
Multilevel preconditioning techniques with
applications
Yousef Saad

Department of Computer Science
and Engineering

University of Minnesota

Syracuse University, Sep. 20, 2013

First:

ä Joint work with Ruipeng Li

ä Work supported by NSF-DMS

Syracuse Univ., 09/20/2013 p. 2

Introduction: Linear System Solvers

General

Purpose

 Specialized

Direct sparse
Solvers

Iterative

A x = b
∆ u = f− + bc

Methods
Preconditioned Krylov

Fast Poisson
Solvers

Multigrid
Methods

Syracuse Univ., 09/20/2013 p. 3

Long standing debate: direct vs. iterative

ä Starting in the 1970’s: huge progress of sparse direct solvers

ä Iterative methods - much older - not designed for ‘general
systems’. Big push in the 1980s with help from ‘preconditioning’

ä General consensus now: Direct methods do well for 2-D
problems and some specific applications [e.g., structures, ...]

ä Usually too expensive for realistic 3-D problems

ä Huge difference between 2-D and 3-D case

ä → Do the test: Two Laplacean matrices of same dimension
n = 122, 500.

Syracuse Univ., 09/20/2013 p. 4

First: on a 350× 350 grid (2D);

Second: on a 50× 50× 49 grid (3D)

ä Pattern of similar [much smaller] coefficient matrices

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 4380

Finite Diff. Laplacean 30x30

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

nz = 5740

Finite Diff. Laplacean 10x10x9

Syracuse Univ., 09/20/2013 p. 5

Background: Preconditioned iterative solvers

Two ingredients:

• An accelerator: Conjugate gradient, BiCG, GMRES,
BICGSTAB,.. [‘Krylov subspace methods’]
• A preconditioner: makes the system easier to solve
by accelerator, e.g. Incomplete LU factorizations;
SOR/SSOR; Multigrid, ...

One viewpoint:

ä Goal of accelerator: find best combination of basic iterates

ä Goal of preconditioner: generate good basic iterates.. [Gauss-
Seidel, ILU, ...]

Syracuse Univ., 09/20/2013 p. 6

Background: Incomplete LU (ILU) preconditioners

ILU: A ≈ LU

Simplest Example: ILU(0) →

Common difficulties of ILUs:
Often fail for indefinite problems
Not too good for highly parallel environments

Syracuse Univ., 09/20/2013 p. 7

Past work: Algebraic Recursive Multilevel Solver (ARMS)

ä Reorder matrix using
‘group-independent sets’. Re-
sult

PAP T =

(
B F
E C

)
=

ä Block factorize:
E

C

F

B

(
B F
E C

)
=

(
L 0

EU−1 I

) (
U L−1F
0 S

)
ä S = C − EB−1F = Schur complement + dropping to
reduce fill

ä Next step: treat the Schur complement recursively

Syracuse Univ., 09/20/2013 p. 8

Algebraic Recursive Multilevel Solver (ARMS)

Level l Factorization:(
Bl Fl
El Cl

)
≈
(

Ll 0

ElU
−1
l I

)(
I 0
0 Al+1

)(
Ul L

−1
l Fl

0 I

)

ä Perform above block factorization recursively on Al+1

ä Blocks in Bl treated as sparse. Can be large or small.

ä Algorithm is fully recursive

ä L-solve∼ restriction; U-solve∼ prolongation.

ä Stability criterion in block independent sets algorithm

ä A few similar ideas in the literature: Y. Notay ’05, AMLI work
(Axelson et al. 2000’s), MLILU (Bank Wagner ’99), ...

Syracuse Univ., 09/20/2013 p. 9

Group Independent Set reordering

Separator

First Block

Simple strategy: Level taversal until there are enough points
to form a block. Reverse ordering. Start new block from
non-visited node. Continue until all points are visited. Add
criterion for rejecting “not sufficiently diagonally dominant
rows.”

Syracuse Univ., 09/20/2013 p. 10

Original matrix

Syracuse Univ., 09/20/2013 p. 11

Block size of 20

Syracuse Univ., 09/20/2013 p. 12

NONSYMMETRIC REORDERINGS

Enhancing robustness: One-sided permutations

ä Very useful techniques for matrices with extremely poor
structure. Not as helpful in other cases.

Previous work:

• Benzi, Haws, Tuma ’99 [compare various permutation algo-
rithms in context of ILU]

• Duff ’81 [Propose max. transversal algorithms. Basis of
many other methods. Also Hopcroft & Karp ’73, Duff ’88]

• Olchowsky and Neumaier ’96 maximize the product of diag-
onal entries→ LP problem

• Duff, Koster, ’99 [propose various permutation algorithms.
Also discuss preconditioners] Provide MC64

Syracuse Univ., 09/20/2013 p. 14

Two-sided permutations with diagonal dominance

Idea: ARMS + exploit nonsymmetric permutations

ä No particular structure or assumptions for B block

ä Permute rows * and * columns of A. Use two permutations
P (rows) and Q (columns) to transform A into

PAQT =

(
B F
E C

)

P,Q is a pair of permutations (rows, columns) selected so
that theB block has the ‘most diagonally dominant’ rows (after
nonsym perm) and few nonzero elements (to reduce fill-in).

Syracuse Univ., 09/20/2013 p. 15

Multilevel framework

ä At the l-th level reorder matrix as shown above and then
carry out the block factorization ‘approximately’

PlAlQ
T
l =

(
Bl Fl
El Cl

)
≈
(

Ll 0

ElU
−1
l I

)
×
(
Ul L

−1
l Fl

0 Al+1

)
,

where

Bl ≈ LlUl
Al+1 ≈ Cl − (ElU

−1
l)(L−1

l Fl) .

ä As before the matrices ElU
−1
l , L−1

l Fl or their approxima-
tions

Gl ≈ ElU−1
l , Wl ≈ L−1

l Fl

need not be saved.

Syracuse Univ., 09/20/2013 p. 16

Interpretation in terms of complete pivoting

Rationale: Critical to have an accurate and well-conditioned
B block [Bollhöfer, Bollhöfer-YS’04]

ä Case when B is of dimension 1 → a form of complete
pivoting ILU. Procedure∼ block complete pivoting ILU

Matching sets: defineB block. M is a set ofnM pairs (pi, qi)

where nM ≤ n with 1 ≤ pi, qi ≤ n for i = 1, . . . , nM and

pi 6= pj, for i 6= j qi 6= qj, for i 6= j

ä When nM = n → (full) permutation pair (P,Q). A partial
matching set can be easily completed into a full pair (P,Q) by
a greedy approach.

Syracuse Univ., 09/20/2013 p. 17

Matching - preselection

Algorithm to find permutation consists of 3 phases.
(1) Preselection: to filter out poor rows (dd. criterion) and
sort the selected rows.
(2) Matching: scan candidate entries in order given by

preselection and accept them into the M set, or reject them.
(3) Complete the matching set: into a complete pair of

permutations (greedy algorithm)

ä Let j(i) = argmaxj|aij|.

ä Use the ratio γi =
|ai,j(i)|
‖ai,:‖1

as a measure of diag. domin. of
row i

Syracuse Univ., 09/20/2013 p. 18

Matching: Greedy algorithm

ä Simple algorithm: scan pairs (ik, jk) in the given order.

ä If ik and jk not already assigned, assign them to M.

2

3

1 2 3 54 7 86

42

8

3

7

4

6

5

1

5

6

7

8

1

2

3

1 2 3 54 7 86

4

2

1

4

5

7

6

8

3

1

5

6

7

8

Matrix after preselection Matrix after Matching perm.

Syracuse Univ., 09/20/2013 p. 19

COMPLEX SHIFTING

Use of complex shifts

ä Several papers promoted the use of complex shifts [or very
similar approaches] for Helmholtz

[1] X. Antoine – Private comm.

[2] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, SIAM J. Sci.
Comput.,27, pp. 1471-1492, 2006

[3] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, SIAM J. Sci.
Comput., Vol. 29, pp. 1942-1958, 2007

[4] M. Magolu Monga Made, R. Beauwens, and G. Warzée,
Comm. in Numer. Meth. in Engin., 16(11) (2000), pp. 801-817.

** Joint work with Daniel Osei-Kuffuor

Syracuse Univ., 09/20/2013 p. 21

ä Illustration with an experiment: finite difference discretiza-
tion of−∆ on a 25× 20 grid.

ä Add a negative shift of−1 to resulting matrix.

ä Do an ILU factorization of A and plot eigs of L−1AU−1.

ä Used LUINC from matlab - no-pivoting and threshold = 0.1.

Syracuse Univ., 09/20/2013 p. 22

ä Terrible spectrum:

−12 −10 −8 −6 −4 −2 0 2

x 10
12

−15

−10

−5

0

5

10

15

Syracuse Univ., 09/20/2013 p. 23

ä Now plot eigs of L−1AU−1 where L,U are inc. LU factors
of B = A+ 0.25 ∗ i

ä Much better!
Observed by many
[PDE viewpoint]

Idea:

Adapt technique to
ILU:
Add complex shifts
before ILU

−0.5 0 0.5 1 1.5 2 2.5 3
−1

−0.5

0

0.5

1

1.5

2

2.5

3

Syracuse Univ., 09/20/2013 p. 24

Explanation

Question:
What if we do an exact
factorization [droptol = 0]?
ä Λ(L−1AU−1) =
Λ[(A+ αiI)−1A]

ä Λ =
{

λj
λj+iα

}
ä Located on a circle –
with a cluster at one.
ä Figure shows situation
on the same example

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Syracuse Univ., 09/20/2013 p. 25

Application to the Helmholtz equation

ä Started from collaboration with Riyad Kechroud, Azzeddine
Soulaimani (ETS, Montreal), and Shiv Gowda: [Math. Comput.
Simul., vol. 65., pp 303–321 (2004)]

ä Problem is set in the open domain Ωe of Rd

∆u+ k2u = f in Ω
u = −uinc on Γ

or ∂u
∂n

= −∂uinc
∂n

on Γ

limr→∞ r
(d−1)/2

(
∂u
∂~n
− iku

)
= 0 Sommerfeld cond.

where: u the wave diffracted by Γ, f = source function = zero
outside domain

Syracuse Univ., 09/20/2013 p. 26

ä Issue: non-reflective boundary conditions when making the
domain finite.

ä Artificial boundary Γart added – Need non-absorbing BCs.

ä For high frequencies, linear systems become very ‘indefi-
nite’ – [eigenvalues on both sides of the imaginary axis]

ä Not very good for iterative methods

Syracuse Univ., 09/20/2013 p. 27

Application to the Helmholtz equation

Test Problem Soft obstacle = disk of radius r0 = 0.5m.
Incident plane wave with a wavelength λ; propagates along the
x-axis. 2nd order Bayliss-Turkel boundary conditions used on
Γart, located at a distance 2r0 from obstacle. Discretization:
isoparametric elements with 4 nodes. Analytic solution known.

Γ

Γ
art

Syracuse Univ., 09/20/2013 p. 28

Comparisons

ä Test problem just seen. Mesh size 1/h = 160→
n = 28, 980, nnz = 260, 280

0 50 100 150 200 250 300 350 400 450 500

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Iteration count

lo
g

of
 r

es
id

ua
l n

or
m

Convergence profiles of ARMS with different shifting schemes

ARMS + dd−based shift
ARMS + τ−based shift
ARMS + no shift

ARMS & shifted variants

0 50 100 150 200 250

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration count

lo
g

of
 r

es
id

ua
l n

or
m

Convergence profiles of ILUT with different shifting schemes

ILUT + dd−based shift

ILUT + τ−based shift

ILUT + no shift

ILUT & shifted variants

Syracuse Univ., 09/20/2013 p. 29

ä Wavenumber varied - tests with ILUT

Preconditioner k λ
h

Iters. Fill Factor ||(LU)−1e||2

ILUT (no shift)

4π 60 134 2.32 3.65e+ 03
8π 30 263 2.25 1.23e+04
16π 15 − - -
24π 10 − - -

ILUT (dd-based)

4π 60 267 2.24 2.29e+ 03
8π 30 255 2.23 4.73e+03
16π 15 101 3.14 6.60e+02
24π 10 100 3.92 2.89e+02

ILUT (τ -based)

4π 60 132 2.31 2.98e+ 03
8π 30 195 2.19 4.12e+03
16π 15 75 3.11 7.46e+02
24π 10 86 3.85 2.73e+02

Syracuse Univ., 09/20/2013 p. 30

ä Wavenumber varied - tests with ARMS

Preconditioner k λ
h

Iters. Fill Factor ||(LU)−1e||2

ARMS (no shift)

4π 60 120 3.50 7.48e+ 03
8π 30 169 4.03 1.66e+04
16π 15 282 4.50 2.44e+03
24π 10 − - -

ARMS (dd-based)

4π 60 411 3.83 5.12e+ 02
8π 30 311 4.37 5.67e+02
16π 15 187 4.71 3.92e+02
24π 10 185 3.00 2.54e+02

ARMS (τ -based)

4π 60 106 3.45 7.56e+ 03
8π 30 79 3.84 6.41e+03
16π 15 39 3.95 1.26e+03
24π 10 94 3.02 4.71e+02

Syracuse Univ., 09/20/2013 p. 31

SPARSE MATRIX COMPUTATIONS ON GPUS

Sparse matrix computations with GPUs ∗∗

ä GPUs Currently a very popular approach to: inexpensive
supercomputing

ä Can buy∼ one Teraflop peak power for around a little more
tham $1,000

Tesla C1060

** Joint work with Ruipeng Li
Syracuse Univ., 09/20/2013 p. 33

Tesla C 1060:

* 240 cores
* 4 GB memory
* Peak rate: 930 GFLOPS [single]
* Clock rate: 1.3 Ghz
* ‘Compute Capability’: 1.3 [allows
double precision]

ä Next: Fermi [48 cores/SM]— followed by [very recently]:

ä Kepler [note: 6 GHz (!), 192 cores/SMX, 4 SMXs in a GPC]

ä Tesla K10 : 2 × (8 SMXs)→ 2 × 1,536 cores, 8GB Mem.;
Peak: ≈ 4.6 TFLOPS]

Syracuse Univ., 09/20/2013 p. 34

The CUDA environment: The big picture

ä A host (CPU) and an attached device (GPU)

Typical program:

1. Generate data on CPU
2. Allocate memory on GPU

cudaMalloc(...)
3. Send data Host→ GPU

cudaMemcpy(...)
4. Execute GPU ‘kernel’:
kernel <<<(...)>>>(..)
5. Copy data GPU→CPU

cudaMemcpy(...)
C P U

G
 P

 U

Syracuse Univ., 09/20/2013 p. 35

Sparse matrix computations on GPUs

Main issue in using GPUs for sparse computations:

• Huge performance degradation due to ‘irregular sparsity’

ä Matrices:
Matrix -name N NNZ
FEM/Cantilever 62,451 4,007,383
Boeing/pwtk 217,918 11,634,424

ä Performance of Mat-Vecs on NVIDIA Tesla C1060

Single Precision Double Precision
Matrix CSR JAD DIA CSR JAD DIA

FEM/Cantilever 9.4 10.8 25.7 7.5 5.0 13.4
Boeing/pwtk 8.9 16.6 29.5 7.2 10.4 14.5

Syracuse Univ., 09/20/2013 p. 36

Sparse Forward/Backward Sweeps

ä Next major ingredient of precond. Krylov subs. methods

ä ILU preconditioning
operations require L/U
solves: x← U−1L−1x
ä Sequential outer loop.

for i=1:n
for j=ia(i):ia(i+1)

x(i) = x(i) - a(j)*x(ja(j))
end

end

ä Parallelism can be achieved with level scheduling:

• Group unknowns into levels

• Compute unknowns x(i) of same level simultaneously

• 1 ≤ nlev ≤ n

Syracuse Univ., 09/20/2013 p. 37

ILU: Sparse Forward/Backward Sweeps

• Very poor performance [relative to CPU]

Matrix N
CPU GPU-Lev

Mflops #lev Mflops
Boeing/bcsstk36 23,052 627 4,457 43
FEM/Cantilever 62,451 653 2,397 168
COP/CASEYK 696,665 394 273 142
COP/CASEKU 208,340 373 272 115

P
re

c:
m

is
er

ab
le

:-)

GPU Sparse Triangular Solve with Level Scheduling

ä Very poor performance when #levs is large

ä A few things can be done to reduce the # levels but perf. will
remain poor

Syracuse Univ., 09/20/2013 p. 38

So...

Syracuse Univ., 09/20/2013 p. 39

Either GPUs must go...

Syracuse Univ., 09/20/2013 p. 40

or ILUs must go...

Syracuse Univ., 09/20/2013 p. 41

Alternatives to ILU preconditioners

ä What would be a good alternative?

Wish-list:

• A preconditioner requiring few ‘irregular’ computations
• Something that trades volume of computations for
speed
• If possible something that is robust for indefinite case

ä Good candidate:

• Multilevel Low-Rank (MLR) approximate inverse precondi-
tioners

Syracuse Univ., 09/20/2013 p. 42

Related work:

• Work on HSS matrices [e.g., JIANLIN XIA, SHIVKUMAR CHAN-
DRASEKARAN, MING GU, AND XIAOYE S. LI, Fast algorithms for
hierarchically semiseparable matrices, Numerical Linear Alge-
bra with Applications, 17 (2010), pp. 953–976.]

• Work on H-matrices [Hackbusch, ...]

• Work on ‘balanced incomplete factorizations’ (R. Bru et al.)

• Work on “sweeping preconditioners” by Engquist and Ying.

• Work on computing the diagonal of a matrix inverse [Jok Tang
and YS (2010) ..]

Syracuse Univ., 09/20/2013 p. 43

Low-rank Multilevel Approximations

ä Starting point: symmetric matrix derived from a 5-point
discretization of a 2-D Pb on nx × ny grid

A =

A1 D2

D2 A2 D3
.

Dα Aα Dα+1

Dα+1 Aα+1
. . .

.
Dny Any

A =

(
A11 A12

A21 A22

)
≡
(
A11

A22

)
+

(
A12

A21

)

Syracuse Univ., 09/20/2013 p. 44

Corresponding splitting on FD mesh:

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Syracuse Univ., 09/20/2013 p. 45

ä A11 ∈ Rm×m, A22 ∈ R(n−m)×(n−m)

ä In the simplest case second matrix is:(
A11 A12

A21 A22

)
=

(
A11

A22

)
+ − I

− I

ä Write 2nd
matrix as:

I I

=

I

I

+

I+

− I

− I

I I

I

T
E E

=E
T

Syracuse Univ., 09/20/2013 p. 46

ä Above splitting can be rewritten as

A = (A+ EET)︸ ︷︷ ︸
B

−EET

A = B − EET ,

B :=

(
B1

B2

)
∈ Rn×n, E :=

(
E1

E2

)
∈ Rn×nx,

Note: B1 := A11 + E1E
T
1 , B2 := A22 + E2E

T
2 .

Syracuse Univ., 09/20/2013 p. 47

ä Shermann-Morrison formula:

A−1 = B−1 +B−1E(

X︷ ︸︸ ︷
I − ETB−1E)−1ETB−1

A−1 = B−1 + (B−1E)X−1(B−1E)T

X = I − ETB−1E

ä Note: E ∈ Rn×nx, X ∈ Rnx×nx

ä nx = number of points in separator [O(n1/2) for 2-D mesh,
O(n2/3) for 3-D mesh]

• Use in a recursive framework

• Similar idea was used for computing the diagonal of the in-
verse [J. Tang YS ’10]

Syracuse Univ., 09/20/2013 p. 48

ä First thought : approximate X and exploit recursivity

B−1[v + EX̃−1ETB−1v].

ä However wont work : cost explodes with # levels

ä Alternative: low-
rank approx. for B−1E

B−1E ≈ UkV T
k ,

Uk ∈ Rn×k,
Vk ∈ Rnx×k,

Syracuse Univ., 09/20/2013 p. 49

Multilevel Low-Rank (MLR) algorithm

ä Method: Use low-
rank approx. for B−1E

B−1E ≈ UkV T
k ,

Uk ∈ Rn×k,
Vk ∈ Rnx×k,

ä Replace B−1E by UkV T
k in X = I − (ETB−1)E:

X ≈ Gk = I − VkUT
k E, (∈ Rnx×nx) Leads to ...

Pre
co

nd
itio

ne
r
M−1 = B−1 + UkHkU

T
k , Hk = V T

k G
−1
k Vk

↖
Use recursivity

ä We can show :
Hk = (I − UT

k EVk)
−1 and

HT
k = Hk

Syracuse Univ., 09/20/2013 p. 50

Recursive multilevel framework

• Ai = Bi + EiE
T
i , Bi ≡

(
Bi1

Bi2

)
.

• Next level, set Ai1 ≡ Bi1 and Ai2 ≡ Bi2

• Repeat on Ai1, Ai2

• Last level, factor Ai (IC, ILU)
• Binary tree structure:

7

8

4

2
3

7 8

4

9 10

6

13 1411 12

5

1 2

03

1

Syracuse Univ., 09/20/2013 p. 51

Generalization: Domain Decomposition framework

Domain partitioned into
2 domains with an edge
separator

l

l

l

l

l

l

l

l

Ω 1

Ω
2

l

l

l

l

l

l

l

l

l

l

ä Matrix can be
permuted to: PAP T =

B̂1 F̂1

F̂ T
1 C1 −X

−XT

B̂2 F̂2

F̂ T
2 C2

ä Interface nodes in each domain are listed last.

Syracuse Univ., 09/20/2013 p. 52

ä Each matrix B̂i is of size ni × ni (interior var.) and the
matrix Ci is of size mi ×mi (interface var.)

Let: Eα =

0
αI
0
XT

α

 then we have:

PAP T =

(
B1

B2

)
− EET with Bi =

(
B̂i F̂1

F̂ T
i Ci +Di

)

and
{
D1 = α2I
D2 = 1

α2X
TX

.

ä α used for balancing

ä Better results when using diagonals instead of αI
Syracuse Univ., 09/20/2013 p. 53

EXPERIMENTS

Experimental setting

• Hardware: Intel Xeon X5675 processor (12 MB Cache, 3.06
GHz, 6-core)

• C/C++; Intel Math Kernel Library (MKL,version 10.2)

• Stop when: ‖ri‖ ≤ 10−8‖r0‖ or its exceeds 500

• Model Problems in 2-D/3-D:

−∆u− cu = g in Ω + B.C.

• 2-D: g(x, y) = −
(
x2 + y2 + c

)
exy; Ω = (0, 1)3 .

• 3-D: g(x, y, z) = −6− c
(
x2 + y2 + z2

)
; Ω = (0, 1)3 .

• F.D. Differences discret.

Syracuse Univ., 09/20/2013 p. 55

Symmetric indefinite cases

• c > 0 in−∆u− cu; i.e.,−∆ shifted by−sI.

• 2D case: s = 0.01, 3D case: s = 0.05

• MLR + GMRES(40) compared to ILDLT + GMRES(40)

• 2-D problems: #lev= 4, rank= 5, 7, 7

• 3-D problems: #lev= 5, rank= 5, 7, 7

• ILDLT failed for most cases

• Difficulties in MLR: #lev cannot be large, [no convergence]

• inefficient factorization at the last level (memory, CPU time)

Grid
ILDLT-GMRES MLR-GMRES

fill p-t its i-t fill p-t its i-t

2562 6.5 0.16 F 6.0 0.39 84 0.30

5122 8.4 1.25 F 8.2 2.24 246 6.03

10242 10.3 10.09 F 9.0 15.05 F

322 × 64 5.6 0.25 61 0.38 5.4 0.98 62 0.22

643 7.0 1.33 F 6.6 6.43 224 5.43

1283 8.8 15.35 F 6.5 28.08 F

Syracuse Univ., 09/20/2013 p. 57

General symmetric matrices - Test matrices

MATRIX N NNZ SPD DESCRIPTION

Andrews/Andrews 60,000 760,154 yes computer graphics pb.

Williams/cant 62,451 4,007,383 yes FEM cantilever

UTEP/Dubcova2 65,025 1,030,225 yes 2-D/3-D PDE pb.

Rothberg/cfd1 70,656 1,825,580 yes CFD pb.

Schmid/thermal1 82,654 574,458 yes thermal pb.

Rothberg/cfd2 123,440 3,085,406 yes CFD pb.

Schmid/thermal2 1,228,045 8,580,313 yes thermal pb.

Cote/vibrobox 12,328 301,700 no vibroacoustic pb.

Cunningham/qa8fk 66,127 1,660,579 no 3-D acoustics pb.

Koutsovasilis/F2 71,505 5,294,285 no structural pb.

Syracuse Univ., 09/20/2013 p. 58

Generalization of MLR via DD

• DD: PartGraphRecursive from METIS

• balancing with diagonals

• higher ranks used in two problems (cant and vibrobox)

• Show SPD cases first then non-SPD

Syracuse Univ., 09/20/2013 p. 59

MATRIX
ICT/ILDLT MLR-CG/GMRES

fill p-t its i-t k le
v

fill p-t its i-t

Andrews 2.6 0.44 32 0.16 2 6 2.3 1.38 27 0.08

cant 4.3 2.47 F 19.01 10 5 4.3 7.89 253 5.30

Dubcova2 1.4 0.14 42 0.21 4 4 1.5 0.60 47 0.09

cfd1 2.8 0.56 314 3.42 5 5 2.3 3.61 244 1.45

thermal1 3.1 0.15 108 0.51 2 5 3.2 0.69 109 0.33

cfd2 3.6 1.14 F 12.27 5 4 3.1 4.70 312 4.70

thermal2 5.3 4.11 148 20.45 5 5 5.4 15.15 178 14.96

Syracuse Univ., 09/20/2013 p. 60

MATRIX
ICT/ILDLT MLR-CG/GMRES

fill p-t its i-t k le
v

fill p-t its i-t

vibrobox 3.3 0.19 F 1.06 10 4 3.0 0.45 183 0.22

qa8fk 1.8 0.58 56 0.60 2 8 1.6 2.33 75 0.36

F2 2.3 1.37 F 13.94 5 5 2.5 4.17 371 7.29

Syracuse Univ., 09/20/2013 p. 61

Conclusion

ä General rule: ILU-based preconditioners not meant to re-
place tailored preconditioners. Can be very useful as parts of
other techniques.

ä Robustness can be improved with nonsymmetric permuta-
tions and the inclusion of complex shifting strategies

ä GPUs for irregular sparse matrix computations: Much re-
mains to be done both in hardware and in algorithms/software.
In general, some of the old methods will see a come-back

ä More interestingly: new methods such as low-rank approxi-
mation methods will be developed

Syracuse Univ., 09/20/2013 p. 62

