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Linear system solvers: specialized versus general purpose




Introduction: Linear System Solvers

w Much of recent work on solvers has focussed on:
(1) Parallel implementation — scalable performance

(2) Improving robustness, developing more general preconditioners




A few observations

» Problems are getting harder for Sparse Direct methods
» Problems are also getting difficult for iterative methods
» Researchers in iterative methods are borrowing techniques from

direct methods:

w The inverse is also happening: Direct methods are being adapted

for use as preconditioners




Difficult linear systems

w Traditionally: two areas have been difficult for iterative solvers:
(a) Problems from circuit simulation
(b) Problems from structures

w Recently, there has been excellent progress made in developing

good preconditioners for both classes of problems..

One of the main tools: use of nonsymmetric permutations.




An overview of recent progress on ILU

w Bollhofer defined rigorous dropping strategies [Bollhofer 2002]
w Approximate inverse methods [limited success]
w Use of different forms of LU factorizations [ILUC, N. Li, YS, Chow]

w Vaidya preconditioners — for problems in structures [very suc-

cessful in industry]
w Support theory for preconditioners

»w Nonsymmetric permutations —




CROUT VERSIONS OF ILUT




Crout-based ILUT (ILUTC)

Background: ILU codes use so-called ikj- version of Gaussian elim-

ination [equiv. to left looking column LU]
ALGORITHM : 1. GE - IKJ Variant

1. For: = 2,...,n Do:

2. Fork =1,...,2 — 1 Do:
3. Qi = Qi) Qkk

4. Fory =k+1,...,n Do:
5. aij := Qij — Qi * Ak,
6. EndDo

7. EndDo

8.

EndDo

Pb: entries in L must be accessed from left to right




Terminology: Crout versions of LU compute the k-th row of U and
the k-th column of L at the k-th step.

Computational pattern

Red = part computed at step &
Blue = part accessed .‘

1. Less expensive than ILUT (avoids sorting)

Main advantages: _ _
2. Allows better techniques for dropping
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Crout LU (dense case)

w Go back to delayed update algorithm (IKJ alg.) and observe: we

could do both a column and a row version

w Left: U computed by rows. Right: L computed by columns

Note: The entries 1 : £k — 1 in the k-th row in left figure need not be
computed. Available from already computed columns of L. Similar

observation for L (right).
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ALGORITHM : 2. Crout LU Factorization (dense case)
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1.
2.

© O N O O KA

Fork =1:n Do:

Fori =1:k—1andifay; # 0 Do :
Q. k:n — Ak,k:n — Qg * Q4 k:n

EndDo

Fori=1:k—1andifa;. # 0 Do :
Ap+1:n.k = Ak+1:n,k — Qik * Ak41:n,3

EndDo

air = a;/ags fori =k+1,...,n

EndDo QUT - Sept. 14th, 2007




Crout ILUT

w Can derive incomplete versions — by adding dropping.

w Data structure from [Jones-Platzman] - clever implementation

Preconditioning time vs. Lfil for RAEFSKY3
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Inverse-based dropping strategies

w Method developed mainly by Matthias Bollhoffer

Observation: norm of inverses of the factors is more important than
the errors in the factors themselves: If A = LU + E then

L 'AU'=TI1+ L 'EU!
» In many cases ||[L~'|| and ||[U~!| are *very* large — Bad.

» In contrast assume A = LU = exact LU factorization and
L'=L'"+X U'=U'+4+Y, Then:
L7'AU'= (L'+ X)A(U'4+Y) =1+ AY + XA + XY.

» X,Y small — preconditioned matrix close to identity




w Let L, = matrix of the first &k rows of L and the last n — k& rows of

the identity matrix.

» Consider aterm l;;, with 5 > k that is dropped at step k. Perturbed

matrix L, differs from L, by l,.e;el. Note: Lie; = e; SO

1~3k = Ly — ljkeje:,f = Li(I — ljk:eje:lg) —

~

Liit = (I — ligejep,) 'Ly = L' + Lirejey, Lyt

» j-th row of inverse of L; perturbed by (I, times k-th row of L,;l.

» Need to limit the norm of this perturbing row, i.e.,

ILik| |lex L;t||oo should be small

w L1 is not available. Bollhéfer’s idea: use techniques for estimat-

ing condition numbers




ALGORITHM : 3. Estimating the norms |le] L™ !||«
1. Set¢ ;1 =1,v,=0,1=1,...,n

2 Fork=2,...,ndo

3 E+=1—v ;86 =—1—v;

4 if €| > |€E_| then&, = € else &, = &
5 Forj; = k4 1:nandforl;. # 0 Do

6 v = vj + &kljk

7 EndDo

8. EndDo

w Idea fits very well with Crout ILU [Na Li, YS, E. Chow, 2004]




APPROXIMATE INVERSES




Approximate Inverse preconditioners

R e L - U solves in ILU may be ‘unstable’
Motivation:

e Parallelism in L-U solves limited

Idea: Approximate the inverse of A directly M ~ A1

Different forms:

» Right preconditioning: Find M such that
AM = 1

w Left preconditioning: Find M such that
MA=I

w Factored approximate inverse: Find L and U s.t.
LAU = D




Some references I

e Benson and Frederickson (’82): approximate inverse using stencils
e Grote and Simon (’93): Choose M to be banded
e Cosgrove, Diaz and Griewank (91) : Procedure to add fill-ins to M

e Kolotilina and Yeremin ("93) : Factorized symmetric precondition-
ings M = G1Gy

e Huckle and Grote ('95) : Procedure to find good pattern for M
e Chow and Saad (’95): Find pattern dynamically by using dropping.

e M. Benzi & Tuma (’96, ’97,..): Factored app. inv.



One (of many) options: Itry to find M which minimizes

I — AM]|r

Note: I Minimization problem to find M decouples
» Problem decouples into n independent least-squares systems

w In each of these systems the matrix and RHS are sparse

Two paths: I

1. Can find a good sparsity pattern for M first then compute M
using this patters.

2. Can find the pattern dynamically [similar to ILUT]




Approximate inverses for block-partitioned matrices

Motivation. | Domain Decomposition

B, F
B F
2 2 (B F)
- \E D
B, F,
E, E, --- E, C
B F B 0\ (I B'F
L P e (A T
E C E S)\o I

in which S is the Schur complement,
S=C — EB'F.




One idea: Compute M = LU in which

B 0 I BF
L = ( ) and U = ( )
FE Mg 0 I

w Mg = some preconditioner to S.

One option: Mg = S = sparse approximation to S
S=C—EY where Y =~ B 'F

»w Need to find a sparse matrix Y such that
BY =~ F

where F' and B are sparse.

22
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NONSYMMETRIC REORDERINGS




Enhancing robustness: One-sided permutations

w Very useful techniques for matrices with extremely poor struc-

ture. Not as helpful in other cases.

Previous work:

e Benzi, Haws, Tuma ’99 [compare various permutation algorithms

in context of ILU]

e Duff, Koster, ‘99 [propose various permutation algorithms. Also

discuss preconditioners]

e Duff ‘81 [Propose max. transversal algorithms. Basis of many
other methods. Also Hopcroft & Karp 73, Duff "88]




Transversals - bipartite matching: Find (maximal) set of ordered

pairs (¢,5) s.t. a;; # 0 and 2 and ; each appear only once (one

diagonal element per row/column). Basis of many algorithms.

O O

O x O

Bipartite representation After reordering Maximum transversal
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Criterion: I Find a (column) permutation 7 such that

n
11 |az-,7r(z-)| — max
1=1

Olchowsky and Neumaier '96 translate this into

DL ; _ |aij
min > ¢ ;) Withe;; = J
1 +o0 else

1=

w Dual problem is solved:

maX{ fj u; + jil Uj} SUbiECt to: Cij — U; — U, Z 0

UgyUj 51

w Algorithms utilize depth-first-search to find max transversals.

w Many variants. Best known code: Duff & Koster’s MC64
QUT - Sept. 14th, 2007
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NONSYMMETRIC REORDERINGS: MULTILEVEL FRAMEWORK




Background: Independent sets, ILUM, ARMS

Independent set orderings permute a matrix into the form
o
E C
where B is a diagonal matrix.

»w Unknowns associated with the B block form an independent set
(IS).

w IS is maximal if it cannot be augmented by other nodes to form

another IS.

» Finding a maximal independentg set is inexpensive




Main observation: Reduced system obtained by eliminating the

unknowns associated with the IS, is still sparse since its coefficient
matrix is the Schur complement
S=C—-EB'F
w Idea: apply IS set reduction recursively.
w When reduced system small enough solve by any method
w ILUM: ILU factorization based on this strategy. YS '92-94.

e See work by [Botta-Wubbs 96, 97, YS’94, 96, Leuze ’89,..]




Group Independent Sets / Aggregates

Main goal:| generalize independent sets to improve robustness
Main idea:| use “cliques”, or “aggregates”. No coupling between
the aggregates.

N
@ . . No Coupling
@ B

w Label nodes of independent sets first

30
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Algebraic Recursive Multilevel Solver (ARMS)

» Typical shape of reordered «F
. B—
matrix:
B F
pAP = (E C) B c
e

B F L 0 U L 'F
» Block factorize:( ) — ( ) ( )
E C EU ' T 0 S

w» S = C — EB'F = Schur complement + dropping to reduce fill

» Next step: treat the Schur complement recursively




Algebraic Recursive Multilevel Solver (ARMS)

Level [ Factorization:

& a)=lao o anlle 1)
B, ¢) \BUu™ 1)lo Ap)lo 1

» L-solve ~ restriction; U-solve ~ prolongation.

w Perform above block factorization recursively on A; .,
w Blocks in B, treated as sparse. Can be large or small.
w Algorithm is fully recursive

w Stability criterion in block independent sets algorithm




Group Independent Set reordering

Separator

First Block

Simple strategy: Level taversal until there are enough points to form

a block. Reverse ordering. Start new block from non-visited node.
Continue until all points are visited. Add criterion for rejecting “not

sufficiently diagonally dominant rows.”




Original matrix




Block size of 6
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Block size of 20
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Two-sided permutations with diag. dominance

Idea: I ARMS + exploit nonsymmetric permutations

w No particular structure or assumptions for B block

» Permute rows * and * columns of A. Use two permutations P
(rows) and (@ (columns) to transform A into
B F)

PAQT =
=[5 o

P, Q is a pair of permutations (rows, columns) selected so that the
B block has the ‘most diagonally dominant’ rows (after nhonsym

perm) and few nonzero elements (to reduce fill-in).
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Multilevel framework

w At the [-th level reorder matrix as shown above and then carry out

the block factorization ‘approximately’

B, F, L, O U, L7'F;
PlAlQlT — ~ X l 9
E;, C; ElUl_l 1 0 Al_|_1
where
Bl ~ LlUl
A1 = Cp— (ElUl_l)(Ll_lﬂ) .

» As before the matrices E,U;"!, L, ' F; or their approximations
Gl ~ ElUl_l ’ VVl ~ Ll_lﬂ

need not be saved.




Interpretation in terms of complete pivoting

Rationale: | Critical to have an accurate and well-conditioned B
block [Bollhofer, Bollhofer-YS’04]

w Case when B is of dimension 1 — a form of complete pivoting

ILU. Procedure ~ block complete pivoting ILU

Matching sets: | define B block. M is a set of n,, pairs (p;, q;)

where ny; < nwithl < p;,q; <nfor:=1,...,ny and

Di # pj, fori #£ 3 qi; # qj, fori # j

w When n,, = n — (full) permutation pair (P, Q). A partial match-
ing set can be easily completed into a full pair (P, Q) by a greedy

approach.




Matching - preselection

Algorithm to find permutation consists of 3 phases.

(1) | Preselection: I to filter out poor rows (dd. criterion) and sort

the selected rows.

(2) | Matching: |scan candidate entries in order given by preselec-
tion and accept them into the M set, or reject them.

(3) | Complete the matching set: | into a complete pair of permuta-

tions (greedy algorithm)

» Let j(i) = argmax;|a;;|.

» Use the ratio ~; = 'ﬁ";’?.(ﬁ)l' as a measure of diag. domin. of row




Matching: Greedy algorithm

w Simple algorithm: scan pairs (ix, ji) in the given order.

w If 2;, and ;. not already assighed, assign them to M.

0 ! © . m ]
LB @ | IR ONLINE
@ = s ] @ i m:
BLIBBOIENE B G e
************ m | B®|s . ® | s
****************** CE (s @ | im | m|s
******** B @ | © : B@|7
********* = 0 s o ia s
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Matrix after preselection Matrix after Matching perm.
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w Many heuristics explored — see in particular, recent work with S.

MacLachlan '06.

»w Main advantage over MC64: inexpensive and more dynamic pro-

cedure.
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MATLAB DEMO




’REAL’ TESTS




Numerical illustration

order nonzeros | Application (Origin)

115,625 3,897,557 | Device simul. (Schenk)

103,430 2,121,550 | Device simul. (Schenk)

125,329 2,678,750 | Device simul. (Schenk)

181,343 11,063,545 | Device simul. (Schenk)

153,226 5,326,228 | Device simul. (Schenk)

482,969 | 3,912,413 circuit simul.

170998 958936 | circuit simul. (Hamm)
80209 307604 Circuit simul. (Bomhof)
26064 177168 Device simul. (Wang)
26068 177196 | Device simul. (Wang)

* mat-n_3* = matrix-new_3




Parameters I

Drop tolerance

Fill gz

nlev,,q

40

tOlDD

0.1

LU-B GW S LU-S
0.01 0.01 0.01 1.e-05

LU-B GW S LU-S

3

3 3 20
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Fill Set-up GMRES(60) GMRES(100)
Matrix  Factor Time | Its. Time Its. Time
0.62 4.01e+00 113 3.29e+01 93 3.02e+01
0.89 7.53e+00 40 1.02e+01| 40| 1.00e+01
1.77 | 5.53e+00 160 | 4.94e+01| 82|2.70e+01
0.62 4.34e+01 99 6.35e+01 80 5.43e+01
0.62 5.70e+00 49 1.94e+01 49 1.93e+01
2.33 | 8.90e-01| 45 2.09e+00 45| 1.95e+00
1.86| 5.10e-01 31|1.25e+00 31 |1.20e+00
0.90 1.86e+00 Fail 7.08e+01 Fail 8.80e+01
0.751.60e+00 | 199 | 1.69e+01 96 1.07e+01
0.76 | 2.19e+02| 18 /1.08e+01 18 1.03e+01

Results for the 10 systems - ARMS-ddPQ + GMRES(60) & GMRES(100)




Fill Set-up GMRES(60) GMRES(100)

Factor Time | Its. Time | Its. Time

Same param’s| 0.89 1.81/400 9.13e+01 297  8.79e+01
Droptol = .001 1.00 1.89 98 2.23e+01| 82 2.27e+01

Solution of the system scircuit — no scaling + two different sets

48
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Parallel implementation

w Preliminary work — with Zhongze Li

w Ideally would use hypergraph partitioning [in the plans]
w We used only a local version of ddPQ

w Schur complement version not yet available

w In words: Construct the local matrix, extend it with overlapping

data and use ddPQ ordering on it.

w Can be used with Standard Schwarz procedures — or with restric-

tive version [RAS]




Restricted Additive Schwarz Preconditioner(RAS)

. Domain

2 Domain 1 local matrix

Domain 1

................................

: Domain
9 Domain 1 local matrix

Extended .
Domain 1

......................................




» RAS + ddPQ uses arms-ddPQ on extended matrix - for each do-

main.

w ddPQ Improves robustness enormously in spite of simple (local)

implementation.

w Test with problem from MHD problem.




Example: a system from MHD simulation example

w Source of problem: Coupling of Maxwell equations with Navier-
Stokes.

w Matrices arises from solving Maxwell’s equation:

OB V X (u x B) L VXx(VxB)+V 0
_ — u —_— _—
ot Re,, .

V-B

|
o

w See [Ben-Salah, Soulaimani, Habashi, Fortin, IJNMF 1999]
w Cylindrical domain, tetrahedra used.

w Not an easy problem for iterative methods.




RAS+ILUT RAS+ddPQ
np its tset ti np| its | tse tit
1 236.58 320.74 | 1 204.06  187.05
2 136.28 | 232.78 | 2 108.45|162.34
4 72.66  326.03 | 4 60.24 | 86.25
8 40.06 1303.16| 8 41.56 | 52.11
16 21.87 1029.88 | 16 22.84 | 97.88
32 - - 32 12.34 | 65.77

w Simple Schwarz (RAS) : very poor performance

» severe deterioration of performance with higher np
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Conclusion

»w ARMS-C works well as a “general-purpose” solver.

w Though far from being a 100% robust iterative solver ...
w .. It is efficient [memory and computatitional costs]

» ... Easier to parallelize than MC64

» Recent work on generalizing nonsymmetric permutations to sym-

metric matrices [Duff-Pralet, 2006].




Direct sparse Iterative Methods

Solvers Preconditioned Krylov
/ General
Purpose
-A u=f +bc
/ \ ¢ Specialized
Fast Poisson Multigrid
Solvers Methods

What is missing from this picture?




»w 1. Intermediate methods which lie in between general purpose
and specialized — exploit some information from origin of the prob-

lem.

w 2. Considerations related to parallelism. Development of ‘robust’

solvers remains limited to serial algorithms in general.

» Problem: parallel implementations of iterative methods are less

effective than their serial counterparts.




Software: |

w ARMS-C [C-code] - available from ITSOL package..

http://www.cs.umn.edu/~saad/software

w More comprehensive package: ILUPACK — developed mainly by

Matthias Bollhoefer and his team

http://www.tu-berlin.de/ilupack/.




