Recent progress in preconditioned Krylov subspace methods

Yousef Saad University of Minnesota Dept. of Computer Science and Engineering

QUT – Sep. 14th, 2007

Introduction

Linear system solvers: specialized versus general purpose

Introduction: Linear System Solvers

- Much of recent work on solvers has focussed on:
- (1) Parallel implementation scalable performance
- (2) Improving robustness, developing more general preconditioners

A few observations

Problems are getting harder for Sparse Direct methods (more 3-D models, much bigger problems,...)

Problems are also getting difficult for iterative methods Cause: more complex models - away from Poisson

► Researchers in iterative methods are borrowing techniques from direct methods: → preconditioners

The inverse is also happening: Direct methods are being adapted for use as preconditioners

Difficult linear systems

Traditionally: two areas have been difficult for iterative solvers:

- (a) Problems from circuit simulation
- (b) Problems from structures

Recently, there has been excellent progress made in developing good preconditioners for both classes of problems..

One of the main tools: use of nonsymmetric permutations.

An overview of recent progress on ILU

- **Bollhöfer defined rigorous dropping strategies [Bollhöfer 2002]**
- Approximate inverse methods [limited success]
- Use of different forms of LU factorizations [ILUC, N. Li, YS, Chow]
- Vaidya preconditioners for problems in structures [very successful in industry]
- Support theory for preconditioners
- Nonsymmetric permutations –

CROUT VERSIONS OF ILUT

Background: ILU codes use so-called ikj- version of Gaussian elim-

ination [equiv. to left looking column LU]

- ALGORITHM : 1 . GE IKJ Variant
- 1. For i = 2, ..., n Do:

2. For
$$k = 1, \ldots, i - 1$$
 Do:

- $a_{ik} := a_{ik}/a_{kk}$
- 4. For j = k + 1, ..., n Do:

5.
$$a_{ij} := a_{ij} - a_{ik} * a_{kj}$$

- 6. EndDo
- 7. EndDo

8. EndDo

Pb: entries in L must be accessed from left to right

Terminology: Crout versions of LU compute the *k*-th row of *U* and

the k-th column of L at the k-th step.

Computational pattern

- **Red** = part computed at step k
- **Blue = part accessed**

- 1. Less expensive than ILUT (avoids sorting)
- 2. Allows better techniques for dropping

[1] M. Jones and P. Plassman. An improved incomplete Choleski factorization. *ACM Transactions on Mathematical Software*, 21:5–17, 1995.

[2] S. C. Eisenstat, M. H. Schultz, and A. H. Sherman. Algorithms and data structures for sparse symmetric Gaussian elimination. *SIAM Journal on Scientific Computing*, 2:225–237, 1981.

[3] M. Bollhöfer. A robust ILU with pivoting based on monitoring the growth of the inverse factors. *Linear Algebra and its Applica-tions*, 338(1–3):201–218, 2001.

Crout LU (dense case)

Go back to delayed update algorithm (IKJ alg.) and observe: we

could do both a column and a row version

Left: *U* computed by rows. Right: *L* computed by columns

Note: The entries 1: k - 1 in the *k*-th row in left figure need not be computed. Available from already computed columns of *L*. Similar observation for *L* (right).

ALGORITHM : 2 . Crout LU Factorization (dense case)

1. For k = 1 : n Do :

2. For
$$i = 1 : k - 1$$
 and if $a_{ki} \neq 0$ Do :

3.
$$a_{k,k:n} = a_{k,k:n} - a_{ki} * a_{i,k:n}$$

- 4. EndDo
- 5. For i = 1 : k 1 and if $a_{ik} \neq 0$ Do :

6.
$$a_{k+1:n.k} = a_{k+1:n,k} - a_{ik} * a_{k+1:n,i}$$

7. EndDo

8.
$$a_{ik}=a_{ik}/a_{kk}$$
 for $i=k+1,...,n$

9. EndDo

12

QUT - Sept. 14th, 2007

Crout ILUT

Can derive incomplete versions – by adding dropping.

Data structure from [Jones-Platzman] - clever implementation

Inverse-based dropping strategies

Method developed mainly by Matthias Bollhöffer

Observation: norm of inverses of the factors is more important than the errors in the factors themselves: If $A = \tilde{L}\tilde{U} + E$ then $\tilde{L}^{-1}A\tilde{U}^{-1} = I + \tilde{L}^{-1}E\tilde{U}^{-1}$

In many cases $\|\tilde{L}^{-1}\|$ and $\|\tilde{U}^{-1}\|$ are *very* large \rightarrow Bad.

 \blacktriangleright In contrast assume A = LU = exact LU factorization and

$$\tilde{L}^{-1} = L^{-1} + X$$
 $\tilde{U}^{-1} = U^{-1} + Y$, Then:

 $\tilde{L}^{-1}A\tilde{U}^{-1} = (L^{-1} + X)A(U^{-1} + Y) = I + AY + XA + XY.$

 \blacktriangleright X, Y small \longrightarrow preconditioned matrix close to identity

▶ Let L_k = matrix of the first k rows of L and the last n - k rows of the identity matrix.

► Consider a term l_{jk} with j > k that is dropped at step k. Perturbed matrix \tilde{L}_k differs from L_k by $l_{jk}e_je_k^T$. Note: $L_ke_j = e_j$ so

$$ilde{L}_k = L_k - l_{jk} e_j e_k^T = L_k (I - l_{jk} e_j e_k^T) \quad o$$

$$ilde{L}_k^{-1} = (I - l_{jk} e_j e_k^T)^{-1} L_k^{-1} = L_k^{-1} + l_{jk} e_j e_k^T L_k^{-1}.$$

 \blacktriangleright *j*-th row of inverse of L_k perturbed by $|l_{jk}$ times *k*-th row of L_k^{-1} .

▶ Need to limit the norm of this perturbing row, i.e.,

 $\|l_{jk}\|\,\|e_k^TL_k^{-1}\|_\infty$ should be small

▶ L^{-1} is not available. Bollhöfer's idea: use techniques for estimating condition numbers ALGORITHM : 3 • Estimating the norms $||e_k^T L^{-1}||_{\infty}$

1. Set $\xi_1 = 1, \nu_i = 0, i = 1, \dots, n$

2 For
$$k = 2, ..., n$$
 do

3
$$\xi_+=1-
u_k$$
 ; $\xi_-=-1-
u_k$;

4 if
$$|\xi_+| > |\xi_-|$$
 then $\xi_k = \xi_+$ else $\xi_k = \xi_-$

5 For
$$j = k + 1 : n$$
 and for $l_{jk}
eq 0$ Do

$$\boldsymbol{6} \qquad \nu_j = \nu_j + \xi_k l_{jk}$$

7 EndDo

8. EndDo

Idea fits very well with Crout ILU [Na Li, YS, E. Chow, 2004]

APPROXIMATE INVERSES

Approximate Inverse preconditioners

• L - U solves in ILU may be 'unstable'

Parallelism in L-U solves limited

<u>Idea:</u> Approximate the inverse of A directly $M pprox A^{-1}$

Different forms:

Right preconditioning: Find *M* **such that**

 $AM \approx I$

 \blacktriangleright Left preconditioning: Find M such that

 $MA \approx I$

Factored approximate inverse: Find *L* and *U* s.t.

 $LAU \approx D$

Some references

- Benson and Frederickson ('82): approximate inverse using stencils
- Grote and Simon ('93): Choose M to be banded
- Cosgrove, Díaz and Griewank ('91) : Procedure to add fill-ins to M
- Kolotilina and Yeremin ('93) : Factorized symmetric preconditionings $M = G_L^T G_L$
- Huckle and Grote ('95) : Procedure to find good pattern for M
- Chow and Saad ('95): Find pattern dynamically by using dropping.
- M. Benzi & Tuma ('96, '97,..): Factored app. inv.

Note: Minimization problem to find *M* decouples

▶ Problem decouples into *n* independent least-squares systems

In each of these systems the matrix and RHS are sparse

Two paths:

- 1. Can find a good sparsity pattern for M first then compute M using this patters.
- 2. Can find the pattern dynamically [similar to ILUT]

Approximate inverses for block-partitioned matrices

Motivation. Domain Decomposition

$$\begin{pmatrix} B_1 & F_1 \\ B_2 & F_2 \\ & \ddots & I \\ & B_n & F_n \\ E_1 & E_2 & E_n & C \end{pmatrix} \equiv \begin{pmatrix} B & F \\ E & D \end{pmatrix}$$

Note:
$$\begin{pmatrix} B & F \\ E & C \end{pmatrix} = \begin{pmatrix} B & 0 \\ E & S \end{pmatrix} \begin{pmatrix} I & B^{-1}F \\ 0 & I \end{pmatrix}$$

in which S is the Schur complement,

$$S = C - EB^{-1}F.$$

<u>One idea:</u> Compute M = LU in which

$$L = egin{pmatrix} B & 0 \ E & M_S \end{pmatrix}$$
 and $U = egin{pmatrix} I & B^{-1}F \ 0 & I \end{pmatrix}$

 \blacktriangleright M_S = some preconditioner to S.

One option: $M_S = ilde{S}$ = sparse approximation to S

 $ilde{S} = C - EY$ where $Y pprox B^{-1}F$

▶ Need to find a sparse matrix Y such that

 $BY \approx F$

where F and B are sparse.

NONSYMMETRIC REORDERINGS

Enhancing robustness: One-sided permutations

Very useful techniques for matrices with extremely poor structure. Not as helpful in other cases.

Previous work:

- Benzi, Haws, Tuma '99 [compare various permutation algorithms in context of ILU]
- Duff, Koster, '99 [propose various permutation algorithms. Also discuss preconditioners]
- Duff '81 [Propose max. transversal algorithms. Basis of many other methods. Also Hopcroft & Karp '73, Duff '88]

Transversals - bipartite matching: Find (maximal) set of ordered pairs (i, j) s.t. $a_{ij} \neq 0$ and i and j each appear only once (one diagonal element per row/column). Basis of many algorithms.

Criterion: Find a (column) permutation π such that $\prod_{i=1}^{n} |a_{i,\pi(i)}| = \max$

Olchowsky and Neumaier '96 translate this into

$$\min_{\pi} \sum_{i=1}^{n} c_{i,\pi(i)}$$
 with $c_{ij} = egin{cases} \log\left[rac{\|a_{i,j}\|_{\infty}}{|a_{ij}|}
ight] & ext{if } a_{ij}
eq 0 \ +\infty & ext{else} \end{cases}$

Dual problem is solved:

$$\max_{u_i,u_j} \{\sum\limits_{i=1}^n u_i \ + \ \sum\limits_{j=1}^n u_j \}$$
 subject to: $c_{ij} - u_i - u_j \geq 0$

▶ Algorithms utilize depth-first-search to find max transversals.

Many variants. Best known code: Duff & Koster's MC64

NONSYMMETRIC REORDERINGS: MULTILEVEL FRAMEWORK

Background: Independent sets, ILUM, ARMS

Independent set orderings permute a matrix into the form

 $\begin{pmatrix} \boldsymbol{B} & \boldsymbol{F} \\ \boldsymbol{E} & \boldsymbol{C} \end{pmatrix}$

where *B* is a diagonal matrix.

Unknowns associated with the *B* block form an independent set (IS).

IS is maximal if it cannot be augmented by other nodes to form another IS.

Finding a maximal independentg set is inexpensive

Main observation: Reduced system obtained by eliminating the unknowns associated with the IS, is still sparse since its coefficient matrix is the Schur complement

 $S = C - EB^{-1}F$

Idea: apply IS set reduction recursively.

When reduced system small enough solve by any method

ILUM: ILU factorization based on this strategy. YS '92-94.

• See work by [Botta-Wubbs '96, '97, YS'94, '96, Leuze '89,..]

Group Independent Sets / Aggregates

Main goal: generalize independent sets to improve robustness

Main idea: use "cliques", or "aggregates". No coupling between the aggregates.

Label nodes of independent sets first

Algebraic Recursive Multilevel Solver (ARMS)

$$\blacksquare \text{Block factorize:} \begin{pmatrix} B & F \\ E & C \end{pmatrix} = \begin{pmatrix} L & 0 \\ EU^{-1} & I \end{pmatrix} \begin{pmatrix} U & L^{-1}F \\ 0 & S \end{pmatrix}$$

 $ightarrow S = C - EB^{-1}F$ = Schur complement + dropping to reduce fill

Next step: treat the Schur complement recursively

Algebraic Recursive Multilevel Solver (ARMS)

Level *l* Factorization:

$$\begin{pmatrix} B_l & F_l \\ E_l & C_l \end{pmatrix} \approx \begin{pmatrix} L_l & 0 \\ E_l U_l^{-1} & I \end{pmatrix} \begin{pmatrix} I & 0 \\ 0 & A_{l+1} \end{pmatrix} \begin{pmatrix} U_l & L_l^{-1} F_l \\ 0 & I \end{pmatrix}$$

► L-solve \sim restriction; U-solve \sim prolongation.

- **Perform above block factorization recursively on** A_{l+1}
- **Blocks** in B_l treated as sparse. Can be large or small.
- Algorithm is fully recursive
- Stability criterion in block independent sets algorithm

Group Independent Set reordering

Simple strategy: Level taversal until there are enough points to form a block. Reverse ordering. Start new block from non-visited node. Continue until all points are visited. Add criterion for rejecting "not sufficiently diagonally dominant rows."

Block size of 6

Two-sided permutations with diag. dominance

Idea: ARMS + exploit nonsymmetric permutations

No particular structure or assumptions for *B* **block**

Permute rows * and * columns of A. Use two permutations P (rows) and Q (columns) to transform A into

$$PAQ^T = egin{pmatrix} B & F \ E & C \end{pmatrix}$$

P, Q is a pair of permutations (rows, columns) selected so that the B block has the 'most diagonally dominant' rows (after nonsym perm) and few nonzero elements (to reduce fill-in).

Multilevel framework

At the *l*-th level reorder matrix as shown above and then carry out the block factorization 'approximately'

$$P_l A_l Q_l^T = egin{pmatrix} B_l & F_l \ E_l & C_l \end{pmatrix} pprox egin{pmatrix} L_l & 0 \ E_l U_l^{-1} & I \end{pmatrix} imes egin{pmatrix} U_l & L_l^{-1} F_l \ 0 & A_{l+1} \end{pmatrix},$$

where

$$B_l pprox L_l U_l \ A_{l+1} pprox C_l - (E_l U_l^{-1}) (L_l^{-1} F_l) \ .$$

As before the matrices $E_l U_l^{-1}, L_l^{-1} F_l$ or their approximations $G_l \approx E_l U_l^{-1}, \qquad W_l \approx L_l^{-1} F_l$

need not be saved.

Interpretation in terms of complete pivoting

Rationale:Critical to have an accurate and well-conditioned Bblock [Bollhöfer, Bollhöfer-YS'04]

▶ Case when B is of dimension 1 → a form of complete pivoting ILU. Procedure \sim block complete pivoting ILU

Matching sets:define B block. \mathcal{M} is a set of n_M pairs (p_i, q_i) where $n_M \leq n$ with $1 \leq p_i, q_i \leq n$ for $i = 1, \dots, n_M$ and $p_i \neq p_j$, for $i \neq j$ $q_i \neq q_j$, for $i \neq j$

When $n_M = n \rightarrow$ (full) permutation pair (P, Q). A partial matching set can be easily completed into a full pair (P, Q) by a greedy approach.

Matching - preselection

Algorithm to find permutation consists of 3 phases.

(1) **Preselection:** to filter out poor rows (dd. criterion) and sort

the selected rows.

(2) Matching: scan candidate entries in order given by preselec-

tion and accept them into the ${\mathcal M}$ set, or reject them.

(3) Complete the matching set: into a complete pair of permuta-

tions (greedy algorithm)

Let
$$j(i) = \operatorname{argmax}_{j} |a_{ij}|$$
.
Use the ratio $\gamma_i = \frac{|a_{i,j(i)}|}{\|a_{i,:}\|_1}$ as a measure of diag. domin. of row i

Matching: Greedy algorithm

b Simple algorithm: scan pairs (i_k, j_k) in the given order.

IF i_k and j_k not already assigned, assign them to \mathcal{M} .

Matrix after preselection

Matrix after Matching perm.

► Many heuristics explored – see in particular, recent work with S. MacLachlan '06.

► Main advantage over MC64: inexpensive and more dynamic procedure.

MATLAB DEMO

'REAL' TESTS

Numerical illustration

Matrix	order	nonzeros	Application (Origin)
barrier2-9	115,625	3,897,557	Device simul. (Schenk)
matrix_9	103,430	2,121,550	Device simul. (Schenk)
mat-n_3*	125,329	2,678,750	Device simul. (Schenk)
ohne2	181,343	11,063,545	Device simul. (Schenk)
para-4	153,226	5,326,228	Device simul. (Schenk)
cir2a	482,969	3,912,413	circuit simul.
scircuit	170998	958936	circuit simul. (Hamm)
circuit_4	80209	307604	Circuit simul. (Bomhof)
wang3.rua	26064	177168	Device simul. (Wang)
wang4.rua	26068	177196	Device simul. (Wang)

* mat-n_3* = matrix-new_3

Drop tolera			oleran	ice	Fill _{max}				
$nlev_{max}$	tol_{DD}	LU-B	GW	S	LU-S	LU-B	GW	S	LU-S
40	0.1	0.01	0.01	0.01	1.e-05	3	3	3	20

	Fill	Set-up	GN	IRES(60)	GMRES(100)		
Matrix	Factor	Time	lts.	Time	lts.	Time	
barr2-9	0.62	4.01e+00	113	3.29e+01	93	3.02e+01	
mat-n_3	0.89	7.53e+00	40	1.02e+01	40	1.00e+01	
matrix_9	1.77	5.53e+00	160	4.94e+01	82	2.70e+01	
ohne2	0.62	4.34e+01	99	6.35e+01	80	5.43e+01	
para-4	0.62	5.70e+00	49	1.94e+01	49	1.93e+01	
wang3	2.33	8.90e-01	45	2.09e+00	45	1.95e+00	
wang4	1.86	5.10e-01	31	1.25e+00	31	1.20e+00	
scircuit	0.90	1.86e+00	Fail	7.08e+01	Fail	8.80e+01	
circuit_4	0.75	1.60e+00	199	1.69e+01	96	1.07e+01	
circ2a	0.76	2.19e+02	18	1.08e+01	18	1.03e+01	

Results for the 10 systems - ARMS-ddPQ + GMRES(60) & GMRES(100)

	Fill	Fill Set-up		IRES(60)	GMRES(100)		
	Factor	Time	Its.	Time	Its.	Time	
Same param's	0.89	1.81	400	9.13e+01	297	8.79e+01	
Droptol = .001	1.00	1.89	98	2.23e+01	82	2.27e+01	

Solution of the system scircuit - no scaling + two different sets

of parameters.

Parallel implementation

- Preliminary work with Zhongze Li
- Ideally would use hypergraph partitioning [in the plans]
- We used only a local version of ddPQ
- Schur complement version not yet available

In words: Construct the local matrix, extend it with overlapping data and use ddPQ ordering on it.

Can be used with Standard Schwarz procedures – or with restrictive version [RAS]

Restricted Additive Schwarz Preconditioner(RAS)

Domain 1 local matrix

Domain 1 local matrix

RAS + ddPQ uses arms-ddPQ on extended matrix - for each domain.

ddPQ Improves robustness enormously in spite of simple (local) implementation.

Test with problem from MHD problem.

Example: a system from MHD simulation example

Source of problem: Coupling of Maxwell equations with Navier-Stokes.

Matrices arises from solving Maxwell's equation:

$$egin{aligned} &rac{\partial \mathrm{B}}{\partial t} -
abla imes (\mathrm{u} imes \mathrm{B}) - rac{1}{Re_m}
abla imes (
abla imes \mathrm{B}) +
abla \mathrm{q} = 0 \ &
abla \cdot \mathrm{B} = 0 \ , \end{aligned}$$

See [Ben-Salah, Soulaimani, Habashi, Fortin, IJNMF 1999]

Cylindrical domain, tetrahedra used.

Not an easy problem for iterative methods.

	RAS+ILUT				RAS+ddPQ			
np	its	t_{set}	t_{it}	np	its	t_{set}	t_{it}	
1	107	236.58	320.74	1	60	204.06	187.05	
2	118	136.28	232.78	2	104	108.45	162.34	
4	354	72.66	326.03	4	109	60.24	86.25	
8	2640	40.06	1303.16	8	119	41.56	52.11	
16	3994	21.87	1029.88	16	418	22.84	97.88	
32	> 10,000	-	_	32	537	12.34	65.77	

Simple Schwarz (RAS) : very poor performance

b severe deterioration of performance with higher np

Conclusion

- ► ARMS-C works well as a "general-purpose" solver.
- **Though far from being a 100% robust iterative solver ...**
- It is efficient [memory and computatitional costs]
- **•** ... Easier to parallelize than MC64
- Recent work on generalizing nonsymmetric permutations to symmetric matrices [Duff-Pralet, 2006].

What is missing from this picture?

Intermediate methods which lie in between general purpose and specialized – exploit some information from origin of the problem.

2. Considerations related to parallelism. Development of 'robust' solvers remains limited to serial algorithms in general.

Problem: parallel implementations of iterative methods are less effective than their serial counterparts.

ARMS-C [C-code] - available from ITSOL package..

http://www.cs.umn.edu/~saad/software

More comprehensive package: ILUPACK – developed mainly by Matthias Bollhoefer and his team

http://www.tu-berlin.de/ilupack/.