Computing the diagonal of the inverse of a sparse matrix
Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

"Sparse Days", Toulouse, June 15, 2010

Motivation: DMFT

'Dynamic Mean Field Theory' - quantum mechanical studies of highly correlated particles
$>$ Equation to be solved (repeatedly) is Dyson's equation

$$
G(\omega)=[(\omega+\mu) I-V-\Sigma(\omega)+T]^{-1}
$$

- $\boldsymbol{\omega}$ (frequency) and $\boldsymbol{\mu}$ (chemical potential) are real
- $V=$ trap potential = real diagonal
- $\Sigma(\omega)==$ local self-energy - a complex diagonal
- \boldsymbol{T} is the hopping matrix (sparse real).
$>$ Interested only in diagonal of $G(\omega)$ - in addition, equation must be solved self-consistently and ...
$>$... must do this for many ω 's
> Related approach: Non Equilibrium Green's Function (NEGF) approach used to model nanoscale transistors.
$>$ Many new applications of diagonal of inverse [and related problems.]
> A few examples to follow

Introduction: A few examples

Problem 1: Compute $\operatorname{Tr}[i n v[A]]$ the trace of the inverse.
$>$ Arises in cross validation :
$\|(I-A(\theta)) g\|_{2}$
$\operatorname{Tr}(I-A(\theta))$
with $\quad A(\theta) \equiv I-D\left(D^{T} D+\theta L L^{T}\right)^{-1} D^{T}$,
$D==$ blurring operator and L is the regularization operator
$>$ In [Huntchinson '90] $\operatorname{Tr}[\operatorname{lnv}[A]]$ is stochastically estimated
> Many authors addressed this problem.

Problem 2: Compute $\operatorname{Tr}[f(A)], f$ a certain function

Arises in many applications in Physics. Example:
$>$ Stochastic estimations of $\operatorname{Tr}(f(A))$ extensively used by quantum chemists to estimate Density of States, see
[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382 (1997)]

Problem 3: Compute diag[inv(A)] the diagonal of the inverse
$>$ Arises in Dynamic Mean Field Theory [DMFT, motivation for this work].

In DMFT, we seek the diagonal of a "Green's function" which solves (self-consistently) Dyson's equation. [see J. Freericks 2005]
> Related approach: Non Equilibrium Green's Function (NEGF) approach used to model nanoscale transistors.
$>$ In uncertainty quantification, the diagonal of the inverse of a covariance matrix is needed [Bekas, Curioni, Fedulova '09]

Problem 4: Compute $\operatorname{diag}[\mathrm{f}(\mathrm{A})] ; \boldsymbol{f}=$ a certain function.
$>$ Arises in any density matrix approach in quantum modeling - for example Density Functional Theory.
$>$ Here, $f=$ Fermi-Dirac operator:

$$
f(\epsilon)=\frac{1}{1+\exp \left(\frac{\epsilon-\mu}{k_{B} T}\right)}
$$

Note: when $T \rightarrow 0$ then f becomes a step function.

Note: if f is approximated by a rational function then $\operatorname{diag}[f(\mathrm{~A})]$ \approx a lin. combinaiton of terms like diag[$\left.\left(A-\sigma_{i} I\right)^{-1}\right]$
$>$ Linear-Scaling methods based on approximating $f(\boldsymbol{H})$ and $\operatorname{Diag}(f(\boldsymbol{H}))$ - avoid 'diagonalization' of \boldsymbol{H}

Methods based on the sparse L U factorization

> Basic reference:
K. Takahashi, J. Fagan, and M.-S. Chin, Formation of a sparse bus impedance matrix and its application to short circuit study, in Proc. of the Eighth Inst. PICA Conf., Minneapolis, MN, IEEE, Power Engineering Soc., 1973, pp. 63-69.
$>$ Described in [Duff, Erisman, Reid, p. 273] -
> Algorithm used by Erisman and Tinney [Num. Math. 1975]
$>$ Main idea. If $A=L D U$ and $B=A^{-1}$ then

$$
B=U^{-1} D^{-1}+B(I-L) ; \quad B=D^{-1} L^{-1}+(I-U) B .
$$

> Not all entries are needed to compute selected entries of B
$>$ For example: Consider lower part, $i>j$; use first equation:

$$
b_{i j}=(B(I-L))_{i j}=-\sum_{k>j} b_{i k} l_{k j}
$$

$>$ Need entries $b_{i k}$ of row i where $L_{k j} \neq 0, k>j$.
$>$ "Entries of B belonging to the pattern of $(\boldsymbol{L}, \boldsymbol{U})^{T}$ can be extracted without computing any other entries outside the pattern."
> More recently exploited in a different form in
L. Lin, C. Yang, J. Meza, J. Lu, L. Ying, W. E Sellnv - An algorithm for selected inversion of a sparse symmetric matrix, Tech. Report, Princeton Univ.
$>$ An algorithm based on a form of nested dissection is described in Li, Ahmed, Glimeck, Darve [2008]
$>$ A close relative to this technique is represented in
L. Lin , J. Lu, L. Ying , R. Car , W. E Fast algorithm for extracting the diagonal of the inverse matrix with application to the electronic structure analysis of metallic systems Comm. Math. Sci, 2009.
$>$ Difficulty: 3-D problems.

Stochastic Estimator

- $A=$ original matrix, $B=A^{-1}$.
- $\delta(B)=\operatorname{diag}(B)$ [matlab notation]

Notation:

- $\mathcal{D}(B)=$ diagonal matrix with diagonal $\delta(B)$
- \odot and \oslash : Elementwise multiplication and division of vectors
- $\left\{v_{j}\right\}$: Sequence of s random vectors

Result:

$$
\boldsymbol{\delta}(\boldsymbol{B}) \approx\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{B} \boldsymbol{v}_{j}\right] \oslash\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{v}_{j}\right]
$$

Refs: C. Bekas, E. Kokiopoulou \& YS ('05), Recent: C. Bekas, A. Curioni, I. Fedulova '09.
$>$ Let $V_{s}=\left[v_{1}, v_{2}, \ldots, v_{s}\right]$. Then, alternative expression:

$$
\mathcal{D}(B) \approx \mathcal{D}\left(B V_{s} V_{s}^{\top}\right) \mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)
$$

Question: When is this result exact?

Main Proposition

- Let $V_{s} \in \mathbb{R}^{n \times s}$ with rows $\left\{v_{j,:}\right\}$; and $B \in \mathbb{C}^{n \times n}$ with elements $\left\{b_{j k}\right\}$
- Assume that: $\left\langle v_{j,:}, v_{k,:}\right\rangle=0, \forall j \neq k$, s.t. $b_{j k} \neq 0$

Then:

$$
\mathcal{D}(B)=\mathcal{D}\left(B V_{s} V_{s}^{\top}\right) \mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)
$$

$>$ Approximation to $b_{i j}$ exact when rows i and j of V_{s} are \perp

Ideas from information theory: Hadamard matrices

$>$ Consider the matrix \boldsymbol{V} - want the rows to be as 'orthogonal as possible among each other', i.e., want to minimize

$$
E_{r m s}=\frac{\left\|I-V V^{T}\right\|_{F}}{\sqrt{n(n-1)}} \quad \text { or } \quad E_{m a x}=\max _{i \neq j}\left|V V^{T}\right|_{i j}
$$

$>$ Problems that arise in coding: find code book [rows of $\boldsymbol{V}=$ code words] to minimize 'cross-correlation amplitude'
> Welch bounds:

$$
E_{r m s} \geq \sqrt{\frac{n-s}{(n-1) s}} \quad E_{\max } \geq \sqrt{\frac{n-s}{(n-1) s}}
$$

$>$ Result: \exists a sequence of s vectors v_{k} with binary entries which achieve the first Welch bound iff $s=2$ or $s=4 k$.
$>$ Hadamard matrices are a special class: $n \times n$ matrices with entries ± 1 and such that $\boldsymbol{H} \boldsymbol{H}^{\top}=n \boldsymbol{I}$.

$$
\text { Examples : }\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right] \text { and }\left[\begin{array}{rrrr}
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right] .
$$

> Achieve both Welch bounds
> Can build larger Hadamard matrices recursively:
Given two Hadamard matrices H_{1} and \boldsymbol{H}_{2}, the Kronecker product $\boldsymbol{H}_{1} \otimes \boldsymbol{H}_{2}$ is a Hadamard matrix.
$>$ Too expensive to use the whole matrix of size n
$>$ Can use $V_{s}=$ matrix of s first columns of \boldsymbol{H}_{n}

A Lanczos approach

$>$ Given a Hermitian matrix \boldsymbol{A} - generate Lanczos vectors via:

$$
\boldsymbol{\beta}_{i+1} \boldsymbol{q}_{i+1}=A \boldsymbol{q}_{i}-\alpha_{i} \boldsymbol{q}_{i}-\boldsymbol{\beta}_{i} \boldsymbol{q}_{i-1}
$$

$\alpha_{i}, \boldsymbol{\beta}_{i+1}$ selected s.t. $\left\|\boldsymbol{q}_{i+1}\right\|_{2}=1$ and $\boldsymbol{q}_{i+1} \perp \boldsymbol{q}_{i}, \boldsymbol{q}_{i+1} \perp \boldsymbol{q}_{i-1}$
> Result:

$$
A Q_{m}=Q_{m} \boldsymbol{T}_{m}+\boldsymbol{\beta}_{m+1} \boldsymbol{q}_{m+1} \boldsymbol{e}_{m}^{\top}
$$

$>$ When $m=n$ then $A=Q_{n} T_{n} Q_{n}^{\top}$ and $A^{-1}=Q_{n} T_{n}^{-1} Q_{n}^{\top}$.
$>$ For $\boldsymbol{m}<\boldsymbol{n}$ use the approximation: $\boldsymbol{A}^{-1} \approx \boldsymbol{Q}_{m} \boldsymbol{T}_{m}^{-1} Q_{m}^{\top} \rightarrow$

$$
\mathcal{D}\left(A^{-1}\right) \approx \mathcal{D}\left[Q_{m} T_{m}^{-1} Q_{m}^{\top}\right]
$$

ALGORITHM : 1. diaglnv via Lanczos

$$
\left.\begin{array}{l}
\text { For } j=1,2, \cdots, D o: \\
\qquad \boldsymbol{\beta}_{j+1} \boldsymbol{q}_{j+1}=\boldsymbol{A} \boldsymbol{q}_{j}-\boldsymbol{\alpha}_{j} \boldsymbol{q}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{q}_{j-1} \text { [Lanczos step] } \\
\boldsymbol{p}_{j}:=\boldsymbol{q}_{j}-\boldsymbol{\eta}_{j} \boldsymbol{p}_{j-1} \\
\delta_{j}:=\boldsymbol{\alpha}_{j}-\boldsymbol{\beta}_{j} \boldsymbol{\eta}_{j} \\
\boldsymbol{d}_{j}:=\boldsymbol{d}_{j-1}+\frac{\boldsymbol{p}_{j} \odot p_{j}}{\delta_{j}} \\
\quad \boldsymbol{\eta}_{j+1}:=\frac{\boldsymbol{\beta}_{j+1}}{\delta_{j}}
\end{array} \quad \text { [Update of diag(inv(A))] }\right]
$$

EndDo
$>d_{k}$ (a vector) will converge to the diagonal of \boldsymbol{A}^{-1}
> Limitation: Often requires all \boldsymbol{n} steps to converge
$>$ One advantage: Lanczos is shift invariant - so can use this for many ω 's
> Potential: Use as a direct method - exploiting sparsity

Using a sparse V: Probing

Find V_{s} such that (1) s is small and (2) V_{s}

Goal:
 Goal:

 satisfies Proposition (rows $i \& j$ orthgonoal for any nonzero $b_{i j}$)Difficulty:

Can work only for sparse matrices but $B=$ A^{-1} is usually dense
> B can sometimes be approximated by a sparse matrix.

- Consider for some ϵ :

$$
\left(B_{\epsilon}\right)_{i j}= \begin{cases}b_{i j}, & \left|b_{i j}\right|>\epsilon \\ 0, & \left|b_{i j}\right| \leq \epsilon\end{cases}
$$

$>\boldsymbol{B}_{\epsilon}$ will be sparse under certain conditions, e.g., when \boldsymbol{A} is diagonally dominant
$>$ In what follows we assume B_{ϵ} is sparse and set $B:=B_{\epsilon}$.
> Pattern will be required by standard probing methods.

Generic Probing Algorithm

ALGORITHM : 2. Probing

Input: A, s
Output: Matrix $\mathcal{D}(B)$
Determine $V_{s}:=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{s}\right]$
for $j \leftarrow 1$ to s
Solve $A x_{j}=v_{j}$
end
Construct $\boldsymbol{X}_{s}:=\left[x_{1}, x_{2}, \ldots, x_{s}\right]$
Compute $\mathcal{D}(\boldsymbol{B}):=\mathcal{D}\left(\boldsymbol{X}_{s} \boldsymbol{V}_{s}^{\top}\right) \mathcal{D}^{-1}\left(\boldsymbol{V}_{s} \boldsymbol{V}_{s}^{\top}\right)$
$>$ Note: rows of V_{s} are typically scaled to have unit 2-norm
$=1$., so $\mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)=I$.

Standard probing (e.g. to compute a Jacobian)

> Several names for same method: "probing"; "CPR", "Sparse Jacobian estimators",..

Basis of the method: can compute Jacobian if a coloring of the columns is known so that no two columns of the same color overlap.

All entries of same color can be computed with one matvec.
Example: For all blue entries multiply \boldsymbol{B} by the blue vector on right.

What about Diag(inv(A))?

$>$ Define $\boldsymbol{v}_{\boldsymbol{i}}$ - probing vector associated with color i :

$$
\left[v_{i}\right]_{k}=\left\{\begin{array}{l}
1 \text { if } \operatorname{color}(k)==i \\
0 \text { otherwise }
\end{array}\right.
$$

> Standard probing satisfies requirement of Proposition but...
$>$... this coloring is not what is needed! [lt is an overkill]

Alternative:

$>$ Color the graph of B in the standard graph coloring algorithm [Adjacency graph, not graph of column-overlaps]

Result:

 Graph coloring yields a valid set of probing vectors for $\mathcal{D}(B)$.
Proof:

$>$ Column v_{c} : one for each node \boldsymbol{i} whose color is \boldsymbol{c}, zero elsewhere.
$>$ Row \boldsymbol{i} of \boldsymbol{V}_{s} : has a '1' in column c, where $c=\operatorname{color}(i)$, zero elsewhere.

$>$ If $b_{i j} \neq 0$ then in matrix V_{s} :

- i-th row has a '1' in column color (i), '0' elsewhere.
- \boldsymbol{j}-th row has a '1' in column color (j), '0' elsewhere.
$>$ The 2 rows are orthogonal.

Example:

$>$ Two colors required for this graph \rightarrow two probing vectors
> Standard method: 6 colors [graph of $B^{T} B$]

Next Issue: Guessing the pattern of B

$>$ Recall that we are dealing with $B:=B_{\epsilon}$ ['pruned' B]
> Assume \boldsymbol{A} diagonally dominant
$>$ Write $A=D-E$, with $D=\mathcal{D}(A)$. Then :

$$
\begin{gathered}
A=D(I-F) \quad \text { with } \quad F \equiv D^{-1} E \quad \rightarrow \\
A^{-1} \approx \underbrace{\left(I+F+F^{2}+\cdots+F^{k}\right) D^{-1}}_{B^{(k)}}
\end{gathered}
$$

$>$ When \boldsymbol{A} is D.D. $\left\|\boldsymbol{F}^{k}\right\|$ decreases rapidly.
$>$ Can approximate pattern of B by that of $B^{(k)}$ for some k.
$>$ Interpretation in terms of paths of length \boldsymbol{k} in graph of \boldsymbol{A}.

Q: How to select \boldsymbol{k} ?

A: Inspect $A^{-1} e_{j}$ for some j
$>$ Values of solution outside pattern of $\left(A^{k} e_{j}\right)$ should be small.
$>$ If during calculations we get larger than expected errors then redo with larger \boldsymbol{k}, more colors, etc..
> Can we salvage what was done? Question still open.

Preliminary experiments

Problem Setup

- DMFT: Calculate the imaginary time Green's function
- DMFT Parameters: Set of physical parameters is provided
- DMFT loop: At most 10 outer iterations, each consisting of 62 inner iterations
- Each inner iteration: Find $\mathcal{D}(\boldsymbol{B})$
- Each inner iteration: Find $\mathcal{D}(B)$
- Matrix: Based on a five-point stencil with $a_{j j}=\mu+i \omega-V-s(j)$

Probing Setup

- Probing tolerance: $\epsilon=10^{-10}$
- GMRES tolerance: $\delta=10^{-12}$

Results

CPU times (sec) for one inner iteration of DMFT.

$\boldsymbol{n} \rightarrow$	$\mathbf{2 1}^{2}$	$\mathbf{4 1}^{2}$	$\mathbf{6 1}^{2}$	$\mathbf{8 1}$
LAPACK	0.5	26	282	>1000
Lanczos	0.2	9.9	115	838
Probing	0.02	0.19	0.79	2.0

A few statistics for case $n=81$

DMFT inner iteration

Challenge: The indefinite case

> The DMFT code deals with a separate case which uses a "real axis" sampling..
$>$ Matrix \boldsymbol{A} is no longer diagonally dominant - Far from it.
$>$ This is a much more challenging case.
$>$ One option: solve $\boldsymbol{A} x_{j}=e_{j}$ FOR ALL j 's - with the ARMS solver using ddPQ ordering + exploit multiple right-hand sides
> More appealing: DD-type approaches

Divided \& Conquer approach

Let $\boldsymbol{A}==$ a 5 -point matrix (2-D problem) split roughly in two:

$$
A=\left(\begin{array}{cccc|cccc}
A_{1} & -\boldsymbol{I} & & & & & & \\
-I & A_{2} & -\boldsymbol{I} & & & & & \\
& \ddots & \ddots & \ddots & & & & \\
& & -\boldsymbol{I} & A_{k} & -\boldsymbol{I} & & & \\
& & & -I & A_{k+1} & -\boldsymbol{I} & & \\
& & & & \ddots & \cdots & \cdots & \\
& & & & & -I & A_{n_{y}-1} & -\boldsymbol{I} \\
& & & & & & -I & A_{n_{y}}
\end{array}\right)
$$

where $\left\{\boldsymbol{A}_{j}\right\}=$ tridiag. Write:

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
\boldsymbol{A}_{21} & A_{22}
\end{array}\right)=\left(\begin{array}{ll}
A_{11} & \\
& A_{22}
\end{array}\right)+\left(\begin{array}{ll}
& A_{12} \\
& A_{21}
\end{array}\right)
$$

with $A_{11} \in \mathbb{C}^{m \times m}$ and $A_{22} \in \mathbb{C}^{(n-m) \times(n-m)}$,
$>$ Observation:

$$
A=\left(\begin{array}{cc}
A_{11}+E_{1} E_{1}^{T} & \\
& \boldsymbol{A}_{22}+\boldsymbol{E}_{2} \boldsymbol{E}_{2}^{T}
\end{array}\right)-\left(\begin{array}{ll}
\boldsymbol{E}_{1} \boldsymbol{E}_{1}^{T} & \boldsymbol{E}_{1} \boldsymbol{E}_{2}^{T} \\
\boldsymbol{E}_{2} \boldsymbol{E}_{1}^{T} & \boldsymbol{E}_{2} \boldsymbol{E}_{2}^{T}
\end{array}\right) .
$$

where $\boldsymbol{E}_{1}, \boldsymbol{E}_{2}$ are (relatively) small rank matrices:

$$
\boldsymbol{E}_{1}:=\left(\begin{array}{l}
\\
\boldsymbol{I}
\end{array}\right) \in \mathbb{C}^{m \times n_{x}}, \quad \boldsymbol{E}_{2}:=\left(\begin{array}{l}
\boldsymbol{I} \\
\end{array}\right) \in \mathbb{C}^{(n-m) \times n_{x}}
$$

Of the form

$$
A=C-E E^{T}, \quad C:=\left(\begin{array}{cc}
C_{1} & \\
& C_{2}
\end{array}\right) \quad E:=\left(\begin{array}{l}
E_{1} \\
\\
E_{2}
\end{array}\right)
$$

> Idea: Use Sherman-Morrisson formula.

$$
\begin{gathered}
A^{-1}=C^{-1}+\boldsymbol{U} G^{-1} U^{T}, \quad \text { with: } \\
\boldsymbol{U}=C^{-1} \boldsymbol{E} \in \mathbb{C}^{n \times n_{x}} \quad G=\boldsymbol{I}_{n_{x}}-\boldsymbol{E}^{T} \boldsymbol{U} \in \mathbb{C}^{n_{x} \times n_{x}},
\end{gathered}
$$

$\mathcal{D}\left(A^{-1}\right)$ can be found from

$$
\mathcal{D}\left(A^{-1}\right)=\underbrace{\left(\mathcal{D}\left(C_{1}^{-1}\right)\right.}_{\text {recursion }} \mathcal{D}\left(C_{2}^{-1}\right)) ~+\mathcal{D}\left(U G^{-1} U^{T}\right) .
$$

$>U$: solve $C U=E$, or $\left\{\begin{array}{l}C_{1} U_{1}=E_{1}, \\ C_{2} U_{2}=E_{2}\end{array}\right.$, Solve iteratively
$>G: G=I_{n_{x}}-E^{T} U=I_{n_{x}}-E_{1}^{T} U_{1}-E_{2}^{T} U_{2}$

Domain Decomposition approach

Domain decomposition with $p=3$ subdomains

Zoom into Subdomain 2

Under usual ordering [interior points then interface points]:

$$
\boldsymbol{A}=\left(\begin{array}{ccccc}
\boldsymbol{B}_{1} & & & & \boldsymbol{F}_{1} \\
& \boldsymbol{B}_{2} & & & \boldsymbol{F}_{2} \\
& & \cdots & & \vdots \\
& & & \boldsymbol{B}_{p} & \boldsymbol{F}_{p} \\
\boldsymbol{F}_{1}^{T} & \boldsymbol{F}_{2}^{T} & \cdots & \boldsymbol{F}_{p}^{T} & \boldsymbol{C}
\end{array}\right) \equiv\left(\begin{array}{cc}
\boldsymbol{B} & \boldsymbol{F} \\
\boldsymbol{F}^{T} & \boldsymbol{C}
\end{array}\right)
$$

Example of matrix \boldsymbol{A} based on a DDM ordering with $p=4$ subdomains. ($n=25^{2}$)

Inverse of \boldsymbol{A} [Assuming both \boldsymbol{B} and \boldsymbol{S} nonsingular]

$$
\begin{aligned}
\boldsymbol{A}^{-1} & =\left(\begin{array}{cc}
\boldsymbol{B}^{-1}+\boldsymbol{B}^{-1} \boldsymbol{F} \boldsymbol{S}^{-1} \boldsymbol{F}^{T} \boldsymbol{B}^{-1}-\boldsymbol{B}^{-1} \boldsymbol{F} \boldsymbol{S}^{-1} \\
-\boldsymbol{S}^{-1} \boldsymbol{F}^{T} \boldsymbol{B}^{-1} & \boldsymbol{S}^{-1}
\end{array}\right) \\
\boldsymbol{S} & =\boldsymbol{C}-\boldsymbol{F}^{T} \boldsymbol{B}^{-1} \boldsymbol{F},
\end{aligned}
$$

$$
\mathcal{D}\left(A^{-1}\right)=\left(\begin{array}{ll}
\mathcal{D}\left(B^{-1}\right)+\mathcal{D}\left(B^{-1} F S^{-1} F^{T} B^{-1}\right) & \\
& \mathcal{D}\left(S^{-1}\right)
\end{array}\right)
$$

> Note: each diagonal block decouples from others:

Inverse of \boldsymbol{A} in \boldsymbol{i} th block (domain)

$$
\begin{aligned}
\left(A^{-1}\right)_{i i} & =\mathcal{D}\left(B_{i}^{-1}\right)+\mathcal{D}\left(\boldsymbol{H}_{i} S^{-1} \boldsymbol{H}_{i}^{T}\right) \\
\boldsymbol{H}_{i} & =\boldsymbol{B}_{i}^{-1} \boldsymbol{F}_{i}
\end{aligned}
$$

Note: only nonzero columns of \boldsymbol{F}_{i} are those related to interface vertices.
> Approach similar to Divide and Conquer but not recursive..

DMFT experiment

Times (in seconds) for direct inversion (INV), divide-and-conquer (D\&C), and domain decomposition (DD) methods.
$>p=4$ subd. for DD
$>$ Various sizes - 2-D problems
> Times: seconds in matlab

\sqrt{n}	INV	D\&C	DD
21	.3	.1	.1
51	12	1.4	.7
81	88	7.1	3.2

> NOTE: work still in progress

Conclusion

$>$ Diag(inv(A)) problem: easy for Diag. Dominant case. Very challenging in (highly) indefinite case.
$>$ Dom. Dec. methods can be a bridge between the two cases
> Approach [specifically for DMFT problem] :

- Use direct methods in strongly Diag. Dom. case
- Use DD-type methods in nearly Diag. Dom. case
- Use direct methods in all other cases [until we find better means :-)]

