.94e+01 49 1.93e+01

wang3 2.33 8.90e-01 45 2.09e+00 45 1.95e+00

wang4 1.86 5.10e-01 31 1.25e+00 31 1.20e+00

scircuit 0.90 1.86e+00 Fail 7.08e+01 Fail 8.80e+01

circuit 4 0.75 1.60e+00 199 1.69e+01 96 1.07e+01

circ2a 0.76 2.19e+02 18 1.08e+01 18 1.03e+01

Results for the 10 systems - ARMS-ddPQ + GMRES(60) & GMRES(100)
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Fill Set-up GMRES(60) GMRES(100)

Factor Time Its. Time Its. Time

Same param’s 0.89 1.81 400 9.13e+01 297 8.79e+01

Droptol = .001 1.00 1.89 98 2.23e+01 82 2.27e+01

Solution of the system scircuit – no scaling + two different sets

of parameters.
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Parallel implementation

II Preliminary work – with Zhongze Li

II Ideally would use hypergraph partitioning [in the plans]

II We used only a local version of ddPQ

II Schur complement version not yet available

II In words: Construct the local matrix, extend it with overlapping

data and use ddPQ ordering on it.

II Can be used with Standard Schwarz procedures – or with restric-

tive version [RAS]
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Restricted Additive Schwarz Preconditioner(RAS)

Domain

      2

Domain 1 

Domain 1 local matrix

Domain

      2

Domain 1 

Extended

Domain 1 local matrix
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II RAS + ddPQ uses arms-ddPQ on extended matrix - for each do-

main.

II ddPQ Improves robustness enormously in spite of simple (local)

implementation.

II Test with problem from MHD problem.
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Example: a system from MHD simulation example

II Source of problem: Coupling of Maxwell equations with Navier-

Stokes.

II Matrices arises from solving Maxwell’s equation:

∂B

∂t
− ∇ × (u × B) −

1

Rem

∇ × (∇ × B) + ∇q = 0

∇ · B = 0 ,

II See [Ben-Salah, Soulaimani, Habashi, Fortin, IJNMF 1999]

II Cylindrical domain, tetrahedra used.

II Not an easy problem for iterative methods.
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RAS+ILUT

np its tset tit

1 107 236.58 320.74

2 118 136.28 232.78

4 354 72.66 326.03

8 2640 40.06 1303.16

16 3994 21.87 1029.88

32 > 10,000 – –

RAS+ddPQ

np its tset tit

1 60 204.06 187.05

2 104 108.45 162.34

4 109 60.24 86.25

8 119 41.56 52.11

16 418 22.84 97.88

32 537 12.34 65.77

II Simple Schwarz (RAS) : very poor performance

II severe deterioration of performance with higher np
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Conclusion

II ARMS-C works well as a “general-purpose” solver.

II Though far from being a 100% robust iterative solver ...

II .. It is efficient [memory and computatitional costs]

II ... Easier to parallelize than MC64

II Recent work on generalizing nonsymmetric permutations to sym-

metric matrices [Duff-Pralet, 2006].

54 QUT - Sept. 14th, 2007

54



General
Purpose

 Specialized

Direct sparse 
Solvers

Iterative 

A x = b
∆ u = f− + bc

Methods 
Preconditioned Krylov

Fast Poisson
Solvers 

Multigrid
Methods 

What is missing from this picture?
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II 1. Intermediate methods which lie in between general purpose

and specialized – exploit some information from origin of the prob-

lem.

II 2. Considerations related to parallelism. Development of ‘robust’

solvers remains limited to serial algorithms in general.

II Problem: parallel implementations of iterative methods are less

effective than their serial counterparts.
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Software:

II ARMS-C [C-code] - available from ITSOL package..

http://www.cs.umn.edu/∼saad/software

II More comprehensive package: ILUPACK – developed mainly by

Matthias Bollhoefer and his team

http://www.tu-berlin.de/ilupack/.
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