OF MINNESOTA TWIN CITIES

Low-rank correction preconditioning techniques

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

SMAI 2017

Ronce Les Bains, France June 6, 2017

Introduction: Linear System Solvers

Long standing debate: direct vs. iterative

- Starting in the 1970's: huge progress of sparse direct solvers
- Iterative methods Initially not designed for 'general systems'. Big push in the 1980s with help from 'preconditioning'
- ► General consensus now: Direct methods do well for 2-D problems and some specific applications [e.g., structures, ...]
- Usually too expensive for 3-D problems
- Huge difference between 2-D and 3-D case
- Test: Two Laplacean matrices of same dimension n = 122,500. First: on a 350×350 grid (2D); Second: on a $50 \times 50 \times 49$ grid (3D)

> Pattern of a similar [much smaller] coefficient matrix

A few observations

- Problems are getting harder for Sparse Direct methods (more 3-D models, much bigger problems,..)
- Problems are also getting difficult for iterative methods: More complex models - away from Poisson
- Researchers on both camps are learning each other's tricks to develop preconditioners.
- Much of recent work on solvers has focussed on:
- (1) Parallel implementation scalable performance
- (2) Robustness, more general preconditioners

Background: Preconditioned iterative solvers

$$Ax = b$$

 \succ A is a general sparse matrix

Solve by: Preconditioned Krylov subspace methods

Two ingredients:

To solve:

• A preconditioner: makes the system easier to solve by accelator, e.g. Incomplete LU factorizations; $Ax = b \ o \ M^{-1}Ax = M^{-1}b$

• An accelerator: Conjugate gradient, BiCG, GMRES, BICGSTAB,.. ['Krylov subspace methods']

Preconditioned CG (PCG); A: Symmetric Positive Definite

ALGORITHM : 1 Preconditioned CG

1. Compute
$$r_0 := b - Ax_0$$
, $z_0 = M^{-1}r_0$, and $p_0 := z_0$
2. For $j = 0, 1, ...,$ until convergence Do:
3. $\alpha_j := (r_j, z_j)/(Ap_j, p_j)$
4. $x_{j+1} := x_j + \alpha_j p_j$
5. $r_{j+1} := r_j - \alpha_j [Ap_j]$
6. $z_{j+1} := M^{-1}r_{j+1}$
7. $\beta_j := (r_{j+1}, z_{j+1})/(r_j, z_j)$
8. $p_{j+1} := z_{j+1} + \beta_j p_j$
9. EndDo

> M = preconditioning matrix, e.g., M = LU from ILU

Background: Incomplete LU (ILU) preconditioners

Common difficulties of ILUs: Often fail for indefinite problems Not too good for highly parallel environments Sparse matrix computations with GPUs **

GPUs Currently a very popular approach to: inexpensive supercomputing

> Can buy \sim one Teraflop peak power for around a little more tham \$1,000

** Joint work with Ruipeng Li

Tesla C 1060:

- * 240 cores
- * 4 GB memory
- * Peak rate: 930 GFLOPS [single]
- * Clock rate: 1.3 Ghz
- * 'Compute Capability': 1.3 [allows double precision]

Next: Fermi [48 cores/SM]— followed by: Kepler...

▶ Tesla K 80 : $2 \times 2,496 \rightarrow 4992$ GPU cores. 24 GB Mem.; Peak: \approx 2.91 TFLOPS double prec. [with clock Boost].

The CUDA environment: The big picture

A host (CPU) and an attached device (GPU)

Typical program:

Sparse matrix computations on GPUs

Main issue in using GPUs for sparse computations:

• Huge performance degradation due to 'irregular sparsity'

	Matrix -name	N	NNZ
Matrices:	FEM/Cantilever	62,451	4,007,383
	Boeing/pwtk	217,918	11,634,424

Performance of Mat-Vecs on NVIDIA Tesla C1060

	Sing	gle Pr	ecision	Dοι	ıble P	recision
Matrix	CSR	JAD	DIA+	CSR	JAD	DIA+
FEM/Cantilever	9.4	10.8	25.7	7.5	5.0	13.4
Boeing/pwtk	8.9	16.6	29.5	7.2	10.4	14.5

More recent tests: NVIDIA M2070 (Fermi), Xeon X5675 Double precision in Gflops

MATRIX	Dim. N	CPU	CSR	JAD	HYB	DIA
rma10	46,835	3.80	10.19	12.61	8.48	-
cfd2	123,440	2.88	8.52	11.95	12.18	-
majorbasis	160,000	2.92	4.81	11.70	11.54	13.06
af_shell8	504,855	3.13	10.34	14.56	14.27	-
lap7pt	1,000,000	2.59	4.66	11.58	12.44	18.70
atmosmodd	1,270,432	2.09	4.69	10.89	10.97	16.03

CPU SpMV: Intel MKL, parallelized using OpenMP
 HYB: from CUBLAS Library. [Uses ellpack+csr combination]

(*) Thanks: all matrices from the Univ. Florida sparse matrix collection

Sparse Forward/Backward Sweeps

Next major ingredient of precond. Krylov subs. methods

ILU preconditioning operations require L/U solves: $x \leftarrow U^{-1}L^{-1}x$ Sequential outer loop.

for i=1:n for j=ia(i):ia(i+1) $x(i) = x(i) - a(j)^*x(ja(j))$ end end

Parallelism can be achieved with level scheduling:

- Group unknowns into levels
- Compute unknowns x(i) of same level simultaneously
- $ullet 1 \leq nlev \leq n$

ILU: Sparse Forward/Backward Sweeps

• Very poor performance [relative to CPU]

Matrix	N	CPU	GPL	J-Lev	
Iviatita	IN	Mflops	#lev	Mflops	ble
Boeing/bcsstk36	23,052	627	4,457	43	era
FEM/Cantilever	62,451	653	2,397	168	nis
COP/CASEYK	696,665	394	273	142	
COP/CASEKU	208,340	373	272	115	Lec

GPU Sparse Triangular Solve with Level Scheduling

- Very poor performance when #levs is large
- ► A few things can be done to reduce the # levels but perf. will remain poor

... prepare for the demise of the GPUs...

... or the demise of the ILUs ?

Alternatives to ILU preconditioners

What would be a good alternative?

Wish-list: A preconditioner that

- Requires few 'irregular' computations
- Trades volume of computations for speed
- Is robust for indefinite problems
- Candidate:

• Multilevel Low-Rank (MLR) approximate inverse preconditioners 1. Low-rank Multilevel Approximations: divide & conquer

Starting point: symmetric matrix derived from a 5-point discretization of a 2-D Pb on $n_x \times n_y$ grid

Above splitting can be rewritten as

$$A = \underbrace{(A + EE^T)}_B - EE^T$$

$$egin{aligned} egin{aligned} egin{aligned} eta &=eta - eta E^T,\ B &:= egin{pmatrix} eta_1 & \ & B_2 \end{pmatrix} \in \mathbb{R}^{n imes n}, & eta &:= egin{pmatrix} eta_1 & \ & E_2 \end{pmatrix} \in \mathbb{R}^{n imes n_x}, \end{aligned}$$

Note: $B_1 := A_{11} + E_1 E_1^T$, $B_2 := A_{22} + E_2 E_2^T$.

Next :
 Use Shermann Morrison formula:

$$A^{-1} = B^{-1} + (B^{-1}E)X^{-1}(B^{-1}E)^{T}$$
$$X = I - E^{T}B^{-1}E$$

Method: Use low- $B^{-1}E pprox U_k V_k^T, egin{array}{c} U_k \in \mathbb{R}^{n imes k}, \ V_k \in \mathbb{R}^{n_x imes k}, \ V_k \in \mathbb{R}^{n_x imes k}. \end{array}$ rank approx. for $B^{-1}E$

► Replace $B^{-1}E$ by $U_kV_k^T$ in $X = I - (E^TB^{-1})E$: $X \approx G_k = I - V_k U_k^T E$, $(\in \mathbb{R}^{n_x \times n_x})$ Leads to ... Preconditioner

$$M^{-1} = B^{-1} + U_k H_k U_k^T, \quad H_k = V_k^T G_k^{-1} V_k$$

We can show :

$$egin{array}{ll} H_k &= (I - U_k^T E V_k)^{-1} & ext{and} \ H_k^T &= H_k & \end{array}$$

Recursive multilevel framework

•
$$A_i = B_i + E_i E_i^T$$
, $B_i \equiv \begin{pmatrix} B_{i_1} \\ B_{i_2} \end{pmatrix}$.

- Next level, set $A_{i_1}\equiv B_{i_1}$ and $A_{i_2}\equiv B_{i_2}$
- Repeat on A_{i_1}, A_{i_2}
- Last level, factor A_i (IC, ILU)
- Binary tree structure:

Theory: 2-level analysis for model problem

► Interested in eigenvalues γ_j of $A^{-1} - B^{-1} = B^{-1}EX^{-1}E^TB^{-1}$ when A = Pure Laplacean ... They are:

> Decay of the γ_j 's when nx = ny = 32.

Note $\sqrt{\beta_j}$ are the singular values of $B^{-1}E$.

In this particular case 3 eigenvectors will capture 92 % of the inverse whereas 5 eigenvectors will capture 97% of the inverse.

2. Avoiding recursivity: 'standard' DD framework

• Domain partitioned in *p* sub-domains [edge-separation]. Interface nodes in each subdomain listed last.

\$\hoightarrow F_i\$ maps local interface points to interior points in domain \$\Omega_i\$
 \$\hoightarrow E_i^T\$ does the reverse operation

Example:

► Global matrix has the form $\begin{pmatrix} B & E \\ E^T & C \end{pmatrix}$

Splitting

Split as:
$$A \equiv \begin{pmatrix} B & \hat{F} \\ \hat{E}^T & C \end{pmatrix} = \begin{pmatrix} B \\ C \end{pmatrix} + \begin{pmatrix} \hat{F} \\ \hat{E}^T \end{pmatrix}$$
Define:
$$F \equiv \begin{pmatrix} \alpha^{-1}\hat{F} \\ -\alpha I \end{pmatrix}; \quad E \equiv \begin{pmatrix} \alpha^{-1}\hat{E} \\ -\alpha I \end{pmatrix} \quad \text{Then:}$$

$$\begin{bmatrix} B & |\hat{F} \\ \hat{E}^T & C \end{bmatrix} = \begin{bmatrix} B + \alpha^{-2}\hat{F}\hat{E}^T & 0 \\ 0 & |C + \alpha^2 I \end{bmatrix} - FE^T.$$

α is a parameter
 Property: $\hat{F}\hat{E}^T$ is 'local', i.e., no interdomain couplings →

$$egin{aligned} egin{aligned} A_0 &\equiv \left[egin{aligned} B+lpha^{-2}\hat{F}\hat{E}^T & 0 \ 0 & C+lpha^2 I \ \end{bmatrix} \ &= ext{block-diagonal} \end{aligned} \end{aligned}$$

Low-Rank Approximation DD preconditioners

 $Sherman-Morrison \rightarrow$

$$A^{-1} = A_0^{-1} + A_0^{-1} F G^{-1} E^T A_0^{-1}$$
$$G \equiv I - E^T A_0^{-1} F$$

Options: (a) Approximate $A_0^{-1}F, E^T A_0^{-1}, G^{-1}$ [as before] (b) Approximate only G^{-1} [new]

> (b) requires 2 solves with A_0 .

Let $G \approx G_k$ Preconditioner \rightarrow

$$M^{-1} = A_0^{-1} + A_0^{-1} F G_k^{-1} E^T A_0^{-1}$$

Symmetric Positive Definite case

► Recap: Let
$$G \equiv I - E^T A_0^{-1} E \equiv I - H$$
. Then
 $A^{-1} = A_0^{-1} + A_0^{-1} E G^{-1} E^T A_0^{-1}$

> Approximate G^{-1} by $G_k^{-1} \rightarrow$ preconditioner: $M^{-1} = A_0^{-1} + (A_0^{-1}E)G_k^{-1}(E^TA_0^{-1})$

> Matrix
$$A_0$$
 is SPD

 \succ Can show: $0 \leq \lambda_j(H) < 1$.

► Now take rank-*k* approximation to *H*: $H \approx U_k D_k U_k^T$ $G_k = I - U_k D_k U_k^T$ → $G_k^{-1} \equiv (I - U_k D_k U_k^T)^{-1} = I + U_k [(I - D_k)^{-1} - I] U_k^T$

► Observation: $A^{-1} = M^{-1} + A_0^{-1} E[G^{-1} - G_k^{-1}] E^T A_0^{-1}$

> G_k : k largest eigenvalues of H matched – others set == 0

> Result: AM^{-1} has

• n - s + k eigenvalues == 1

All others between 0 and 1

Alternative: reset lowest eigenvalues to constant

- > Let $H = U \Lambda U^T$ = exact (full) diagonalization of H
- > We replaced Λ by:
- > Alternative: replace Λ by

- > Interesting case: $\theta = \lambda_{k+1}$
- > Question: related approximation to G^{-1} ?

► Result: Let $\gamma = 1/(1 - \theta)$. Then approx. to G^{-1} is: $G_{k,\theta}^{-1} \equiv \gamma I + U_k [(I - D_k)^{-1} - \gamma I] U_k^T$

- > G_k : k largest eigenvalues of G matched others set == θ
- > $\theta = 0$ yields previous case
- ▶ When $\lambda_{k+1} \leq \theta < 1$ we get
- > Result: AM^{-1} has

•
$$n - s + k$$
 eigenvalues == 1
• All others ≥ 1

Next: An example for a 900×900 Laplacean, 4 domains, s = 119

k=5 Eigenvalues of AM^{-1} for the case $heta=\lambda_{k+1}$

k=15 Eigenvalues of AM^{-1} for the case $heta=\lambda_{k+1}$

 $\begin{array}{|c|c|c|c|c|} \hline Proposition & \text{Assume } \theta \text{ is so that } \hline \lambda_{k+1} \leq \theta < 1 \\ \hline \text{eigenvalues } \eta_i \text{ of } AM^{-1} \text{ satisfy:} \\ & 1 \leq \eta_i \leq 1 + \frac{1}{1-\theta} \, \|A^{1/2}A_0^{-1}E\|_2^2. \end{array}$

• Can Show: For the Laplacean (FD) and when $\alpha = 1$, $\|A^{1/2}A_0^{-1}E\|_2^2 = \|E^TA_0^{-1}AA_0^{-1}E\|_2 \le \frac{1}{4}$

regardless of the mesh-size.

> Best upper bound for $heta = \lambda_{k+1}$

► Set $\theta = \lambda_{k+1}$. Then $\kappa(AM^{-1}) \leq \text{constant}$, if k large enough so that $\lambda_{k+1} \leq \text{constant}$.

i.e., need to capture sufficient part of spectrum

Parallel implementations

$$M^{-1} = A_0^{-1} \left[I + E G_{k, heta}^{-1} E^T A_0^{-1}
ight]
onumber \ G_{k, heta}^{-1} = \gamma I + U_k [(I - D_k)^{-1} - \gamma I] U_k^T$$

 \succ Steps involved in applying M^{-1} to a vector x :

ALGORITHM : 2 Preconditioning operation

1.
$$z = A_0^{-1} x$$

2. $y = E^T z$
3. $y_k = G_{k,\theta}^{-1} y$
4. $z_k = E y_k$
5. $u = A_0^{-1} (x + z_k)$

// \hat{B}_i -solves and C_{α} - solve// Interior points to interface (Loc.)// Use Low-Rank approx.// Interface to interior points (Loc.)// \hat{B}_i -solves and C_{α} - solve

$$A_0 \ = egin{pmatrix} \hat{B}_1 & & \ & \hat{B}_2 & & \ & & \ddots & \ & & & \hat{B}_p & \ & & & & C_lpha \end{pmatrix}$$

 \blacktriangleright Recall $\hat{B}_i = B_i + \alpha^{-2} E_i E_i^T$

 \succ A solve with A_0 amounts to all $p \ \hat{B}_i$ -solves and a C_{lpha} -solve

- > Can replace C_{α}^{-1} by a low degree polynomial [Chebyshev]
- > Can use any solver for the \hat{B}_i 's

Parallel tests: Itasca (MSI)

► HP linux cluster- with Xeons 5560 ("Nehalem") processors

	Mesh	Nprod	c Ran	k #its	Prec-	t Iter-	t
	256 imes256	2	2	8 29	2.30	.343	3
2-D	512 imes 512	8	3 1	6 57	2.62	.747	7
	1024 imes1024	32	2 3	2 96	3.30	1.32	2
	2048 imes2048	128	8 6	4 154	4.84	2.38	3
	Mesh	N	Inroc	Rank	#ite F	Proc_t	ltor-t
		'		патт			
2.0	32 imes 32 imes 32	32	2	8	12	1.09	.0972
<u>3-D</u>	64 imes 64 imes 6	54	16	16	31	1.18	.381

32

62

2.42

128 imes 128 imes 128 128

.878

3. 'Non-standard' DD framework: HID ordering

Issue: Schur complement can become large (3D Pbs)

Remedy: Use Hierarchical Interface Decomposition (HID) -Henon and YS'05

Goal: Define a method that descends into interface variables in a hierarchical way \rightarrow need a hierarchy of 'interfaces'.

Ideas of this type in the Domain Decomposition context (PDEs) by. Smith and Widlund (89) – ["Wirebasket" techniques]

The hierarchical decomposition of a graph

> Partition \mathcal{G} into p subgraphs - with overlapping.

Example: A originates from a 5-point FD discretization of a Laplacean on a 2-D domain.
Three types of nodes: interior, interface, and crosspoints.

Extension expressed in terms of "connectors" of different levels.

The hierarchical decomposition of a graph

Vertex node divided into 'connectors' (sets of vertices) grouped into L levels

This set of connectors is a hierarchical decomposition of \mathcal{G} , if:

- 1. The connectors are disjoint and form a partition of the graph,
- 2. Connectors of the same level are not adjacent,
- 3. Connectors of a level l > 1 are separators for connectors at level l 1.

The hierarchical decomposition of a graph - example

Graph

Matrix pattern

> C^1 = interior of each subdomain; C^2 = sets of edges; C^3 = none ; C^4 = cross-points

 \blacktriangleright Label by levels \rightarrow block-diagonal structure at each level

Easy way to get an HID: Nested Dissection ordering

Up: 3-level partition of a 2-D domain. An HID tree with connector level information.

Right: Non-zero pattern of the reordered matrix.

$$A_l = egin{pmatrix} B_l & E_l \ E_l^T & C_l \end{pmatrix}$$
 and $C_l = A_{l+1}$ for $l=0:L-1,$

 A_0 == reordered matrix of A from the HID ordering A_l == matrix C_{l-1} for $l = 1, 2, \cdots, L$

 $A_L ==$ submatrix associated with the top-level connector.

 \blacktriangleright Each leading block B_l in A_l has a block-diagonal structure

Explore multilevel strategies to approximate the factorization of A_l

$$egin{aligned} A_l &= egin{pmatrix} I & I \ E_l^T B_l^{-1} & I \end{pmatrix} egin{pmatrix} B_l & O \ S_l \end{pmatrix} egin{pmatrix} I & B_l^{-1} E_l \ I \end{pmatrix} S_l &= C_l - E_l^T B_l^{-1} E_l \end{aligned}$$

Main Observation: $S_l^{-1} - C_l^{-1}$ nearly small rank

Rank bounded by number of cross-points (connectors at level *l* that intersect with connectors of higher levels)..

Idea: Write $A_{l}^{-1} = \begin{pmatrix} I & -B_{l}^{-1}E_{l} \\ I \end{pmatrix} \begin{pmatrix} B_{l}^{-1} \\ S_{l}^{-1} \end{pmatrix} \begin{pmatrix} I \\ -E_{l}^{T}B_{l}^{-1} & I \end{pmatrix}.$ $\Rightarrow \text{ Approximate } S_{l}^{-1} \text{ as } S_{l}^{-1} \approx C_{l}^{-1} - W_{l}H_{l}W_{l}^{T}$ $\Rightarrow \text{ Next: set } C_{l} = A_{l+1} \rightarrow \text{ exploit recursivity}$

- Last level: use (incomplete) Cholesky.
- Next: illustration for 3 levels.

> At levels l = 0, 1, 2 express A_l^{-1} as :

$$A_l^{-1} = \begin{pmatrix} I & -B_l^{-1}E_l \\ I \end{pmatrix} \begin{pmatrix} B_l^{-1} & \\ & S_l^{-1} \end{pmatrix} \begin{pmatrix} I \\ -E_l^TB_l^{-1} & I \end{pmatrix}.$$

> S_l⁻¹ needed → Approximate as S_l⁻¹ ≈ C_l⁻¹ + W_lH_lW_l^T
 > C_l⁻¹ needed → if l == 2 get C₂ ≈ L₂L₂^T, else set A_{l+1} = C_l & go to next level

SMAI-2017 06-06-2017 p. 46

Computing the low-rank correction

► Let
$$C = LL^T$$
 and define

$$G = L^{-1}(C - S)L^{-T} = L^{-1}(E^TB^{-1}E)L$$

We have
$$S = L(I - G)L^T \rightarrow$$

 $S^{-1} - C^{-1} = L^{-T} \left[(I - G)^{-1} - I \right] L^{-1}$
 $= L^{-T} \left[G(I - G)^{-1} \right] L^{-1}.$

Use Lanczos algorithm to get a few of the largest eigenvalues of G with associated eigenvectors:

$$[W_l, \Sigma_l] = ext{eigs}(C_l^{-1}E_l^TB_l^{-1}E_l, k)
ightarrow$$

 $S_l^{-1} - C_l^{-1} pprox W_l H_l W_l^T$, with $H_l = \Sigma_l (I - \Sigma_l)^{-1}$.

• Need to solve with $C_l \rightarrow$ exploit recursivity

Test: Shifted Laplacean (Symm. indefinite)

MSLR vs. ILDLT & RAS for symmetric indefinite systems (shifted Laplacean) (accelerator: GMRES)

Grid	ILDLT-GMRES				RAS-GMRES				MSLR-GMRES					
Ghu	fill	p-t	its	i-t	fill	p-t	its	i-t	lev	rk	fill	p-t	its	i-t
256^{2}	8.18	0.18	F	_	7.56	0.26	F	_	4	64	6.58	0.29	20	0.07
512^{2}	8.39	0.71	F	—	7.84	1.19	F	—	5	80	7.68	3.17	36	0.60
1024^{2}	12.6	5.34	F	—	19.40	22.90	F	—	6	180	9.13	41.09	76	6.30
32^{3}	5.89	0.11	21	0.11	5.78	0.09	40	0.06	7	32	5.60	0.25	17	0.04
64^{3}	7.05	1.03	F	—	11.40	3.01	F	—	10	64	7.06	7.44	187	3.97
128^{3}	9.35	12.20	F	—	10.2	31.20	F	—	13	64	8.07	80.20	F	—

Test: General sparse matrices

Matrix	order	nnz	SPD	Origin
cfd1	70,656	1,825,580	yes	CFD Prb.
cfd2	123, 440	3,085,406	yes	CFD Prb.
Dubcova3	146,689	3, 636, 643	yes	2-D/3-D PDE Prb.
thermal1	82,654	574,458	yes	thermal Prb.
thermal2	1,228,045	8,580,313	yes	thermal Prb.
F2	71,505	5,294,285	no	structural Prb.
Lin	256,000	1,766,400	no	structural Prb.
qa8fk	66,127	1,660,579	no	3-D acoustics Prb.
vibrobox	12,328	301,700	no	vibroacoustic Prb.

MSLR vs. ICT / ILDLT, RAS for general symmetric linear systems [Accelerators: CG or GMRES(40)]

											<u> </u>	/ -		
Matrix		ICT/I	LDL	Т		RA	S				Μ	ISLR		
	fill	p-t	its	i-t	fill	p-t	its	i-t	lev	' rk	fill	p-t	its	i-t
cfd1	5.81	3.40	298	11.7	5.61	1.83	F		7	64	5.00	1.42	85	0.96
cfd2	4.47	3.20	271	13.60	4.52	2.65	F	_	8	50	4.47	1.53	155	2.58
Dubcova3	1.19	0.47	45	0.93	1.18	1.17	54	0.45	5	64	1.17	0.39	20	0.18
thermal1	4.57	0.20	52	0.50	4.55	0.38	235	0.77	6	50	4.50	0.18	38	0.14
thermal2	5.98	4.21	90	17.80	5.87	8.11	F	_	8	64	6.02	3.29	87	6.02
F2	2.82	3.43	F	—	2.90	3.46	F	_	6	64	2.49	1.24	79	1.51
Lin	4.61	0.53	F	—	5.36	4.63	F		10	22	4.55	0.88	185	2.96
qa8fk	1.90	0.26	17	0.20	4.56	1.16	25	0.20	7	32	1.8	0.44	21	0.14
vibrobox	4.13	0.43	F	—	4.35	0.36	F	_	5	16	3.86	0.18	57	0.16

Recent work: extension to nonsymmetric case

Use Arnoldi instead of Lanczos. Code implemented in C. Also: complex version

Details skipped. Two examples shown.

First: set of SPD test matrices (SuiteSparse Matrix Collection)

Matrix	Order	nnz	SPD	Origin
cfd1	70,656	1,825,580	yes	CFD pb.
cfd2	123,440	3,085,406	yes	CFD pb.
Dubcova3	146,689	3,636,643	yes	2D/3D pb.
Offshore	259,789,	4,242,673	yes	electromagnetics pb.
2cubes	101,492	1,647,264	yes	electromagnetics pb.
boneS01	127,224	5,516,602	yes	model reduction

GMSLR and UMFPACK. 00M == Out Of Memory.

Matrix	GMSLR						UMFPACK				
Ινιατιλ	fill	lev	rk	p-t	i-t	its	fact. time	solve time	fill		
cfd1	2.22	9	16	.306	1.81	8	10.11	0.21	41.16		
cfd2	2.26	10	16	.572	2.46	5	32.25	0.41	48.55		
Dubcova3	1.48	10	32	.487	.327	3	0.69	0.1	3.95		
Offshore	2.9	10	16	.775	.82	5	OOM	OOM	MOO		
2cubes	2.03	9	8	.183	.083	3	69.27	0.47	107.6		
boneS01	1.21	9	16	.549	3.26	6	32.99	0.38	22.03		

2nd: Set of nonsymmetric matrices (SuiteSparse Collection.)

Matrix	Order	nnz	SPD	Origin
CoupCons	416,800	22,322,336	no	structural pb.
AtmosModd	1,270,432	8,814,880	no	atmospheric model
Transport	1,602,111	23,500,731	no	CFD pb.

Comparison between GMSLR and ILUT preconditioners. Drop tolerance for ILUT == 10^{-3} .

Matrix			GMS	SLR	ILUT					
Ινιατιλ	fill	nlev	rank	p-t	i-t	its	fill	p-t	i-t	its
CoupCons	1.82	10	16	2.67	1.55	5	1.56	17.6	1.25	12
AtmosModd	7.69	9	8	3.07	10.0	12	11.2	5.01	12.0	44
Transport	2.88	12	16	6.43	32.5	12	4.66	11.73	43.5	119

5. Cauchy integral approximation of A^{-1}

Define a preconditioner as follows:

Step 1:approximate A^{-1} *outside* circle.

Step 2: Resolve the modes inside circle by a simple Krylov method.

Let P = spectral projector associated with λ_i 's inside Γ

$$Pf(A)=rac{1}{2i\pi}\int_{\Gamma}(sI-A)^{-1}f(s)ds$$

• Computes f(A) for spectrum inside Γ when f analytic.

Idea: Approximate f(A) when f(z) = 1/z *outside circle* by change of variables. Use numerical integration:

$$(I-P)A^{-1}pprox rac{1}{2}\sum_{k=1}^{2p}lpha_k(I-\sigma_kA)^{-1} \quad o$$

$$A^{-1} = (I - P)A^{-1} + PA^{-1} pprox \sum_{k=1}^{2p} \xi_k U_k^{-1} L_k^{-1} + PA^{-1}$$

Q: How to compute term $PA^{-1}b$ for a given b?

 \blacktriangleright Can get approximate eigenspace associated with P & solve in this subspace.

- OK but may not be practical if subspace is large...
- > Can just use a Krylov method to solve APy = Pb ...
- Many details skipped

Test: 3D Helmholtz problem

> Helmholtz equation of the following form on domain $(0, 1)^3$

$$\left(-\Delta-rac{\omega^2}{c(x)^2}
ight)u=s$$

 $\Delta \equiv$ Laplacian $\omega \equiv$ angular frequency, $c(x) \equiv$ seismic velocity field

> $s(x, \omega)$ = forcing term - here generated by a Gaussian point source centered at (1/2, 1/2, 1/2).

> $u(x, \omega) =$ time-harmonic wavefield solution

Zero Dirichlet boundary condition applied to one side, PML conditions on others

> Discretization: 8 points per wavelength when discretizing (7-point finite diff. on $N \times N \times N$ grids.

> PML has a significant impact on spectrum:

> System solved to low accuracy (factor of 10^3 res. reduction)

- > Solve for $N = 2^5, 2^6, 2^7, 2^8$ on a standard workstation
- Matrices reordered by Nested Dissection (*lev* levels)
- GMRES(35) used as inner solver
- > Radius of circle \equiv 30; 8 poles

$n=N^3$	$\omega/(2\pi)$	lev	fill	p-t	i-t	its
32^{3}	4	9	8.84	0.55	2.67	2
64^3	8	12	10.89	4.63	22.04	2
128^{3}	16	15	11.25	43.27	209.4	2
256^{3}	32	18	11.67	428.77	2059.1	2

p-t, i-t == preconditioning set-up time, iteration time; its = outer iterations.

lev = # levels used in Nested Dissection.

Time scaling

Conclusion

New Mantra: Seek "rank-sparsity" or "spectral sparsity" instead of regular sparsity

More work to do : (1) Good HID partitioniers; (2) Parallel implementations; (3) *Very* highly indefinite problems

Advantages of Multilevel Low-Rank preconditioners:

(1) Approximate inverses \rightarrow less sensitive to indefiniteness; (2) Exploit dense computations; (3) Easy to update.

Conclusion – Embrace New Horizons

► Many, many, interesting New matrix problems related to the new economy and new emerging scientific fields:

- **1** Information technologies [learning, data-mining, ...]
- 2 Computational Chemistry / materials science
- 3 Bio-informatics, computational biology, genomics, ...

When one door closes, another opens; but we often look so long and so regretfully upon the closed door that we do not see the one which has opened for us.

Alexander Graham Bell (1847-1922)