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Motivation: DMFT

‘Dynamic Mean Field Theory’ - quantum mechanical studies of
highly correlated particles

ä Equation to be solved (repeatedly) is Dyson’s equation

G(ω) = [(ω + µ)I − V − Σ(ω) + T ]−1

• ω (frequency) and µ (chemical potential) are real

• V = trap potential = real diagonal

• Σ(ω) == local self-energy - a complex diagonal

• T is the hopping matrix (sparse real).
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ä Interested only in diagonal of G(ω) – in addition, equation
must be solved self-consistently and ...

ä ... must do this for many ω’s

ä Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

ä Many new applications of diagonal of inverse [and related
problems.]

ä A few examples to follow
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

ä Arises in cross validation :
‖(I −A(θ))g‖2

Tr (I −A(θ))
with A(θ) ≡ I−D(DTD+θLLT)−1DT ,

D == blurring operator and L is the regularization operator

ä In [Huntchinson ’90] Tr[Inv[A]] is stochastically estimated

ä Many authors addressed this problem.
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Problem 2: Compute Tr [ f (A)], f a certain function

Arises in many applications in Physics. Example:

ä Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15382 (1997)]
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

ä Arises in Dynamic Mean Field Theory [DMFT, motivation for
this work].

In DMFT, we seek the diagonal of a “Green’s function” which
solves (self-consistently) Dyson’s equation. [see J. Freericks
2005]

ä Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

ä In uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
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Problem 4: Compute diag[ f (A)] ; f = a certain function.

ä Arises in any density matrix approach in quantum modeling
- for example Density Functional Theory.

ä Here, f = Fermi-Dirac operator:

f(ε) =
1

1 + exp(ε−µ
kBT

)

Note: when T → 0
then f becomes a step
function.

Note: if f is approximated by a rational function then diag[f(A)]
≈ a lin. combinaiton of terms like diag[(A− σiI)−1]

ä Linear-Scaling methods based on approximating f(H) and
Diag(f(H)) – avoid ‘diagonalization’ of H
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Methods based on the sparse L U factorization

ä Basic reference:

K. Takahashi, J. Fagan, and M.-S. Chin, Formation of a sparse
bus impedance matrix and its application to short circuit study,
in Proc. of the Eighth Inst. PICA Conf., Minneapolis, MN, IEEE,
Power Engineering Soc., 1973, pp. 63-69.

ä Described in [Duff, Erisman, Reid, p. 273] -

ä Algorithm used by Erisman and Tinney [Num. Math. 1975]
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ä Main idea. If A = LDU and B = A−1 then

B = U−1D−1 +B(I − L); B = D−1L−1 + (I − U)B.

ä Not all entries are needed to compute selected entries ofB

ä For example: Consider lower part, i > j; use first equation:

bij = (B(I − L))ij = −
∑
k>j

biklkj

ä Need entries bik of row i where Lkj 6= 0, k > j.

ä “Entries of B belonging to the pattern of (L,U)T can be
extracted without computing any other entries outside the pat-
tern.”
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ä More recently exploited in a different form in

L. Lin, C. Yang, J. Meza, J. Lu, L. Ying, W. E SelInv – An
algorithm for selected inversion of a sparse symmetric matrix,
Tech. Report, Princeton Univ.

ä An algorithm based on a form of nested dissection is de-
scribed in Li, Ahmed, Glimeck, Darve [2008]

ä A close relative to this technique is represented in

L. Lin , J. Lu, L. Ying , R. Car , W. E Fast algorithm for extracting
the diagonal of the inverse matrix with application to the elec-
tronic structure analysis of metallic systems Comm. Math. Sci,
2009.

ä Difficulty: 3-D problems.
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Stochastic Estimator

Notation:

•A = original matrix, B = A−1.

• δ(B) = diag(B) [matlab notation]

•D(B) = diagonal matrix with diagonal δ(B)

•� and �: Elementwise multiplication and
division of vectors

• {vj}: Sequence of s random vectors

Result: δ(B) ≈

 s∑
j=1

vj �Bvj

�
 s∑
j=1

vj � vj


Refs: C. Bekas , E. Kokiopoulou & YS (’05), Recent: C. Bekas,
A. Curioni, I. Fedulova ’09.
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ä Let Vs = [v1, v2, . . . , vs]. Then, alternative expression:

D(B) ≈ D(BVsV
>
s )D−1(VsV

>
s )

Question: When is this result exact?

Main Proposition

• Let Vs ∈ Rn×s with rows {vj,:}; and B ∈ Cn×n with
elements {bjk}

• Assume that: 〈vj,:, vk,:〉 = 0, ∀j 6= k, s.t. bjk 6= 0

Then:
D(B)=D(BVsV

>
s )D−1(VsV

>
s )

ä Approximation to bij exact when rows i and j of Vs are⊥
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Ideas from information theory: Hadamard matrices

ä Consider the matrix V – want the rows to be as ‘orthogonal
as possible among each other’, i.e., want to minimize

Erms =
‖I − V V T‖F√
n(n− 1)

or Emax = max
i 6=j
|V V T |ij

ä Problems that arise in coding: find code book [rows of V =
code words] to minimize ’cross-correlation amplitude’

ä Welch bounds:

Erms ≥

√
n− s

(n− 1)s
Emax ≥

√
n− s

(n− 1)s

ä Result: ∃ a sequence of s vectors vk with binary entries
which achieve the first Welch bound iff s = 2 or s = 4k.
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ä Hadamard matrices are a special class: n × n matrices
with entries±1 and such that HH> = nI.

Examples :
[

1 1
1 −1

]
and


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .
ä Achieve both Welch bounds

ä Can build larger Hadamard matrices recursively:

Given two Hadamard matrices H1 and H2, the Kro-
necker product H1 ⊗H2 is a Hadamard matrix.

ä Too expensive to use the whole matrix of size n

ä Can use Vs = matrix of s first columns of Hn
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Pattern of VsV >s , for s = 32 and s = 64.
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A Lanczos approach

ä Given a Hermitian matrixA - generate Lanczos vectors via:

βi+1qi+1 = Aqi − αiqi − βiqi−1

αi, βi+1 selected s.t. ‖qi+1‖2 = 1 and qi+1 ⊥ qi, qi+1 ⊥ qi−1

ä Result:

AQm = QmTm + βm+1qm+1e
>
m,

ä Whenm = n thenA = QnTnQ
>
n andA−1 = QnT

−1
n Q>n .

ä For m < n use the approximation: A−1 ≈ QmT
−1
m Q>m→

D(A−1) ≈ D[QmT
−1
m Q>m]
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ALGORITHM : 1 diagInv via Lanczos

For j = 1, 2, · · · , Do:
βj+1qj+1 = Aqj − αjqj − βjqj−1 [Lanczos step]
pj := qj − ηjpj−1

δj := αj − βjηj
dj := dj−1 +

pj�pj
δj

[Update of diag(inv(A))]

ηj+1 :=
βj+1

δj

EndDo

ä dk (a vector) will converge to the diagonal of A−1

ä Limitation: Often requires all n steps to converge

ä One advantage: Lanczos is shift invariant – so can use this
for many ω’s

ä Potential: Use as a direct method - exploiting sparsity
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Using a sparse V : Probing

Goal:
Find Vs such that (1) s is small and (2) Vs
satisfies Proposition (rows i & j orthgonoal for
any nonzero bij)

Difficulty: Can work only for sparse matrices but B =
A−1 is usually dense

ä B can sometimes be approximated by a sparse matrix.

ä Consider for some ε : (Bε)ij =

{
bij, |bij| > ε
0, |bij| ≤ ε

ä Bε will be sparse under certain conditions, e.g., when A is
diagonally dominant

ä In what follows we assume Bε is sparse and set B := Bε.

ä Pattern will be required by standard probing methods.
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Generic Probing Algorithm

ALGORITHM : 2 Probing
Input: A, s
Output: Matrix D (B)
Determine Vs := [v1, v2, . . . , vs]
for j ← 1 to s

Solve Axj = vj
end
Construct Xs := [x1, x2, . . . , xs]
Compute D (B) := D

(
XsV

>
s

)
D−1(VsV

>
s )

ä Note: rows of Vs are typically scaled to have unit 2-norm
=1., so D−1(VsV

>
s ) = I.
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Standard probing (e.g. to compute a Jacobian)

ä Several names for same method: “probing”; “CPR”, “Sparse
Jacobian estimators”,..

Basis of the method: can compute Jacobian if a coloring of
the columns is known so that no two columns of the same
color overlap.

All entries of same color
can be computed with
one matvec.
Example: For all blue

entries multiply B by the
blue vector on right.

1 3 16
1

1

(1)

(3)

 (12)

(15)

1

1

5 20

1

1

1

(5)

(13)

  (20)

12 13
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What about Diag(inv(A))?

ä Define vi - probing vector associated with color i:

[vi]k =

{
1 if color(k) == i
0 otherwise

ä Standard probing satisfies requirement of Proposition but...

ä ... this coloring is not what is needed! [It is an overkill]

Alternative:

ä Color the graph of B in the standard graph coloring algo-
rithm [Adjacency graph, not graph of column-overlaps]

Result: Graph coloring yields a valid set of probing
vectors for D(B).
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Proof:

ä Column vc: one for each
node i whose color is c, zero
elsewhere.

ä Row i of Vs: has a ’1’ in
column c, where c = color(i),
zero elsewhere.

1

1

0 0 0 0 0

0 0 0 0 0 0

0 i

j

i

j

color red color black

ä If bij 6= 0 then in matrix Vs:

• i-th row has a ’1’ in column color(i), ’0’ elsewhere.

• j-th row has a ’1’ in column color(j), ’0’ elsewhere.

ä The 2 rows are orthogonal.
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Example:

ä Two colors required for this graph→ two probing vectors

ä Standard method: 6 colors [graph of BTB]
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Next Issue: Guessing the pattern of B

ä Recall that we are dealing with B := Bε [‘pruned’ B]

ä Assume A diagonally dominant

ä Write A = D − E , with D = D(A). Then :

A = D(I − F ) with F ≡ D−1E →

A−1 ≈ (I + F + F 2 + · · ·+ F k)D−1︸ ︷︷ ︸
B(k)

ä When A is D.D. ‖F k‖ decreases rapidly.

ä Can approximate pattern of B by that of B(k) for some k.

ä Interpretation in terms of paths of length k in graph of A.
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Q: How to select k?

A: Inspect A−1ej for some j

ä Values of solution outside pattern of (Akej) should be small.

ä If during calculations we get larger than expected errors –
then redo with larger k, more colors, etc..

ä Can we salvage what was done? Question still open.
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Preliminary experiments

Problem Setup

• DMFT: Calculate the imaginary time Green’s function

• DMFT Parameters: Set of physical parameters is provided

• DMFT loop: At most 10 outer iterations, each consisting of
62 inner iterations

• Each inner iteration: Find D(B)
• Each inner iteration: Find D(B)
• Matrix: Based on a five-point stencil
with ajj = µ+ iω − V − s(j)

1 1

1

1

ajj

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Probing Setup • Probing tolerance: ε = 10−10

• GMRES tolerance: δ = 10−12
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Results

CPU times (sec)
for one inner itera-
tion of DMFT.

n→ 212 412 612 812

LAPACK 0.5 26 282 > 1000
Lanczos 0.2 9.9 115 838
Probing 0.02 0.19 0.79 2.0

A few statistics for
case n = 81
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Path length, k
# Probing vectors
# GMRES iterations
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Challenge: The indefinite case

ä The DMFT code deals with a separate case which uses a
“real axis” sampling..

ä Matrix A is no longer diagonally dominant – Far from it.

ä This is a much more challenging case.

ä One option: solve Axj = ej FOR ALL j’s - with the ARMS
solver using ddPQ ordering + exploit multiple right-hand sides

ä More appealing: DD-type approaches
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Divided & Conquer approach

Let A == a 5-point matrix (2-D problem) split roughly in two:

A =



A1 −I
−I A2 −I

. . . . . . . . .
−I Ak −I
−I Ak+1 −I

. . . . . . . . .
−I Any−1 −I

−I Any


where {Aj} = tridiag. Write:

A =

(
A11 A12

A21 A22

)
=

(
A11

A22

)
+

(
A12

A21

)
,

with A11 ∈ Cm×m and A22 ∈ C(n−m)×(n−m),
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ä Observation:

A =

(
A11 + E1E

T
1

A22 + E2E
T
2

)
−
(
E1E

T
1 E1E

T
2

E2E
T
1 E2E

T
2

)
.

where E1, E2 are (relatively) small rank matrices:

E1 :=


I

 ∈ Cm×nx, E2 :=

I ∈ C(n−m)×nx,

Of the form

A = C − EET , C :=

(
C1

C2

)
E :=

(
E1

E2

)

ä Idea: Use Sherman-Morrisson formula.
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A−1 = C−1 + UG−1UT , with:
U = C−1E ∈ Cn×nx G = Inx − ETU ∈ Cnx×nx,

D(A−1) can be found from

D(A−1) =

(
D(C−1

1 )

D(C−1
2 )

)
︸ ︷︷ ︸

recursion

+D(UG−1UT).

ä U : solve CU = E, or
{
C1U1 = E1,
C2U2 = E2

Solve iteratively

ä G: G = Inx − ETU = Inx − ET
1U1 − ET

2U2
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Domain Decomposition approach

Domain decomposition with
p = 3 subdomains

Ω Ω Ω1 32

Zoom into Subdomain 2

Ω Ω1 3

Γ Γ12
23

2Ω

Under usual ordering [interior points then interface points]:

A =


B1 F1

B2 F2
. . . ...

Bp Fp
F T

1 F T
2 · · · F T

p C

 ≡
(
B F
F T C

)
,



Example of matrix A
based on a DDM or-
dering with p = 4 sub-
domains. (n = 252)

0 100 200 300 400 500 600

0

100

200

300

400

500

600

nz = 3025

Inverse of A [Assuming both B and S nonsingular]

A−1 =

(
B−1 +B−1FS−1F TB−1 −B−1FS−1

−S−1F TB−1 S−1

)
S = C − F TB−1F,



D(A−1) =

(
D(B−1) +D(B−1FS−1F TB−1)

D(S−1)

)

ä Note: each diagonal block decouples from others:

Inverse of A in i-
th block (domain)

(A−1)ii = D(B−1
i ) +D(HiS

−1HT
i )

Hi = B−1
i Fi

ä Note: only nonzero columns of Fi are those related to
interface vertices.

ä Approach similar to Divide and Conquer but not recursive..
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DMFT experiment

Times (in seconds) for direct inversion (INV), divide-and-conquer
(D&C), and domain decomposition (DD) methods.

ä p = 4 subd. for DD
ä Various sizes - 2-D problems
ä Times: seconds in matlab

√
n INV D&C DD

21 .3 .1 .1
51 12 1.4 .7
81 88 7.1 3.2

ä NOTE: work still in progress
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Conclusion

ä Diag(inv(A)) problem: easy for Diag. Dominant case. Very
challenging in (highly) indefinite case.

ä Dom. Dec. methods can be a bridge between the two cases

ä Approach [specifically for DMFT problem] :

• Use direct methods in strongly Diag. Dom. case

• Use DD-type methods in nearly Diag. Dom. case

• Use direct methods in all other cases [until we find better
means :-) ]
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