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Introduction

ä Krylov subspace methods offer a good alternative to direct
solution methods - especially for 3D problems

ä Compromise between performance and robustness

ä Current challenges:

• Highly indefinite systems [Helmholtz, Maxwell, ...]
• Highly ill-conditioned systems
• Problems with extremely irregular structure
• Recent: impact of new architectures [many core, GPUs]
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Introduction (cont.)

Two distinct issues:

• Performance degradation due to ‘irregular sparsity’

• Performance degradation due to problem size / GPU memory
limitation

Observation:
ä The wave of GPUs present many of the features of the
wave of vector supercomputing and SIMD supercomputing of
the 1980’s and 1990’s.

• Need to rethink notion of ‘optimality’

Past: counted only flops – Krylov subspace can be optimal
(or near-optimal) for op. counts ä questioned already in 1990s
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ä Does anyone remember:

• FPS 164

• Connection Machine

• MasPar

• ICL DAP [1970’s]?

ä Difficulties were quite similar . . . Go to the past and back !

ä Go back to the 1980s and 1990s to search for effective
techniques.. ?
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GPU Computing

ä GPUs popular as : inexpensive attached processers

ä Can buy∼ one Teraflop peak power for around $1,000 +

ä Initial use: real-time high-
definition 3D graphics
ä Highly parallel (SIMD), many-
core, high computational power,
high memory bandwidth
ä Recent announce: NVIDIA
K10 - Kepler based, 3K cores, 4.6
TFLOPS peak
ä Inexpensive GFLOPS

Tesla C1060

** Joint work with Ruipeng Li
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CUDA (Compute Unified Device Architecture)

• SIMD-type parallelism

• Programmable in C/C++ with CUDA extensions/ tools

• Wrapper available for Python, FORTRAN, Java and MATLAB

• CuBLAS, CuFFT

• Some major changes in coding habits (e.g. no OS on GPU
side)
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The CUDA environment: The big picture

ä A host (CPU) and an attached device (GPU)

Typical program:

1. Generate data on CPU
2. Allocate memory on GPU

cudaMalloc(...)
3. Send data Host→ GPU

cudaMemcpy(...)
4. Execute GPU ‘kernel’:
kernel <<<(...)>>>(..)
5. Copy data GPU→CPU

cudaMemcpy(...)
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Sparse Matrix Vector Product (Spmv)

ä Important operaytion in Krylov subspace methods + in ap-
plications (FEM, ...)

ä Yields a small fraction of peak performance (indirect and
irregular memory accesses)

ä High-performance parallel Spmv kernel implemented on
GPUs + various optimizations for different formats..
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Hardware used

ä CPU: Intel Xeon E5504 2.00 GHz

ä GPU: NVIDIA Tesla C1060

Tesla C1060:

* 240 cores per GPU
* 4 GB memory
* Peak rate: 930 Gfl [single]
* Clock rate: 1.3 Ghz
* ‘Compute Capability’: 1.3 [allows
double precision]
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CSR Format Spmv – CPU vs. GPU

CPU GPU
Matrix N NNZ Gflops Gflops
Boeing/bcsstk36 23,052 1,143,140 0.93 8.1
Boeing/ct20stif 52,329 2,698,463 0.88 8.9
DNVS/ship_003 121,728 8,086,034 0.89 9.1
COP/CASEYK 696,665 4,661,931 0.58 2.9 S
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CPU GPU
Matrix N NNZ Gflops Gflops
Boeing/bcsstk36 23,052 1,143,140 0.83 6.3
Boeing/ct20stif 52,329 2,698,463 0.81 7.1
DNVS/ship_003 121,728 8,086,034 0.81 7.2
COP/CASEYK 696,665 4,661,931 0.4 2.0 D

ou
bl
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.
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Sparse Matvecs - 3 different formats

ä Matrices:
Matrix -name N NNZ
FEM/Cantilever 62,451 4,007,383
Boeing/pwtk 217,918 11,634,424

Single Precision Double Precision
Matrix CSR JAD DIA CSR JAD DIA

FEM/Cantilever 9.4 10.8 25.7 7.5 5.0 13.4
Boeing/pwtk 8.9 16.6 29.5 7.2 10.4 14.5
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Sparse Forward/Backward Sweeps

ä Next major ingredient of precond. Krylov subs. methods

ä ILU preconditioning
operations require L/U
solves: x← U−1L−1x
ä Sequential outer loop.

for i=1:n
for j=ia(i):ia(i+1)

x(i) = x(i) - a(j)*x(ja(j))
end

end

ä Parallelism can be achieved with level scheduling:

• Group unknowns into levels
• unknowns x(i) of same level can be computed simultane-

ously
• 1 ≤ nlev ≤ n
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ILU: Sparse Forward/Backward Sweeps

• Very poor performance [relative to CPU]

Matrix N
CPU GPU-Lev

Mflops #lev Mflops
Boeing/bcsstk36 23,052 627 4,457 43
FEM/Cantilever 62,451 653 2,397 168
COP/CASEYK 696,665 394 273 142
COP/CASEKU 208,340 373 272 115
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GPU Sparse Triangular Solve with Level Scheduling
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ä Performance can be *very* poor when #levs is large: worst
case: #levs=n,≈ 2 Mflops

ä Can reduce the number of levels drastically with Min. De-
gree order.

ä Remember Multicolor ordering? Could use this too...

ä Other issues involved. Main ones: cost of MD ordering itself
for MMD; Number of iterations ↑ for multicoloring

ä In general: best to avoid ILU-type preconditioners
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ILU Preconditioning : ILU0 Preconditioned GMRES

tol = 1.0e-6; Max Iters=1,000; Matrix format: CSR

Matrix its.
ITSOL GPUsol

Speedup
sec. sec.

Boeing/msc10848 39 2.13 0.73 2.9
Boeing/ct20stif Fail 157.5 40.4
DNVS/ship_003 760 323.0 80.9 4.0
COP/CASEYK 100 61.81 7.72 8.0 S
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ILU0 Preconditioned GMRES Solver Time
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ILU(2) Preconditioned GMRES

Matrix its.
ITSOL GPUsol

Speedup
sec. sec.

Boeing/msc10848 2 0.32 0.21 1.5
Boeing/ct20stif 33 8.72 6.45 1.3
DNVS/ship_003 30 22.4 12.7 1.8
COP/CASEYK 33 33.8 8.88 3.8 S

in
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.

ILU(2) Preconditioned GMRES Solver Time

ä tol = 1.0e-6; MaxIters=500; Matrix format:CSR

ä Speedup drops ! ... Denser L/U, #levels↑ Performance of
L/U solve↓
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Back to the 1980s: Polynomial Preconditioners

• M−1 = s(A), where s(t) is a polynomial of low degree

• Solve: s(A) ·Ax = s(A) · b

• s(A) need not be formed explicitly

• s(A) ·Av: Preconditioning Operation: a sequence of matrix-
by-vector product to exploit high performance Spmv kernel

• Inner product on space Pk (ω ≥ 0 is a weight on (α, β))

〈p, q〉ω =
∫ β
α p(λ)q(λ)ω (λ) dλ

• Seek polynomial sk−1 of degree≤ k − 1 which minimizes

‖1− λs(λ)‖ω
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Always add diagonal scaling

A← D−
1
2 ·A ·D−1

2

ä D is the diagonal of A. Scale A′s rows and columns
symmetrically by A← D−

1
2 ·A ·D−1

2

ä aii = 1

ä Some improvements (in general) at virtually no cost

Recall one of the main arguments against polynomial precon-
ditioning: It is sub-optimal [consider the SPD case only].
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L-S Polynomial Preconditioning

Tol = 1.0e-6; Max Iters = 1,000; SPD Matrices; Degree = 8;
*:MD reordering applied

Matrix
ITSOL-ILU(3) GPU-ILU(3) L-S Polyn(8)

its. sec. its. sec. its. sec.
bcsstk36 Fail 93.7 351∗ 10.6∗ 586 3.0
ct20stif 27 9.3 21∗ 2.2∗ 91 0.83
ship_003 27 27.9 27 21.1 142 3.3
msc23052 181 19.4 181 6.0 586 2.9
bcsstk17 46 1.8 46 2.8 303 0.91
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ILU(3) & L-S Polynomial Preconditioning
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L-S Polynomial Preconditioning

Tol=1.0e-6; MaxIts=1,000; *:MD reordering applied

Matrix
ITSOL-ILU(3) GPU-ILU(3) L-S Polyn

iter. sec. iter. sec. iter. sec. Deg
bcsstk36 Fail 351∗ 10.6∗ 31 1.34 100
ct20stif 27 9.4 21∗ 2.22∗ 16 0.70 50
ship_003 27 25.8 27 21.1 10 2.90 100
msc23052 181 18.5 181 6.0 37 1.28 80
bcsstk17 46 1.8 46 2.8 22 0.55 120

si
ng

le
pr

ec
.

ILU(3) & L-S Polynomial Preconditioning

20 SIAM-LAA – June 19, 2012



Must account for preconditioner construction time

• High level fill-in ILU preconditioner can be very expensive to
build

• L-S Polynomial preconditioner set-up time≈ very low

• Example: ILU(3) and L-S Poly with 20-step Lanczos proce-
dure (for estimating interval bounds).

Matrix N
ILU(3) LS-Poly
sec. sec.

Boeing/ct20stif 23,052 15.63 0.26

Preconditioner Construction Time
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GPUsol Library:

GPUsol.a:

ww
w.
cs
.u
mn
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/~
sa
ad
/s
of
tw
ar
e

• Matrix Formats:

– CSR, JAD, DIA

• Accelerator: FGMRES

• Preconditioners:

– ILUT, ILUK (+ level sched.)
– L-S Polynomial
– Block ILU

• Utilities:

– RCM/MMD reordering
– GPU Lanczos Algorithm

ä Developed by: Ruipeng Li
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Back to the future: An alternative (work in progress)

ä What would be a good alternative?

Answer:

• A preconditioner requiring few ‘irregular’ computations
• Trade volume of computations for speed
• If possible something that is robust for indefinite case

ä Good candidate:

• Multilevel Recursive Low-Rank (MRLR) approximate inverse
preconditioners
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Related work:

• Work on HSS matrices [e.g., JIANLIN XIA, SHIVKUMAR CHAN-
DRASEKARAN, MING GU, AND XIAOYE S. LI, Fast algorithms for
hierarchically semiseparable matrices, Numerical Linear Alge-
bra with Applications, 17 (2010), pp. 953–976.]

• Work on H-matrices [Hackbusch, ...]

• Work on ‘balanced incomplete factorizations’ (R. Bru et al.)

• Work on “sweeping preconditioners” by Engquist and Ying.

• Work on computing the diagonal of a matrix inverse [Jok Tang
and YS (2010) ..]
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Low-rank Multilevel Approximations

ä Starting point: symmetric matrix derived from a 5-point
discretization of a 2-D Pb on nx × ny grid

A =



A1 D2

D2 A2 D3
. . . . . . . . .

Dα Aα Dα+1

Dα+1 Aα+1
. . .

. . . . . . . . .
Dny Any


A =

(
A11 A12

A21 A22

)
≡
(
A11

A22

)
+

(
A12

A21

)
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ä A11 ∈ Rm×m, A22 ∈ R(n−m)×(n−m)

Assume 0 < m < n, and m is a multiple of nx

ä In the simplest case second matrix is:

(
A12

A21

)
= − I

− I
Write this as:

I I

=

I

I

+

I+

− I

− I

I I

I

T
E E

=E
T
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ä Above splitting can be rewritten as

A =

(
A11 + E1E

T
1

A22 + E2E
T
2

)
−
(
E1E

T
1 E1E

T
2

E2E
T
1 E2E

T
2

)
. i.e.,

A = B − EET ,

B :=

(
B1

B2

)
∈ Rn×n, E :=

(
E1

E2

)
∈ Rn×nx,

Note: B1 := A11 + E1E
T
1 , B2 := A22 + E2E

T
2 .

ä Shermann-Mor-
rison formula:

A−1 ≡ B−1 +B−1EX−1ETB−1

X = I − ETB−1E
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ä First thought : approximate X and exploit recursivity

B−1[v + EX̃−1ETB−1v].

ä However wont work : cost explodes with # levels

ä Alternative: low-
rank approx. for B−1E

B−1E ≈ UkV T
k ,

Uk ∈ Rn×k,
Vk ∈ Rnx×k,

ä Replace B−1E by UkV T
k in X = I − (ETB−1)E:

X ≈ Gk = I − VkUT
k E, (∈ Rnx×nx) Leads to ...

ä Preconditioner: M−1 = B−1 + Uk[V
T
k G

−1
k Vk]U

T
k

↖
Use recursivity
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M−1 = B−1 + UkHkU
T
k , with Hk = V T

k G
−1
k Vk.

ä We can show: Hk = (I − UT
k EVk)

−1

... and HT
k = Hk

Question: How to generalize this?

ä Adopt a Domain Decompo-
sition viewpoint
ä Implemented & tested for
general matrices
ä See paper for details

l
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l

l

ll

Ω 1

Ω
2 ä Note:

implementation on GPUs still far away
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An example - Helmoltz-like equation

−
∂2u

∂x2
−
∂2u

∂y2
− ρu = −6− ρ

(
2x2 + y2

)
in Ω,

+ Boundary conditions so solution is known

ä ρ = constant selected to make problem more or less difficult

ä Finite differences on a 66× 66 mesh (matrix size 4,096).

ä ρ = 845 selected so original Laplacean is shifted by 0.2

ä Observation: MRLR starts converging for k = 2.

30 SIAM-LAA – June 19, 2012



Comparison with ILUTP for 2D Helmholtz example
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MLLR k=2

MLLR k=3

MLLR k=5

ILUTP(0.01)  

8.48

5.387.43 4.36

Standard ILUTP vs. MRLR-E; # levels = 7 for MRLR
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k nlev=7 nlev=6 nlev=5 nlev=4 nlev=3
2 318 3.56 372 4.36 261 4.77 183 4.80 47 5.53
3 192 4.78 144 5.38 144 5.59 102 5.41 38 5.94
4 181 6.03 132 6.41 74 6.41 45 6.02 35 6.35
5 75 7.20 63 7.43 39 7.22 33 6.63 31 6.76
6 45 8.52 41 8.46 35 8.04 29 7.24 28 7.16

MRLR-E: GMRES(40) iteration counts and fill ratios
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Helmoltz-like equation - a 3D case

ä Similar set-up to 2D case. Solution known.

ä 26× 26× 26 grid→ size n = 243 = 13, 824

ä ρ = 312.5→ shift == 0.5→ very indefinite problem

GMRES(40)-MRLR
iteration counts and
fill ratios

nlev=6 nlev=5 nlev=4
k # its fill # its fill # its fill
2 377 5.49 177 6.66 114 8.46
4 293 6.97 138 7.84 88 9.35
6 187 8.46 101 9.03 73 10.23
8 116 9.95 78 10.22 51 11.12

ä ILUTP fails even for quite small values of droptol (fill-fact >
11.60)
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In summary:

•≈ 10-x speed-up for sparse matvecs with GPUs relative to
(Intel Xeon E5504) CPU

• Modest gains on overall preconditoned Krylov solver on GPU
(up to≈ 7-x speedup) with ILU

• General rule: Avoid ILU - especially with high fill level

• ‘Sub-optimal’ polynomial preconditioner does well

• Usual ’optimal’ approaches must be revisited.

• Promising approach: RMLR approximate inverse
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Conclusion

ä Dont know what future will
bring, but ...
ä ... if you need to implement
irregular sparse computations
on GPUs ...
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Conclusion

ä Dont know what future will
bring, but ...
ä ... if you need to implement
irregular sparse computations
on GPUs ...

ä ... your future is likely to include lots of hard work ...

ä ... and disappointment

36 SIAM-LAA – June 19, 2012



Conclusion

ä Dont know what future will
bring, but ...
ä ... if you need to implement
irregular sparse computations
on GPUs ...

ä ... your future is likely to include lots of hard work ...

ä ... and disappointment

ä Either the hardware will evolve to yield good performance
for sparse computations or we will need to be *very* creative ...
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Q U E S T I O N S ??
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Generalization: Domain Decomposition framework

Domain partitioned into
2 domains with an edge
separator

l

l

l

l

l

l

l

l
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ll

Ω 1

Ω
2

ä Matrix can be
permuted to: PAP T =


B̂1 F̂1

F̂ T
1 C1 −X

−XT

B̂2 F̂2

F̂ T
2 C2


ä Interface nodes in each domain are listed last.
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ä Each matrix B̂i is of size ni × ni (interior var.) and the
matrix Ci is of size mi ×mi (interface var.)

Let: Eα =


0
αI
0
XT

α

 then we have:

PAP T =

(
B1

B2

)
− EET with Bi =

(
B̂i F̂1

F̂ T
i Ci +Di

)

and
{
D1 = α2I
D2 = 1

α2X
TX

.

ä α used for balancing
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ä Better way to achieve balancing: X = LU

ä L ∈ Rm1×l and U ∈ Rl×m2, in which l = min(m1,m2).

ä Note: X not square.

Then take: ELU =


0
L
0
UT

 ,
ä D1 = LLT and D2 = UTU . Now E is of size n× l.
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General matrices

ä 17 matrices from the Univ. Florida sparse matrix collection
+ one from a shell problem.

ä 7 matrices are SPD

ä Size varies from n = 1, 224 (HB/bcsstm27) to n = 9, 000
(AG-Monien/3elt1 dual)

ä nnz varies from nnz = 5, 300 (HB/bcspwr06) to nnz =
355, 460 (Boeing/bcsstk38).
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MATRICES (SPD)
RMLR ICT/ILUTP

nlev k fill-ratio #its fill-ratio #its
FIDAP/ex10 3 4 0.7 220 1.4 F
FIDAP/ex10hs 3 4 0.7 151 1.2 F
HB/bcsstk24 3 50 2.6 149 4.2 348
HB/bcsstk28 3 60 2.5 127 2.5 204
Cylshell/s3rmt3m1 3 50 2.6 213 2.8 F
Cylshell/s3rmt3m3 4 50 2.9 127 3.2 249
Boeing/bcsstk38 3 40 2.6 112 2.6 F

RMLR vs. ICT/ILUTP
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MATRICES (Non SPD)
RMLR ICT/ILUTP

nlev k fill-ratio #its fill-ratio #its
HB/bcsstm27 4 50 1.8 26 2.3 73
HB/bcspwr06 4 5 3.1 6 5.2 F
HB/bcspwr07 5 5 3.2 6 4.8 F
HB/bcspwr08 4 5 2.1 17 5.8 F
HB/blckhole 5 50 12.8 32 21.8 F
HB/jagmesh3 4 5 5.9 30 9.7 111
Boeing/nasa1824 4 60 3.6 116 4.9 150
AG-Monien/3elt_dual 6 5 9.3 12 13.9 F
AG-Monien/airfoil1_dual 6 5 9.5 5 12.7 F
AG-Monien/ukerbe1_dual 4 5 9.1 25 10.5 F
SHELL/COQUE8E3 3 70 5.0 83 5.06 F

RMLR vs. ICT/ILUTP
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