OF MINNESOTA TWIN CITIES

Multilevel Low-Rank Preconditioners

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

Modelling 2014 – June 2,2014

Dedicated to Owe Axelsson at the occasion of his 80th birthday

Work supported by NSF-DMS

Intro: ILU-type preconditioners

Problem: To solve linear systems Ax = b

Common approach: ['grey-box' solvers] Krylov subspace accelerator (e.g., GMRES, BiCGSTAB) + Preconditioner

Common preconditioners: Incomplete LU factorizations; Relaxation-type; AMG; ...

Common difficulties of ILUs: Often fail for indefinite problems Not too good for highly parallel environments [GPUs]

Alternatives to ILU preconditioners

- Time to think about (radical) alternatives?
 - Preconditioners requiring few 'irregular' computations ...
 - .. that trade volume of computations for speed,
 - .. and, if possible, more robust for indefinite case
- Possible candidates: Methods based on Multilevel Low-Rank (MLR) approximations
- Low-rank approximation techniques can be seen everywhere in computational sciences
- Common approach: truncated SVD ...
- .. and more often now : random sampling

Related work:

- Work on H-matrices [Hackbusch and co-workers, B. Khoromskij, L. Grasedyck, S. Leborne, + many others..]
- Work on HSS matrices [e.g., J. XIA, S. CHANDRASEKARAN, M. GU, AND X-S. LI 2010.]
- Work on 'balanced incomplete factorizations' (R. Bru et al.)
- Work on "sweeping preconditioners" by Engquist and Ying.
- Work on computing the diagonal of a matrix inverse [Jok Tang and YS (2010) ..]

MULTI-LEVEL LOW-RANK PRECONDITIONERS

Low-rank Multilevel Approximations

Starting point: symmetric matrix derived from a 5-point discretization of a 2-D Pb on $n_x \times n_y$ grid

Corresponding splitting on FD mesh:

 \blacktriangleright $A_{11} \in \mathbb{R}^{m imes m}$, $A_{22} \in \mathbb{R}^{(n-m) imes (n-m)}$

In the simplest case second matrix is:

Thus: $A = \underbrace{(A + EE^T)}_B - EE^T$ Note: $E \in \mathbb{R}^{n \times n_x}, X \in \mathbb{R}^{n_x \times n_x}$ $n_x = |\text{ separator }| = [O(n^{1/2}) \text{ in 2-D}, O(n^{2/3}) \text{ in 3-D}]$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} eta &= eta - eta E^T, \ eta &= eta - eta E^T, \ eta &= eta &= eta^{n imes n}, & eta &:= egin{pmatrix} eta_1 \ eta_2 \end{pmatrix} \in \mathbb{R}^{n imes n_x}, \end{aligned}$$

Next step: use Sherman-Morrison formula:

$$A^{-1} = B^{-1} + (B^{-1}E)X^{-1}(B^{-1}E)^T$$

 $X = I - E^T B^{-1}E$

Multilevel Low-Rank (MLR) algorithm

 \blacktriangleright Use in a recursive framework [apply recursively to B_1, B_2] $B^{-1}E pprox U_k V_k^T, egin{array}{c} U_k \ \in \ \mathbb{R}^{n imes k}, \ V_k \ \in \ \mathbb{R}^{n_x imes k}, \end{array}$ Next step: lowrank approx. for $B^{-1}E$ ► Replace $B^{-1}E$ by $U_kV_k^T$ in $X = I - (E^TB^{-1})E$: $X \approx G_k = I - V_k U_k^T E$, $(\in \mathbb{R}^{n_x \times n_x})$ Leads to ... Preconditioner $M^{-1}=B^{-1}+U_kH_kU_k^T$ [~]Use recursivity

► Can show :
$$H_k = (I - U_k^T E V_k)^{-1}$$
 and $H_k^T = H_k$

Other options explored

> Another thought : approximate X (only) and exploit recursivity

$$B^{-1}[v+E ilde{X}^{-1}E^TB^{-1}v]$$
 .

However won't work: cost explodes with # levels [recursivity]

> We will see later how we can use this in DD framework

> Another possibility: approximate $B^{-1}E$ on one side only: $M^{-1} = B^{-1} + B^{-1}EG_k^{-1}V_kU_k^T = B^{-1}[I + EG_k^{-1}V_kU_k^T]$

However, can show that this is equivalent to the previous method

Recursive multilevel framework

•
$$A_i = B_i + E_i E_i^T$$
, $B_i \equiv \begin{pmatrix} B_{i_1} \\ B_{i_2} \end{pmatrix}$.

- Next level, set $A_{i_1}\equiv B_{i_1}$ and $A_{i_2}\equiv B_{i_2}$
- Repeat on A_{i_1}, A_{i_2}
- Last level, factor A_i (IC, ILU)
- Binary tree structure:

Generalization: Domain Decomposition framework

Domain partitioned into 2 domains with an edge separator

Matrix can be permuted to:

$$PAP^T = egin{pmatrix} \hat{B}_1 & \hat{F}_1 & \ \hat{F}_1^T & C_1 & -X \ \hline & \hat{B}_2 & \hat{F}_2 \ & -X^T & \hat{F}_2^T & C_2 \ \end{pmatrix}$$

Interface nodes in each domain are listed last.

Each matrix \hat{B}_i is of size $n_i \times n_i$ (interior var.) and the matrix C_i is of size $m_i \times m_i$ (interface var.)

Let:
$$E_{\alpha} = \begin{pmatrix} 0 \\ \alpha I \\ 0 \\ \frac{X^T}{\alpha} \end{pmatrix}$$
 then we have:

$$egin{aligned} m{P}m{A}m{P}^T &= egin{pmatrix} m{B}_1 \ & m{B}_2 \end{pmatrix} - m{E}m{E}^T & ext{with} & m{B}_i &= egin{pmatrix} m{\hat{B}}_i & m{\hat{F}}_1 \ m{\hat{F}}_i^T & m{C}_i + m{D}_i \end{pmatrix} \ & ext{and} & egin{pmatrix} m{D}_1 &= m{lpha}^2m{I} \ m{D}_2 &= m{rac{1}{lpha^2}}X^TX \end{aligned}$$

- > α used for balancing
- > Better results when using diagonals instead of αI

Theory: 2-level analysis for model problem

► Interested in eigenvalues γ_j of $A^{-1} - B^{-1} = B^{-1}EX^{-1}E^TB^{-1}$ when A = Pure Laplacean ... They are:

> Decay of the γ_j 's when nx = ny = 32.

Note $\sqrt{\beta_j}$ are the singular values of $B^{-1}E$.

In this particular case 3 eigenvectors will capture 92 % of the inverse whereas 5 eigenvectors will capture 97% of the inverse.

EXPERIMENTS

A few MATLAB experiments

Matlab first – Small problems ; 'real' tests later

Helmholtz-like problem:

$$\label{eq:generalized_states} \begin{split} &-\frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial y^2} - \rho u = -6 - \rho \left(2x^2 + y^2\right) \text{ in }\Omega, \\ &+ \text{Boundary conditions so solution is known} \end{split}$$

 \triangleright ρ = constant selected to make problem more or less difficult

- > Finite differences on a 66×66 mesh (matrix size 4,096).
- > MLR starts converging for k = 2.
- > ho = 845 selected so original Laplacean is shifted by 0.2
- 60 negative eigenvalues, smallest = -0.1953...

Comparison with ILUTP

ILUTP vs. MLR (E) - # levels = 7 for MLR

k	nlev=7		nlev=7 nlev=6		nle	v=5	nle	v=4	nlev=3		
2	318	3.56	372	4.36	261	4.77	183	4.80	47	5.53	
3	192	4.78	144	5.38	144	5.59	102	5.41	38	5.94	
4	181	6.03	132	6.41	74	6.41	45	6.02	35	6.35	
5	75	7.20	63	7.43	39	7.22	33	6.63	31	6.76	
6	45	8.52	41	8.46	35	8.04	29	7.24	28	7.16	

MLR: GMRES(40) iteration counts and fill ratios

Helmoltz-like equation - a 3D case

> Similar set-up to 2D case. $26 \times 26 \times 26$ grid \rightarrow size $n = 24^3 = 13,824$

> $\rho = 312.5$ selected so the shift is 0.5 - making the problem very indefinite [60 negative eigenvalues, $\lambda_{min} = -0.4527..$]

GMRES(40)-MLR iteration counts and fill ratios

k	nle	v=6	nle	ev=5	nlev=4			
2	377	5.49	177	6.66	114	8.46		
4	293	6.97	138	7.84	88	9.35		
6	187	8.46	101	9.03	73	10.23		
8	116	9.95	78	10.22	51	11.12		

ILUTP fails even for very small values of droptol (large fill)

General matrices

17 matrices from the Univ. Florida sparse matrix collection
 + one from a shell problem.

> 7 matrices are SPD

Size varies from n = 1,224 (HB/bcsstm27) to n = 9,000 (AG-Monien/3elt1 dual)

> nnz varies from nnz = 5,300 (HB/bcspwr06) to nnz = 355,460 (Boeing/bcsstk38).

Only indefinite cases shown

			MLR	ICT/ILUTP			
	nlev	k	fill-ratio	#its	fill-ratio	#its	
HB/bcsstm27	4	50	1.8	26	2.3	73	
HB/bcspwr06	4	5	3.1	6	5.2	F	
HB/bcspwr07	5	5	3.2	6	4.8	F	
HB/bcspwr08	4	5	2.1	17	5.8	F	
HB/blckhole	5	50	12.8	32	21.8	F	
HB/jagmesh3	4	5	5.9	30	9.7	111	
Boeing/nasa1824	4	60	3.6	116	4.9	150	
AG-Monien/3elt_dual	6	5	9.3	12	13.9	F	
AG-Monien/airfoil1_dual	6	5	9.5	5	12.7	F	
AG-Monien/ukerbe1_dual	4	5	9.1	25	10.5	F	
SHELL/COQUE8E3	3	70	5.0	83	5.06	F	

MLR vs. ICT/ILUTP

'Real tests' – Experimental setting

- Hardware: Intel Xeon X5675 processor (12 MB Cache, 3.06 GHz, 6-core)
- C/C++; Intel Math Kernel Library (MKL, version 10.2)
- ullet Stop when: $\|r_i\| \leq 10^{-8} \|r_0\|$ or its exceeds 500
- Model Problems in 2-D/3-D:

$$-\Delta u - cu = g ext{ in } \Omega ext{ + B.C.}$$

- ullet 2-D: $g(x,y)=-\left(x^2+y^2+c
 ight)e^{xy};~~\Omega=\left(0,1
 ight)^3.$
- 3-D: $g(x,y,z) = -6 c \left(x^2 + y^2 + z^2\right); \quad \Omega = \left(0,1\right)^3.$
- F.D. Differences discret.

Symmetric indefinite cases

- c > 0 in $-\Delta u cu$; i.e., $-\Delta$ shifted by -sI.
- \bullet 2D case: s=0.01, 3D case: s=0.05
- MLR + GMRES(40) compared to ILDLT + GMRES(40)
- 2-D problems: #lev= 4, rank= 5, 7, 7
- 3-D problems: #lev= 5, rank= 5, 7, 7
- ILDLT failed for most cases
- Difficulties in MLR: #lev cannot be large, [no convergence]
- inefficient factorization at the last level (memory, CPU time)

Crid	IL	DLT-GN	/ RE	S	MLR-GMRES					
Ghu	fill	p-t	its	i-t	fill	p-t	its	i-t		
256^{2}	6.5	0.16	F		6.0	0.39	84	0.30		
512^{2}	8.4	1.25	F		8.2	2.24	246	6.03		
1024^{2}	10.3	10.09	F		9.0	15.05	F			
$32^2 imes 64$	5.6	0.25	61	0.38	5.4	0.98	62	0.22		
64³	7.0	1.33	F		6.6	6.43	224	5.43		
128^{3}	8.8	15.35	F		6.5	28.08	F			

General symmetric matrices - Test matrices

MATRIX	Ν	NNZ	SPD	DESCRIPTION
Andrews/Andrews	60,000	760,154	yes	computer graphics pb.
Williams/cant	62,451	4,007,383	yes	FEM cantilever
UTEP/Dubcova2	65,025	1,030,225	yes	2-D/3-D PDE pb.
Rothberg/cfd1	70,656	1,825,580	yes	CFD pb.
Schmid/thermal1	82,654	574,458	yes	thermal pb.
Rothberg/cfd2	123,440	3,085,406	yes	CFD pb.
Schmid/thermal2	1,228,045	8,580,313	yes	thermal pb.
Cote/vibrobox	12,328	301,700	no	vibroacoustic pb.
Cunningham/qa8fk	66,127	1,660,579	no	3-D acoustics pb.
Koutsovasilis/F2	71,505	5,294,285	no	structural pb.

		ICT/	(ILDL	Т	MLR-CG/GMRES							
	fill	p-t	its	i-t	k	lev	fill	p-t	its	i-t		
Andrews	2.6	0.44	32	0.16	2	6	2.3	1.38	27	0.08		
cant	4.3	2.47	F	19.01	10	5	4.3	7.89	253	5.30		
Dubcova2	1.4	0.14	42	0.21	4	4	1.5	0.60	47	0.09		
cfd1	2.8	0.56	314	3.42	5	5	2.3	3.61	244	1.45		
thermal1	3.1	0.15	108	0.51	2	5	3.2	0.69	109	0.33		
cfd2	3.6	1.14	F	12.27	5	4	3.1	4.70	312	4.70		
thermal2	5.3	4.11	148	20.45	5	5	5.4	15.15	178	14.96		

		ICT/I	LDI	Л	MLR-CG/GMRES						
	fill	p-t	its	i-t	k	lev	fill	p-t	its	i-t	
vibrobox	3.3	0.19	F	1.06	10	4	3.0	0.45	183	0.22	
qa8fk	1.8	0.58	56	0.60	2	8	1.6	2.33	75	0.36	
F2	2.3	1.37	F	13.94	5	5	2.5	4.17	371	7.29	

Avoiding recursivity: 'standard' DD framework

 Work in progress
 Goal: avoid recursivity
 Consider a domain partition in p domains using vertex- based partitioniong (edge-separation)
 Interface nodes in each domain are listed last.

Local view:

 $egin{pmatrix} egin{array}{cc} egin{$

The global system: Global view

➤ Global system can be permuted to the form →
 ➤ u_i's internal variables
 ➤ y interface variables

> \hat{F}_i maps local interface points to interior points in domain Ω_i

 \hat{E}_i^T does the reverse operation

Example:

Splitting

Split as:
$$A \equiv \begin{pmatrix} B & \hat{F} \\ \hat{E}^T & C \end{pmatrix} = \begin{pmatrix} B \\ C \end{pmatrix} + \begin{pmatrix} \hat{F} \\ \hat{E}^T \end{pmatrix}$$
Define:
$$F \equiv \begin{pmatrix} \alpha^{-1}\hat{F} \\ -\alpha I \end{pmatrix}; \quad E \equiv \begin{pmatrix} \alpha^{-1}\hat{E} \\ -\alpha I \end{pmatrix}$$
Then:
$$\begin{bmatrix} B & |\hat{F} \\ \hat{E}^T & C \end{bmatrix} = \begin{bmatrix} B + \alpha^{-2}\hat{F}\hat{E}^T & 0 \\ 0 & |C + \alpha^2 I \end{bmatrix} - FE^T.$$

Property: $\hat{F}\hat{E}^{T}$ is 'local', i.e., no inter-domain $A_{0} \equiv \begin{bmatrix} B + \alpha^{-2}\hat{F}\hat{E}^{T} & 0\\ 0 & C + \alpha^{2}I \end{bmatrix}$ = block-diagonal

Low-Rank Approximation DD preconditioners

 $Sherman-Morrison \rightarrow$

$$A^{-1} = A_0^{-1} + A_0^{-1} F G^{-1} E^T A_0^{-1}$$
$$G \equiv I - E^T A_0^{-1} F$$

Options: (a) Approximate $A_0^{-1}F$, $E^T A_0^{-1}$, G^{-1} [as before] (b) Approximate only G^{-1} [new]

> (b) requires 2 solves with A_0 .

Let $G \approx G_k$ Preconditioner \rightarrow

$$M^{-1} = A_0^{-1} + A_0^{-1} F G_k^{-1} E^T A_0^{-1}$$

Symmetric Positive Definite case

> Recap: Let
$$G \equiv I - E^T A_0^{-1} E \equiv I - H$$
. Then
 $A^{-1} = A_0^{-1} + A_0^{-1} E G^{-1} E^T A_0^{-1}$

> Approximate G^{-1} by $G_k^{-1} \rightarrow$ preconditioner: $M^{-1} = A_0^{-1} + (A_0^{-1}E)G_k^{-1}(E^TA_0^{-1})$

> Matrix A_0 is SPD

 \blacktriangleright Can show: $0 \leq \lambda_j(H) < 1$.

Next, approximate H as $H \approx U \tilde{D} U^{T} - \text{Then:}$ $(I - U \tilde{D} U^{T})^{-1} = I + U[(I - \tilde{D})^{-1} - I]U^{T}.$

 $\begin{array}{ll} \blacktriangleright & \text{Now take rank-}k \text{ approximation to } H: \\ H \approx U_k D_k U_k^T & G_k = I - U_k D_k U_k^T & \rightarrow \end{array}$

$$G_k^{-1} \equiv (I - U_k D_k U_k^T)^{-1} = I + U_k [(I - D_k)^{-1} - I] U_k^T$$

► Observation: $A^{-1} = M^{-1} + A_0^{-1} E[G^{-1} - G_k^{-1}] E^T A_0^{-1}$

 \succ G_k : k largest eigenvalues of G matched – others set == 0

> Result: AM^{-1} has

n - s + k eigenvalues == 1
All others between 0 and 1

Alternative: reset lowest eigenvalues to constant

- > Let $H = U\Lambda U^T$ = exact (full) diagonalization of H
- > We replaced Λ by:
- > Alternative: replace Λ by

- > Interesting case: $\theta = \lambda_{k+1}$
- > Question: related approximation to G^{-1} ?

► Result: Let $\gamma = 1/(1 - \theta)$. Then approx. to G^{-1} is: $G_{k,\theta}^{-1} \equiv \gamma I + U_k [(I - D_k)^{-1} - \gamma I] U_k^T$

- > G_k : k largest eigenvalues of G matched others set == θ
- > $\theta = 0$ yields previous case
- \blacktriangleright When $\lambda_{k+1} \leq heta < 1$ we get
- > Result: AM^{-1} has

•
$$n - s + k$$
 eigenvalues == 1
• All others ≥ 1

Next: An example for a 900×900 Laplacean, 4 domains, s = 119

k = 5 Eigenvalues of AM^{-1} for the case $\theta = 0$

Modelling14 06/02/2014 p. 42

k = 15 Eigenvalues of AM^{-1} for the case $\theta = \lambda_{k+1}$

PropositionAssume
$$\theta$$
 is so that $\lambda_{k+1} \leq \theta < 1$. Thenthe eigenvalues η_i of AM^{-1} satisfy: $1 \leq \eta_i \leq 1 + \frac{1}{1-\theta} \|A^{1/2}A_0^{-1}E\|_2^2$.

> Experiments: For the Laplacean (FD) and when $\alpha = 1$,

$$\|A^{1/2}A_0^{-1}E\|_2^2 = \|E^TA_0^{-1}AA_0^{-1}E\|_2 \approx rac{1}{4}$$

regardless of the mesh-size. Being investigated.

Best upper bound for $heta = \lambda_{k+1}$

Assume above is true and set $\theta = \lambda_{k+1}$. Then $\kappa(AM^{-1}) \leq$ constant, if k large enough so that $\lambda_{k+1} \leq$ constant.

i.e., need to capture sufficient part of spectrum

The symmetric indefinite case

> Appeal of this approach over ILU: approximate inverse \rightarrow Not as sensitive to indefiniteness

- Part of the results shown still hold
- > But $\lambda_i(H)$ can be > 1 now.
- > Parameter α now plays a more important role
- Work still in progress

Example:Take Laplacean on a 30×30 FD grid.Subtract 0.4I - result: 26 negative eigenvalues $\lambda_{min} = -0.379477..., \quad \lambda_{max} = 7.579477...$

> Use
$$\alpha = 4.0$$
, $\theta = 0.9$;

> We do test for k = 10 and then k = 5

k = 10 Eigenvalues of AM^{-1} [$\theta = 0.90, \alpha = 4$]

k = 5 Eigenvalues of AM^{-1} [heta = 0.90, lpha = 4]

Parallel implementations

$$M^{-1} = A_0^{-1} \left[I + E G_{k, heta}^{-1} E^T A_0^{-1}
ight]
onumber \ G_{k, heta}^{-1} = \gamma I + U_k [(I - D_k)^{-1} - \gamma I] U_k^T$$

 \succ Steps involved in applying M^{-1} to a vector x :

ALGORITHM : 1 Preconditioning operation

1.
$$z = A_0^{-1} x$$

2. $y = E^T z$
3. $y_k = G_{k,\theta}^{-1} y$
4. $z_k = E y_k$
5. $u = A_0^{-1} (x + z_k)$

// \hat{B}_i -solves and C_{α} - solve // Interior points to interface (Loc.) // Use Low-Rank approx. // Interface to interior points (Loc.) // \hat{B}_i -solves and C_{α} - solve

 \blacktriangleright Recall $\hat{B}_i = B_i + \alpha^{-2} E_i E_i^T$

 \succ A solve with A_0 amounts to all $p \ \hat{B}_i$ -solves and a C_{lpha} -solve

- > Can replace C_{α}^{-1} by a low degree polynomial [Chebyshev]
- > Can use any solver for the \hat{B}_i 's

Parallel tests: Itasca (MSI)

► HP linux cluster- with Xeons 5560 ("Nehalem") processors

	Mesh	Npro	c	Ran	k	#its	Pre	c-t	Iter-	t	
	256 imes256		2		8	29	2.3	0	.343	3	
2-D	$512 imes 512 \ 1024 imes 1024 \ ert$		8 16		6	57	2.62 3.30		.747 1.32		
			32	2 32		96					
	2048 imes2048	12	28	3 64		154	4.8	4	2.38	3	
	Mesh		Np	oroc	R	ank	#its	Pr	ec-t	lt	er-t
2-0	32 imes 32 imes 32			2		8	12	1.09		.0	972
3-0	64 imes 64 imes 64			16		16	31	1.18		.3	381
	128 imes 128 imes	128	1	28		32	62	2	.42	3.	378

Mixing Divide & Conquer and standard DD

Mixing Divide & Conquer and standard DD

- Must use a two-sided approximation
- ▶ Back to recursive version
 ▶ Recall →

$$A^{-1} = A_0^{-1} + (A_0^{-1}E)G^{-1}(A_0^{-1}E)^T$$

$$G \equiv I - E^T(A_0^{-1}E)$$

Use a 2-domain partitioning + recursion

> Approximate $A_0^{-1}E$ by a low-rank matrix - get related approximation to $G \rightarrow$:

$$egin{aligned} A_0^{-1}E pprox U_k V_k^T &
ightarrow & M^{-1} = A_0^{-1} + U_k X_k^{-1} U_k^T \ & X_k = I - U_k^T E V_k \end{aligned}$$

Advantage: Natural way of splitting - no need for balancing

$A^{-1} - A_0^{-1}$ is nearly low-rank

Similar to experiment shown earlier earlier

> Eigenvalues of $A^{-1} - A_0^{-1}$ & 3 zooms closing in on 0

Conclusion

Promising alternatives to ILUs can be found in new forms of approximate inverse techniques

Seek "data-sparsity" instead of regular sparsity

DD approch easier to implement, easier to understand than recursive approach

Advantages of Multilevel Low-Rank preconditioners:

- > Approximate inverses \rightarrow less sensitive to indefiniteness
- Exploit dense computations
- Easy to update