UNIVERSITY OF Minnesota twin cities

The new challenges to Krylov subspace methods
Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

SIAM Applied Linear Algebra Valencia, June 18-22, 2012

Introduction

> Krylov subspace methods offer a good alternative to direct solution methods - especially for 3D problems
> Compromise between performance and robustness
> Current challenges:

- Highly indefinite systems [Helmholtz, Maxwell, ...]
- Highly ill-conditioned systems
- Problems with extremely irregular structure
- Recent: impact of new architectures [many core, GPUs]

Introduction (cont.)

Two distinct issues:

- Performance degradation due to 'irregular sparsity'
- Performance degradation due to problem size / GPU memory limitation

Observation:

The wave of GPUs present many of the features of the wave of vector supercomputing and SIMD supercomputing of the 1980's and 1990's.

- Need to rethink notion of 'optimality'

Past: counted only flops - Krylov subspace can be optimal (or near-optimal) for op. counts > questioned already in 1990s
> Does anyone remember:

- FPS 164
- Connection Machine
- MasPar
- ICL DAP [1970's]?

$>$ Difficulties were quite similar . . . Go to the past and back!
$>$ Go back to the 1980s and 1990s to search for effective techniques.. ?

GPU Computing

> GPUs popular as : inexpensive attached processers
> Can buy \sim one Teraflop peak power for around \$1,000 + Initial use: real-time highdefinition 3D graphics

Tesla C1060

> Highly parallel (SIMD), manycore, high computational power, high memory bandwidth
> Recent announce: NVIDIA K10 - Kepler based, 3K cores, 4.6 TFLOPS peak

> Inexpensive GFLOPS
** Joint work with Ruipeng Li

CUDA (Compute Unified Device Architecture)

- SIMD-type parallelism
- Programmable in C/C++ with CUDA extensions/ tools
- Wrapper available for Python, FORTRAN, Java and MATLAB
- CuBLAS, CuFFT
- Some major changes in coding habits (e.g. no OS on GPU side)

The CUDA environment: The big picture

> A host (CPU) and an attached device (GPU)

Typical program:

1. Generate data on CPU
2. Allocate memory on GPU cudaMalloc(...)
3. Send data Host \rightarrow GPU cudaMemcpy (...)
4. Execute GPU 'kernel':
kernel \lll (...) $\ggg>$ (..)
5. Copy data GPU \rightarrow CPU
cudaMemcpy(...)

Sparse Matrix Vector Product (Spmv)

> Important operaytion in Krylov subspace methods + in applications (FEM, ...)
$>$ Yields a small fraction of peak performance (indirect and irregular memory accesses)
> High-performance parallel Spmv kernel implemented on GPUs + various optimizations for different formats..

Hardware used

> CPU: Intel Xeon E5504 2.00 GHz
> GPU: NVIDIA Tesla C1060

Tesla C1060:
* 240 cores per GPU
* 4 GB memory
* Peak rate: 930 Gfl [single]
* Clock rate: 1.3 Ghz
* ‘Compute Capability’: 1.3 [allows double precision]

CSR Format Spmv - CPU vs. GPU

			CPU	GPU	$\begin{aligned} & 0 \\ & 0 \\ & \frac{0}{2} \\ & \frac{0}{0} \\ & i= \end{aligned}$
Matrix	N	NNZ	Gflops	Gflops	
Boeing/bcsstk36	23,052	1,143,140	0.93	8.1	
Boeing/ct20stif	52,329	2,698,463	0.88	8.9	
DNVS/ship_003	121,728	8,086,034	0.89	9.1	
COP/CASEYK	696,665	4,661,931	0.58	2.9	
			CPU	GPU	
Matrix	N	NNZ	Gflops	Gflops	
Boeing/bcsstk36	23,052	1,143,140	0.83	6.3	-
Boeing/ct20stif	52,329	2,698,463	0.81	7.1	$\stackrel{0}{0}$
DNVS/ship_003	121,728	8,086,034	0.81	7.2	\bigcirc
COP/CASEYK	696,665	4,661,931	0.4	2.0	0

Sparse Matvecs - 3 different formats

$>$ Matrices:	FEM/Cantilever	62,451	$4,007,383$
	Boeing/pwtk	217,918	$11,634,424$

	Single Precision			Double Precision		
Matrix	CSR	JAD	DIA	CSR	JAD	DIA
FEM/Cantilever	9.4	10.8	25.7	7.5	5.0	13.4
Boeing/pwtk	8.9	16.6	29.5	7.2	10.4	14.5

Sparse Forward/Backward Sweeps

> Next major ingredient of precond. Krylov subs. methods

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { :n } \\
& \quad \text { for } \mathrm{j}=\mathrm{ia}(\mathrm{i}): \mathrm{ia}(\mathrm{i}+1) \\
& \quad x(\mathrm{i})=x(\mathrm{i})-\mathrm{a}(\mathrm{j})^{\star} x(\mathrm{ja}(\mathrm{j})) \\
& \quad \text { end }
\end{aligned}
$$

ILU preconditioning operations require L/U solves: $\boldsymbol{x} \leftarrow U^{-1} L^{-1} \boldsymbol{x}$
$>$ Sequential outer loop.
end
> Parallelism can be achieved with level scheduling:

- Group unknowns into levels
- unknowns $x(i)$ of same level can be computed simultaneously
- $1 \leq n l e v \leq n$

ILU: Sparse Forward/Backward Sweeps

- Very poor performance [relative to CPU]

GPU Sparse Triangular Solve with Level Scheduling
> Performance can be *very* poor when \#levs is large: worst case: \#levs=n, ≈ 2 Mflops
$>$ Can reduce the number of levels drastically with Min. Degree order.
> Remember Multicolor ordering? Could use this too...
$>$ Other issues involved. Main ones: cost of MD ordering itself for MMD; Number of iterations \uparrow for multicoloring
> In general: best to avoid ILU-type preconditioners

ILU Preconditioning : ILU0 Preconditioned GMRES

 tol $=1.0 \mathrm{e}-6$; Max Iters=1,000; Matrix format: CSR| Matrix | its. | ITSOL
 sec. | GPUsol sec. | Speedup |
| :---: | :---: | :---: | :---: | :---: |
| Boeing/msc10848 | 39 | 2.13 | 0.73 | 2.9 |
| Boeing/ct20stif | Fail | 157.5 | 40.4 | |
| DNVS/ship_003 | 760 | 323.0 | 80.9 | 4.0 |
| COP/CASEYK | 100 | 61.81 | 7.72 | 8.0 |

ILU0 Preconditioned GMRES Solver Time

ILU(2) Preconditioned GMRES

Matrix	its.	ITSOL sec.	GPUsol sec.	Speedup	
Boeing/msc10848	2	0.32	0.21	1.5	d
Boeing/ct20stif	33	8.72	6.45	1.3	\%
DNVS/ship_003	30	22.4	12.7	1.8	안
COP/CASEYK	33	33.8	8.88	3.8	う

ILU(2) Preconditioned GMRES Solver Time
$>$ tol $=1.0 \mathrm{e}-6$; MaxIters=500; Matrix format:CSR
> Speedup drops ! ... Denser L/U, \#levels \uparrow Performance of L/U solve \downarrow

Back to the 1980s: Polynomial Preconditioners

- $M^{-1}=s(A)$, where $s(t)$ is a polynomial of low degree
- Solve: $s(A) \cdot A x=s(A) \cdot b$
- $s(A)$ need not be formed explicitly
- $s(A) \cdot A v$: Preconditioning Operation: a sequence of matrix-by-vector product to exploit high performance Spmv kernel
- Inner product on space $\mathbb{P}_{\mathrm{k}}(\omega \geq 0$ is a weight on $(\alpha, \beta))$

$$
\langle p, q\rangle_{\omega}=\int_{\alpha}^{\beta} p(\lambda) q(\lambda) \omega(\lambda) d \lambda
$$

- Seek polynomial s_{k-1} of degree $\leq \boldsymbol{k}-1$ which minimizes

$$
\|1-\lambda s(\lambda)\|_{\omega}
$$

Always add diagonal scaling

$A \leftarrow D^{-\frac{1}{2}} \cdot A \cdot D^{-\frac{1}{2}}$
$>D$ is the diagonal of \boldsymbol{A}. Scale $\boldsymbol{A}^{\prime} s$ rows and columns symmetrically by $\boldsymbol{A} \leftarrow \boldsymbol{D}^{-\frac{1}{2}} \cdot \boldsymbol{A} \cdot \boldsymbol{D}^{-\frac{1}{2}}$
$>a_{i i}=1$
> Some improvements (in general) at virtually no cost

Recall one of the main arguments against polynomial preconditioning: It is sub-optimal [consider the SPD case only].

L-S Polynomial Preconditioning

Tol = 1.0e-6; Max Iters = 1,000; SPD Matrices; Degree = 8; *:MD reordering applied

Matrix	ITSOL-ILU(3)		GPU-ILU(3)		L-S Polyn(8)	
	its.	sec.	its.	sec.	its.	sec.
bcsstk36	Fail	93.7	351*	10.6*	586	3.0
ct20stif	27	9.3	21*	2.2*	91	0.83
ship_003	27	27.9	27	21.1	142	3.3
msc23052	181	19.4	181	6.0	586	2.9
bcsstk17	46	1.8	46	2.8	303	0.91

ILU(3) \& L-S Polynomial Preconditioning

L-S Polynomial Preconditioning

Tol=1.0e-6; MaxIts=1,000; *:MD reordering applied

Matrix	ITSOL-ILU(3)		GPU-ILU(3)		L-S Polyn		
	iter.	sec.	iter.	sec.	iter.	sec.	Deg
bcsstk36	Fail		351*	10.6*	31	1.34	100
ct20stif	27	9.4	21*	2.22*	16	0.70	50
ship_003	27	25.8	27	21.1	10	2.90	100
msc23052	181	18.5	181	6.0	37	1.28	80
bcsstk17	46	1.8	46	2.8	22	0.55	120

ILU(3) \& L-S Polynomial Preconditioning

Must account for preconditioner construction time

- High level fill-in ILU preconditioner can be very expensive to build
- L-S Polynomial preconditioner set-up time \approx very low
- Example: ILU(3) and L-S Poly with 20-step Lanczos procedure (for estimating interval bounds).

Preconditioner Construction Time

GPUsol Library:

GPUsol.a:

- Matrix Formats:
- CSR, JAD, DIA
- Accelerator: FGMRES
- Preconditioners:
- ILUT, ILUK (+ level sched.)
- L-S Polynomial
- Block ILU
- Utilities:
- RCM/MMD reordering
- GPU Lanczos Algorithm
$>$ Developed by: Ruipeng Li

Back to the future: An alternative (work in progress)

> What would be a good alternative?

Answer:

- A preconditioner requiring few 'irregular' computations
- Trade volume of computations for speed
- If possible something that is robust for indefinite case
> Good candidate:
- Multilevel Recursive Low-Rank (MRLR) approximate inverse preconditioners

Related work:

- Work on HSS matrices [e.g., Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li, Fast algorithms for hierarchically semiseparable matrices, Numerical Linear Algebra with Applications, 17 (2010), pp. 953-976.]
- Work on H-matrices [Hackbusch, ...]
- Work on ‘balanced incomplete factorizations’ (R. Bru et al.)
- Work on "sweeping preconditioners" by Engquist and Ying.
- Work on computing the diagonal of a matrix inverse [Jok Tang and YS (2010) ..]

Low-rank Multilevel Approximations

$>$ Starting point: symmetric matrix derived from a 5-point discretization of a 2-D Pb on $\boldsymbol{n}_{\boldsymbol{x}} \times \boldsymbol{n}_{\boldsymbol{y}}$ grid

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{cccc|ccc}
\boldsymbol{A}_{1} & \boldsymbol{D}_{2} & & & & & \\
\boldsymbol{D}_{2} & \boldsymbol{A}_{2} & \boldsymbol{D}_{3} & & & & \\
& \ddots & \cdots & \ddots & & & \\
& & \boldsymbol{D}_{\alpha} & \boldsymbol{A}_{\alpha} & \boldsymbol{D}_{\alpha+1} & & \\
\hline & & & \boldsymbol{D}_{\alpha+1} & \boldsymbol{A}_{\alpha+1} & \cdots & \\
& & & & \ddots & \cdots & \cdots \\
& & & & & \boldsymbol{D}_{n_{y}} & \boldsymbol{A}_{n_{y}}
\end{array}\right) \\
& A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
\boldsymbol{A}_{21} & \boldsymbol{A}_{22}
\end{array}\right) \equiv\left(\begin{array}{ll}
\boldsymbol{A}_{11} & \\
& A_{22}
\end{array}\right)+\left(\begin{array}{ll}
& A_{12} \\
& \boldsymbol{A}_{21}
\end{array}\right)
\end{aligned}
$$

$>A_{11} \in \mathbb{R}^{m \times m}, A_{22} \in \mathbb{R}^{(n-m) \times(n-m)}$
Assume $0<m<n$, and m is a multiple of n_{x}
$>$ In the simplest case second matrix is:

Write this as:

> Above splitting can be rewritten as

$$
\boldsymbol{A}=\left(\begin{array}{cc}
\boldsymbol{A}_{11}+\boldsymbol{E}_{1} \boldsymbol{E}_{1}^{T} & \\
& \boldsymbol{A}_{22}+\boldsymbol{E}_{2} \boldsymbol{E}_{2}^{T}
\end{array}\right)-\left(\begin{array}{ll}
\boldsymbol{E}_{1} \boldsymbol{E}_{1}^{T} & \boldsymbol{E}_{1} \boldsymbol{E}_{2}^{T} \\
\boldsymbol{E}_{2} \boldsymbol{E}_{1}^{T} & \boldsymbol{E}_{2} \boldsymbol{E}_{2}^{T}
\end{array}\right) . \text { i.e., }
$$

$$
\begin{gathered}
A=\boldsymbol{B}-\boldsymbol{E} \boldsymbol{E}^{T} \\
B:=\left(\begin{array}{cc}
\boldsymbol{B}_{1} & \\
& \boldsymbol{B}_{2}
\end{array}\right) \in \mathbb{R}^{n \times n}, \quad \boldsymbol{E}:=\binom{\boldsymbol{E}_{1}}{\boldsymbol{E}_{2}} \in \mathbb{R}^{n \times n_{x}},
\end{gathered}
$$

Note: $\boldsymbol{B}_{1}:=\boldsymbol{A}_{11}+\boldsymbol{E}_{1} \boldsymbol{E}_{1}^{T}, \quad B_{2}:=\boldsymbol{A}_{22}+\boldsymbol{E}_{2} \boldsymbol{E}_{2}^{T}$.

Shermann-Morrison formula:

$$
\begin{aligned}
A^{-1} & \equiv B^{-1}+\boldsymbol{B}^{-1} \boldsymbol{E} \boldsymbol{X}^{-1} \boldsymbol{E}^{T} \boldsymbol{B}^{-1} \\
\boldsymbol{X} & =\boldsymbol{I}-\boldsymbol{E}^{T} \boldsymbol{B}^{-1} \boldsymbol{E}
\end{aligned}
$$

> First thought : approximate \boldsymbol{X} and exploit recursivity

$$
B^{-1}\left[\boldsymbol{v}+\boldsymbol{E} \tilde{\boldsymbol{X}}^{-1} \boldsymbol{E}^{T} \boldsymbol{B}^{-1} \boldsymbol{v}\right] .
$$

> However wont work: cost explodes with \# levels
> Alternative: lowrank approx. for $\boldsymbol{B}^{-1} \boldsymbol{E}$

$$
B^{-1} E \approx U_{k} V_{k}^{T}
$$

$$
\begin{aligned}
& U_{k} \in \mathbb{R}^{n \times k}, \\
& V_{k} \in \mathbb{R}^{n_{x} \times k},
\end{aligned}
$$

$>$ Replace $\boldsymbol{B}^{-1} \boldsymbol{E}$ by $\boldsymbol{U}_{k} V_{k}^{T}$ in $\boldsymbol{X}=\boldsymbol{I}-\left(\boldsymbol{E}^{T} \boldsymbol{B}^{-1}\right) \boldsymbol{E}$:

$$
X \approx G_{k}=I-V_{k} \boldsymbol{U}_{k}^{T} \boldsymbol{E}, \quad\left(\in \mathbb{R}^{n_{x} \times n_{x}}\right) \quad \text { Leads to } \ldots
$$

> Preconditioner:

$$
\begin{gathered}
M^{-1}=B^{-1}+U_{k}\left[V_{k}^{T} G_{k}^{-1} V_{k}\right] U_{k}^{T} \\
\text { Use recursivity }
\end{gathered}
$$

$$
M^{-1}=B^{-1}+U_{k} \boldsymbol{H}_{k} U_{k}^{T}, \quad \text { with } \quad \boldsymbol{H}_{k}=\boldsymbol{V}_{k}^{T} G_{k}^{-1} V_{k}
$$

> We can show:

$$
H_{k}=\left(I-U_{k}^{T} E V_{k}\right)^{-1}
$$

\ldots and $\boldsymbol{H}_{k}^{T}=\boldsymbol{H}_{k}$
Question: How to generalize this?
> Adopt a Domain Decomposition viewpoint
> Implemented \& tested for general matrices
> See paper for details
 implementation on GPUs still far away

An example - Helmoltz-like equation

$$
-\frac{\partial^{2} u}{\partial x^{2}}-\frac{\partial^{2} u}{\partial y^{2}}-\rho u=-6-\rho\left(2 x^{2}+y^{2}\right) \text { in } \Omega
$$

+ Boundary conditions so solution is known
$>\rho=$ constant selected to make problem more or less difficult
$>$ Finite differences on a 66×66 mesh (matrix size 4,096).
$>\rho=845$ selected so original Laplacean is shifted by 0.2
$>$ Observation: MRLR starts converging for $k=2$.

Comparison with ILUTP for 2D Helmholtz example

Standard ILUTP vs. MRLR-E; \# levels = 7 for MRLR

k	$\mathrm{nlev}=7$	$\mathrm{nlev}=6$	nlev=5	nlev=4	nlev=3		
2	318	3.56	372	4.36	261	4.77	183

MRLR-E: GMRES(40) iteration counts and fill ratios

Helmoltz-like equation - a 3D case

$>$ Similar set-up to 2D case. Solution known.
$>26 \times 26 \times 26$ grid \rightarrow size $n=24^{3}=13,824$
$>\rho=312.5 \rightarrow$ shift $==0.5 \rightarrow$ very indefinite problem

GMRES(40)-MRLR iteration counts and fill ratios

	nlev=6		nlev=5		nlev=4	
	\# its	fill	\# its	fill	\# its	fill
2	377	5.49	177	6.66	114	8.46
4	293	6.97	138	7.84	88	9.35
6	187	8.46	101	9.03	73	10.23
8	116	9.95	78	10.22	51	11.12

> ILUTP fails even for quite small values of droptol (fill-fact > 11.60)

In summary:

- $\approx 10-x$ speed-up for sparse matvecs with GPUs relative to (Intel Xeon E5504) CPU
- Modest gains on overall preconditoned Krylov solver on GPU (up to $\approx 7-x$ speedup) with ILU
- General rule: Avoid ILU - especially with high fill level
- 'Sub-optimal' polynomial preconditioner does well
- Usual 'optimal' approaches must be revisited.
- Promising approach: RMLR approximate inverse

Conclusion

Conclusion

> Dont know what future will bring, but ...
$>$... if you need to implement irregular sparse computations on GPUs ...

> ... your future is likely to include lots of hard work ...
> ... and disappointment

Conclusion

> Dont know what future will bring, but ...
> ... if you need to implement irregular sparse computations on GPUs ...

> ... your future is likely to include lots of hard work ...
> ... and disappointment
> Either the hardware will evolve to yield good performance for sparse computations or we will need to be *very* creative ...

Q U ESTIONS??

Generalization: Domain Decomposition framework

Domain partitioned into 2 domains with an edge separator

> Matrix can be permuted to:

$$
P A P^{T}=\left(\begin{array}{cc|c}
\hat{B}_{1} & \hat{F}_{1} & \\
\hat{\boldsymbol{F}}_{1}^{T} & C_{1} & \\
\hline & & -X \\
\hline & -X^{T} & \hat{\boldsymbol{B}}_{2} \\
\hat{F}_{2}^{T} & \hat{F}_{2} \\
& C_{2}
\end{array}\right)
$$

> Interface nodes in each domain are listed last.
$>$ Each matrix \hat{B}_{i} is of size $n_{i} \times n_{i}$ (interior var.) and the matrix C_{i} is of size $m_{i} \times m_{i}$ (interface var.)

$$
\begin{gathered}
\text { Let: } \quad E_{\alpha}=\left(\begin{array}{c}
0 \\
\alpha I \\
0 \\
\frac{X^{T}}{\alpha}
\end{array}\right) \quad \text { then we have: } \\
P A P^{T}=\left(\begin{array}{ll}
B_{1} & \\
& B_{2}
\end{array}\right)-\boldsymbol{E} \boldsymbol{E}^{T} \quad \text { with } \quad \boldsymbol{B}_{i}=\left(\begin{array}{cc}
\hat{B}_{i} & \hat{\boldsymbol{F}}_{1} \\
\hat{F}_{i}^{T} & C_{i}+D_{i}
\end{array}\right) \\
\text { and }\left\{\begin{array}{l}
\boldsymbol{D}_{1}=\alpha^{2} \boldsymbol{I} \\
\boldsymbol{D}_{2}=\frac{1}{\alpha^{2}} \boldsymbol{X}^{T} \boldsymbol{X}
\end{array}\right.
\end{gathered}
$$

$>\alpha$ used for balancing
> Better way to achieve balancing: $\boldsymbol{X}=\boldsymbol{L} \boldsymbol{U}$
$>L \in \mathbb{R}^{m_{1} \times l}$ and $U \in \mathbb{R}^{l \times m_{2}}$, in which $l=\min \left(m_{1}, m_{2}\right)$.
$>$ Note: \boldsymbol{X} not square.
Then take: $\quad E_{L U}=\left(\begin{array}{c}0 \\ L \\ 0 \\ U^{T}\end{array}\right)$,
$>D_{1}=L L^{T}$ and $D_{2}=U^{T} \boldsymbol{U}$. Now \boldsymbol{E} is of size $\boldsymbol{n} \times l$.

General matrices

> 17 matrices from the Univ. Florida sparse matrix collection + one from a shell problem.
> 7 matrices are SPD
$>$ Size varies from $n=1,224$ (HB/bcsstm27) to $n=9,000$ (AG-Monien/3elt1 dual)
$>$ nnz varies from $\boldsymbol{n n z}=5,300(\mathrm{HB} / \mathrm{bcspwr06})$ to $\boldsymbol{n n z}=$ 355, 460 (Boeing/bcsstk38).

MATRICES (SPD)	RMLR				ICT/ILUTP	
	nlev	k	fill-ratio	\#its	fill-ratio	\#its
FIDAP/ex10	3	4	0.7	220	1.4	F
FIDAP/ex10hs	3	4	0.7	151	1.2	F
HB/bcsstk24	3	50	2.6	149	4.2	348
HB/bcsstk28	3	60	2.5	127	2.5	204
Cylshell/s3rmt3m1	3	50	2.6	213	2.8	F
Cylshell/s3rmt3m3	4	50	2.9	127	3.2	249
Boeing/bcsstk38	3	40	2.6	112	2.6	F

RMLR vs. ICT/ILUTP

| MATRICES (Non SPD) | RMLR | | | | ICT/ILUTP |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | nlev | k fill-ratio | \#its | fill-ratio | \#its |

> RMLR vs. ICT/ILUTP

