OF MINNESOTA TWIN CITIES

Divide and conquer algorithms for large eigenvalue problems

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

Applied Math. Seminar Berkeley, Apr. 22, 2015

Collaborators:

- Joint work with
 - Vassileos Kalantzis [grad student]
 - Ruipeng Li [grad student]
 - Haw-ren Fang [former post-doc]
 - Grady Schoefield and Jim Chelikowsky [UT Austin] [windowing into PARSEC]

➤ Work supported by DOE : Scalable Computational Tools for Discovery and Design: Excited State Phenomena in Energy Materials [Involves 3 institutions: UT Austin, UC Berkeley, U Minn]

Introduction & Motivation

- Density Functional Theory deals with ground states
- Excited states involve transitions and invariably lead to much more complex computations
- Problem: very large number of eigenpairs to compute

An illustration: Time-Dependent Density Functional Theory (TDDFT). In the so-called Cassida approach we need to compute the eigenvalues of a dense matrix K which is built using both occupied and unocuppied states

An illustration: Si34 H36 [Done in 2004-2005]

- > Number of Occupied States (Valence band) $n_v = 86$
- > Number of Unoccupied States (Conduction band) $n_c = 154$
- Size of Coupling Matrix: $N = n_v * n_c = 13,244$
- Number of Poisson solves = 13,244

Similar types of calculations in the GW approach [see, e.g., BerkeleyGW]

- ► But more complex
- > Challenge:

'Hamiltonian of size \sim 1 Million, get 10% of bands'

Solution: Spectrum Slicing

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other :

Idea: Get the spectrum by 'slices' or 'windows' [e.g., a few hundreds or thousands of pairs at a time]

Can use polynomial or rational filters

Deceivingly simple looking idea.

Issues:

7

- Deal with interfaces : duplicate/missing eigenvalues
- Window size [need estimate of eigenvalues]
- How to compute each slice? [polynomial / rational filters?, ..]
 Berkeley 04-22-2015

Computing a slice of the spectrum

How to compute eigenvalues in the middle of the spectrum of a large Hermitian matrix?

Common practice: Shift and invert + some projection process (Lanczos, subspace iteration..)

- 1) Select a shift (or sequence of shifts) σ ; 2) Factor $A - \sigma I$: $A - \sigma I = LDL^T$ 3) Apply Lanczos algorithm to $(A - \sigma I)^{-1}$
- > Solves with $A \sigma I$ carried out using factorization
- Limitation: factorization
- First Alternative: Polynomial filtering

POLYNOMIAL FILTERS

Polynomial filtering

Apply Lanczos or Subspace iteration to:

$$M=\phi(A)$$

where $\phi(t)$ is a polynomial

Each matvec y = Av is replaced by $y = \phi(A)v$

Eigenvalues in high part of filter will be computed first

Consider Subspace Iteration. In following script:

- B = (A cI)/h so $\Lambda(B) \subset [-1, 1]$
- Rayleigh-Ritz with *B* [shifted-scaled *A*]
- Compute residuals w.r.t. B
- Exit when enough eigenpairs have converged

Berkeley - 04-22-2015

What polynomials?

For end-intervals can just use Chebyshev

For inside intervals: several choices

► Recall the main goal: A polynomial that has large values for $\lambda \in$ [a, b] small values elsewhere

Least-squares approach

 Two stage approach used in filtlan [H-r Fang, YS 2011] First select an "ideal filter"
 e.g., a piecewise polynomial function [a spline]

For example ϕ = Hermite interpolating pol. in [0,a], and $\phi = 1$ in [a, b]

Referred to as the 'Base filter'

• Then approximate base filter by degree *k* polynomial in a least-squares sense.

• Can do this without numerical integration

Main advantage: Extremely flexible.

Method: Build a sequence of polynomials ϕ_k which approximate the ideal PP filter ϕ , in the L_2 sense.

In filtlan, we used a form of Conjugate Residual technique in polynomial space. Details skipped.

Low-pass, high-pass, & barrier (mid-pass) filters

See Reference on Lanczos + pol. filtering: Bekas, Kokiopoulou, YS (2008) for motivation, etc.

H.-r Fang and YS "Filtlan" paper [SISC,2012] and code

Misconception: High degree polynomials are bad

A simpler approach: Chebyshev + Jackson damping

- Simply seek the best LS approximation to step function
- Add damping coefficients to reduce oscillations

Chebyshev-Jackson approximation of a function f:

$$f(x) pprox \sum_{i=0}^k oldsymbol{g}_i^k \gamma_i T_i(x)$$

 $\gamma_i = \begin{cases} \left[\arccos(a) - \arccos(b)\right] / \pi : i = 0\\ 2\left[\sin(i \arccos(a)) - \sin(i \arccos(b))\right] / (i\pi) : i > 0 \end{cases}$ $\blacktriangleright \text{ Expression for } g_i^k \text{: see L. O. Jay, YS, J. R. Chelikowsky, '99}$

Polynomial filters: An even simpler approach

Simply seek the LS approximation to the δ− Dirac function
 Centered at the mid- 2
 dle of the interval.
 Can use same damping: Jackson, or Lanc-zos σ damping.

Berkeley - 04-22-2015

Tests – Test matrices

** From Filtlan article with H-R Fang

Experiments on two dual-core AMD Opteron(tm) Processors 2214 @ 2.2GHz and 16GB memory.

Test matrices:

* Five Hamiltonians from electronic structure calculations,

* Andrews matrix $N = 60,000, nnz \approx 760K$, interval [4,5]; nev=1,844 eigenvalues, (3,751 to the left of η)

* A discretized Laplacian (FD) $n = 10^6$, interval = [1, 1.01], nev= 276, (>17,000 on the left of η)

Here : report only on Andrews and Laplacean

Results for Andrews - set 1 of stats

method	degree	# iter	# matvecs	memory
	d=20	9,440	188,800	4,829
filt. Lan.	d = 30	6,040	180,120	2,799
(mid-pass)	d = 50	3,800	190,000	1,947
	d = 100	2,360	236,000	1,131
	d = 10	5,990	59,900	2,799
filt. Lan.	d=20	4,780	95,600	2,334
(high-pass)	d = 30	4,360	130,800	2,334
	d = 50	4,690	234,500	2,334
Part. ⊥ Lanczos		22,345	22,345	10,312
ARPACK		30,716	30,716	6,129

Results for Andrews - CPU times (sec.)

method	degree	ho(A)v	reorth	eigvec	total
	d=20	2,797	192	4,834	9,840
filt. Lan.	d = 30	2,429	115	2,151	5,279
(mid-pass)	d = 50	3,040	65	521	3,810
	d = 100	3,757	93	220	4,147
	d = 10	1,152	2,911	2,391	7,050
filt. Lan.	d=20	1,335	1,718	1,472	4,874
(high-pass)	d = 30	1,806	1,218	1,274	4,576
	d = 50	3,187	1,032	1,383	5,918
Part. \perp L	anczos	217	30,455	64,223	112,664
ARPACK		345	†423,492	†18,094	441,934

Results for Laplacian – Matvecs and Memory

method	degree	# iter	# matvecs	memory
	600	1,400	840,000	10,913
mid-pass filter	1,000	950	950,000	7,640
	1,600	710	1,136,000	6,358

Results for Laplacian – CPU times

method	degree	ho(A)v	reorth	eigvec	total
mid-pass filter	600	97,817	927	241	99,279
	1,000	119,242	773	162	120,384
	1,600	169,741	722	119	170,856

Spectrum slicing in PARSEC

** From: A Spectrum Slicing Method for the Kohn-Sham Problem, G. Schofield, J. R. Chelikowsky and YS, Computer Physics Comm., vol 183 (2011) pp. 487-505.

- Preliminary implementation in our code: PARSEC
- Uses the simpler Jackson-Chebyshev filters
- For details on windowing, etc., see paper

► Illustration shown next using 16 slices: States for unrelaxed $Si_{275}H_{172}$ as computed using 16 slices. Each slice \rightarrow solid line. Original full spectrum \rightarrow dashed line.

How do I slice my spectrum?

Analogue question:

How would I slice an onion if I want each slice to have about the same mass?

► A good tool: Density of States – see:

- L. Lin, YS, Chao Yang recent paper.
- KPM method see, e.g., : [Weisse, Wellein, Alvermann, Fehske, '06]
- Interesting instance of a tool from physics used in linear algebra.
- Misconception: 'load balancing will be assured by just having slices with roughly equal numbers of eigenvalues'
- Situation is much more complex

Berkeley - 04-22-2015

RATIONAL FILTERS

Why use rational filters?

Consider a spectrum like this one:

Polynomial filtering approach would be utterly ineffective for this case

Second issue: situation when Matrix-vector products are expensive

Alternative is to use rational filters:

$$\phi(z) = \sum_j rac{lpha_j}{z - \sigma_j}$$

We now need to solve linear systems

Tool: Cauchy integral representations of spectral projectors

$$P=rac{-1}{2i\pi}\int_{\Gamma}(A-sI)^{-1}ds$$
 .

• Numer. integr.
$$P
ightarrow ilde{P}$$

• Use Krylov or S.I. on \tilde{P}

Sakurai-Sugiura approach [Krylov]

Polizzi [FEAST, Subsp. Iter.]

When using rational filters often one resorts to Cauchy integrals :

Spectral projector $P = \frac{-1}{2i\pi} \int_{\Gamma} (A - sI)^{-1} ds +$ Numer. Integ.

➤ Approximation theory viewpoint: Find rational function that approximates step function in [-1,1] [after shifting + scaling]

e.g., work by S. Guettel et al. 2014. Uniform approx.

Berkeley – 04-22-2015

► The blue curve on the right is likely to give better results than the other 2 when subspace iteration is used.

> Want large values inside [-1, 1] and small ones outside, but do not care much how well step function is approximated

What makes a good filter

Assume subspace iteration is used with above filters. Which filter will give better convergence?

➤ Simplest and best indicator of performance of a filter is the magnitude of its derivative at -1 (or 1)

The Cauchy integral viewpoint

Standard Mid-point, Gauss-Chebyshev (1st, 2nd) and Gauss-Legendre quadratures. Left: filters, right: poles

Notice how the sharper curves have poles close to real axis

The Gauss viewpoint: Least-squares rational filters

$$\blacktriangleright$$
 Given: poles $\sigma_1, \sigma_2, \cdots, \sigma_p$

> Related basis functions
$$\phi_j(z) = \frac{1}{z - \sigma_j}$$

Find
$$\phi(z) = \sum_{j=1}^p lpha_j \phi_j(z)$$
 that minimizes $\int_{-\infty}^\infty w(t) |h(t) - \phi(t)|^2 dt$

>
$$h(t)$$
 = step function $\chi_{[-1,1]}$.

• w(t)= weight function. For example a = 10, $\beta = 0.1$

$$w(t) = egin{cases} 0 ext{ if } & |t| > a \ eta ext{ if } & |t| \leq 1 \ 1 ext{ else } \end{cases}$$

Berkeley - 04-22-2015

How does this work?

- > A small example : Laplacean on a 43×53 grid. (n = 2279)
- Take 4 poles obtained from mid-point rule($N_c = 2$ on each 1/2 plane)

> Want: eigenvalues inside [0, 0.2]. There are nev = 31 of them.

Use 1) standard subspace iteration + Cauchy (FEAST) then
 2) subspace iteration + LS Rat. Appox.

> Use subspace of dim nev + 6

 $\succ \beta = 0.2$

LS Uses the same poles + same factorizations as Cauchy but

much faster as expected from a look at the curves of the functions

Other advantages:

- Can select poles far away from real axis → faster iterative solvers [E. Di Napoli, YS, et al-, work in progress]
- Can use multiple poles (!)
- Very flexible can be adapted to many situations

Influence of parameter β

▶ Recall: large β → better approximation to h – not needed

Smaller values are better

Berkeley - 04-22-2015

Better rational filters: Multiple poles

Current choices: Mid-point/Trapezoidal rule, Gauss, Zolotarev,...

> None of these allows for repeated ('multiple') poles e.g., with one pole of multuplicity k:

$$\phi(z)=rac{lpha_1}{z-\sigma}+rac{lpha_2}{(z-\sigma)^2}+\cdots+rac{lpha_k}{(z-\sigma)^k}$$

Advantage: Fewer exact or incomplete factorizations needed for solves

Next: Illustration with same example as before

Better rational filters: Example

- \blacktriangleright Take same example as before 43 imes53 Laplacean
- > Now take 6 poles [3 imes 2 midpoint rule]
- Repeat each pole [double poles.]

$$\phi(z)=\sum_{i=1}^{N_p}\sum_{j=1}^{k_i}rac{lpha_{ij}}{(z-z_i)^j}$$

> We then need to minimize (as before)

$$\int_{-\infty}^{\infty} w(t) |h(t) - \phi(t)|^2 dt$$

Need to exploit partial fraction expansions

Straightforward extension [but somewhat more cumbersome]

Next: See what we can do with *one* double pole

Who needs a circle? Two poles² + comparison with compounding

Berkeley - 04-22-2015

SPECTRAL SCHUR COMPLEMENT TECHNIQUES

Introduction: Domain-Decomposition

* Joint work with Vasilis Kalantzis and Ruipeng Li

Partition graph using edge-separators ('vertex-based partitioning')

Berkeley - 04-22-2015

> Stack all interior variables u_1, u_2, \cdots, u_p into a vector u, then interface variables y

$$\underbrace{egin{pmatrix} B_1&\ldots & E_1\ B_2&\ldots & E_2\ ert&\ddots&ert&ert\ & & B_p & E_p\ E_1^T & E_2^T & \ldots & E_p^T & C \end{pmatrix}}_{PAP^T}egin{pmatrix} u_1\ u_2\ ert\ u_2\ ert\ u_p\ y\end{pmatrix}=\lambdaegin{pmatrix} u_1\ u_2\ ert\ u_2\ ert\ u_p\ y\end{pmatrix}$$

Berkeley - 04-22-2015

50

Result:

Notation:

Write as:

$$A = \begin{pmatrix} B & E \\ E^T & C \end{pmatrix}$$

The spectral Schur complement

• Eliminating the u_i 's we get

• $S_i(\lambda) = C_i - \lambda I - E_i^{ op} (B_i - \lambda I)^{-1} E_i$

- Interface problem (non-linear): $S(\lambda)y(\lambda) = 0$.
- Top part can be recovered as $u_i = -(B \lambda I)^{-1} E_i y(\lambda)$.
- See also AMLS [Bennighof, Lehoucq, 2003]

Spectral Schur complement (cont.)

State problem as: • Find $\sigma \in \mathbb{R}$ such that

One eigenvalue of $S(\sigma)\equiv 0$, or,

• $\mu(\sigma) = 0$ where $\mu(\sigma) ==$ smallest (|.|) eig of $S(\sigma)$.

▶ Can treat $\mu(\sigma)$ as a function → root-finding problem.

 \blacktriangleright The function $\mu(\sigma)$ is analytic for any $\sigma \notin \Lambda(B)$ with

$$rac{d\mu(\sigma)}{d\sigma} = -1 - rac{\|(B-\sigma I)^{-1}Ey(\sigma)\|_2^2}{\|y(\sigma)\|_2^2}.$$

Basic algorithm - Newton's scheme

We can formulate a Newton-based algorithm.

ALGORITHM : 1 Newton Scheme

- 1 Select initial σ
- 2 Repeat:
- 3 Compute $\mu(\sigma) =$ Smallest eigenvalue in modulus
- 4 of $S(\sigma)$ & associated eigenvector $y(\sigma)$

5 Set
$$\eta := \|(B - \sigma I)^{-1} E y(\sigma)\|_2$$

6 Set
$$\sigma := \sigma + \mu(\sigma)/(1+\eta^2)$$

7 **Until:** $|\mu(\sigma)| \leq ext{tol}$

Short illustration - eigen-branches between two poles

> There may be a few, or no, eigenvalues λ between two poles.

Eigen-branches across the poles

Berkeley - 04-22-2015

Branch-hopping

Once we converge …

start Newton from point on branch immediatly above current root.

Berkeley - 04-22-2015

Evaluating $\mu(\sigma)$

Inverse Iteration

- For any σ we just need one (two) eigenvalues of $S(\sigma)$.
- Good setting for "Inverse-Iteration" type approaches.

Lanczos algorithm

 $\bullet\,$ Tends to be expensive for large p and eigenvalues deep inside spectrum

Numerical experiments

Some details

- Implementation in MPI-C++ using PETSc
- Tests performed on Itasca Linux cluster @ MSI.

The model problem

- Tests on 3-D dicretized Laplacians (7pt. st. FD).
- We use n_x, n_y, n_z to denote the three dimensions.
- tol set to 1e 12.
- Single-level partitioning One node per sub-domain.

Example of convergence history

Rel. res. for a few consecutive eigenvalues. Left $40 \times 40 \times 20$ grid. Right: $20 \times 20 \times 20$

Effect of number of domains p on convergence

Eigen-branches $\mu_1(\sigma), \ldots, \mu_9(\sigma)$ in [0.133, 0.241] for a $33 \times 23 \times 1$ grid. Left: p = 4, right: p = 16.

Numerical experiments: Parallel tests

- Tests performed on Itasca Linux cluster @ MSI.
- Each node is a two-socket, quad-core 2.8 GHz Intel Xeon X5560 "Nehalem EP" with 24 GB of system memory.
- Interconnection : 40-gigabit QDR InfiniBand (IB).

The model problem

- Tests on 3-D dicretized Laplacians (7pt. st. FD).
- We use n_x, n_y, n_z to denote the three dimensions.
- tol set to 1e 12.

Wall-clock timings to compute the first k = 1 and k = 5 eigenpairs to the right of σ .

		$\sigma =$	$\sigma=0.0$.5
(p,k)	8	Sec	lt	Sec	lt
(32,1)	65647	1.66	3	11.7	4
(32,5)		10.1	15	68.2	19
(64,1)	83358	0.47	3	5.20	4
(64,5)		3.20	14	31.2	19
(128,1)	108508	0.16	3	1.90	4
(128,5)		1.10	14	11.7	18
(64,1)	181901	5.90	3	41.1	3
(64,5)		28.3	15	221.5	15
(128,1)	230849	1.18	3	7.80	3
(128,5)		6.24	15	41.5	14
(256,1)	293626	0.65	3	2.90	3
(256,5)		3.80	15	14.8	14
	(p, k) (32,1) (32,5) (64,1) (64,5) (128,1) (128,5) (64,1) (64,5) (128,1) (128,1) (128,5) (256,1) (256,5)	(p,k) s $(32,1)$ 65647 $(32,5)$ $$ $(64,1)$ 83358 $(64,5)$ $$ $(128,1)$ 108508 $(128,5)$ $$ $(64,1)$ 181901 $(64,5)$ $$ $(128,1)$ 230849 $(128,5)$ $$ $(256,1)$ 293626 $(256,5)$ $$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

			$\sigma =$	$\sigma=0.0$.5
	(p,k)	8	Sec	lt	Sec	lt
	(16,1)	7951	0.65	3	3.10	3
00	(16,5)		4.42	15	15.9	15
<u>0</u>	(32,1)	12377	0.26	3	2.90	3
	(32,5)		1.60	14	16.4	15
60	(64,1)	18495	0.20	3	1.10	3
	(64,5)		1.10	14	5.40	14
801×800	(32,1)	16673	1.83	3	11.1	3
	(32,5)		10.2	15	65.1	15
	(64,1)	24945	0.73	3	5.00	3
	(64,5)		4.10	15	28.20	14
	(128,1)	36611	0.31	3	2.10	3
	(128,5)		1.80	15	9.70	14

Conclusion

Part I: Polynomial filtering

Polnym. Filter. appealing when # of eigenvectors to be computed is large and when Matvecs are inexpensive

Will not work too well for generalized eigenvalue problem

> Will not work well for spectra with very large outliers.

Part II: Rational filtering

► We must rethink the way we view Rational filtering - away from Cauchy and into approximation of functions. LS approach is flexible, easy to implement, easy to understand.

Part III: Domain Decomposition

We *must* combine DD with any filtering technique [rational or polynomial]

► Many ideas still to explore in Domain Decomposition for interior eigenvalue problems

Filtlan code available here:

www.cs.umn.edu/~saad/software/filtlan