OF MINNESOTA TWIN CITIES

Parallel Multilevel Low-Rank approximation preconditioners Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

ICME, Stanford April 20th, 2015

Partly joint work with Ruipeng Li and Yuanzhe Xi

Work supported by NSF-DMS

Introduction: Linear System Solvers

Long standing debate: direct vs. iterative

- Starting in the 1970's: huge progress of sparse direct solvers
- Iterative methods much older not designed for 'general systems'. Big push in the 1980s with help from 'preconditioning'
- ► General consensus now: Direct methods do well for 2-D problems and some specific applications [e.g., structures, ...]
- Usually too expensive for 3-D problems
- Huge difference between 2-D and 3-D case
- Test: Two Laplacean matrices of same dimension n = 122,500. First: on a 350×350 grid (2D); Second: on a $50 \times 50 \times 49$ grid (3D)

Pattern of a similar [much smaller] coefficient matrix

Background: Preconditioned iterative solvers

Two ingredients:

An accelerator: Conjugate gradient, BiCG, GMRES, BICGSTAB,... ['Krylov subspace methods']
A preconditioner: makes the system easier to solve by accelator, e.g. Incomplete LU factorizations; SOR/SSOR; Multigrid, ...

One viewpoint:

Goal of accelerator: find best combination of basic iterates

► Goal of preconditioner: generate good basic iterates.. [Gauss-Seidel, ILU, ...]

Background: Incomplete LU (ILU) preconditioners

Common difficulties of ILUs: Often fail for indefinite problems Not too good for highly parallel environments

SPARSE MATRIX COMPUTATIONS ON GPUS

Sparse matrix computations with GPUs **

GPUs Currently a very popular approach to: inexpensive supercomputing

> Can buy \sim one Teraflop peak power for around a little more tham \$1,000

** Joint work with Ruipeng Li

Tesla C 1060:

- * 240 cores
- * 4 GB memory
- * Peak rate: 930 GFLOPS [single]
- * Clock rate: 1.3 Ghz
- * 'Compute Capability': 1.3 [allows double precision]

Next: Fermi [48 cores/SM]— followed by: Kepler..

▶ Tesla K 80 : $2 \times 2,496 \rightarrow 4992$ GPU cores. 24 GB Mem.; Peak: \approx 2.91 TFLOPS double prec. [with clock Boost].

The CUDA environment: The big picture

A host (CPU) and an attached device (GPU)

Typical program:

Sparse matrix computations on GPUs

Main issue in using GPUs for sparse computations:

• Huge performance degradation due to 'irregular sparsity'

	Matrix -name	N	NNZ
Matrices:	FEM/Cantilever	62,451	4,007,383
	Boeing/pwtk	217,918	11,634,424

Performance of Mat-Vecs on NVIDIA Tesla C1060

	Sing	gle Pr	ecision	Double Precision				
Matrix	CSR	JAD	DIA+	CSR	JAD	DIA+		
FEM/Cantilever	9.4	10.8	25.7	7.5	5.0	13.4		
Boeing/pwtk	8.9	16.6	29.5	7.2	10.4	14.5		

More recent tests: NVIDIA M2070 (Fermi), Xeon X5675 Double precision in Gflops

MATRIX	Dim. N	CPU	CSR	JAD	HYB	DIA
rma10	46,835	3.80	10.19	12.61	8.48	-
cfd2	123,440	2.88	8.52	11.95	12.18	-
majorbasis	160,000	2.92	4.81	11.70	11.54	13.06
af_shell8	504,855	3.13	10.34	14.56	14.27	-
lap7pt	1,000,000	2.59	4.66	11.58	12.44	18.70
atmosmodd	1,270,432	2.09	4.69	10.89	10.97	16.03

CPU SpMV: Intel MKL, parallelized using OpenMP
 HYB: from CUBLAS Library. [Uses ellpack+csr combination]

(*) Thanks: all matrices from the Univ. Florida sparse matrix collection

Sparse Forward/Backward Sweeps

Next major ingredient of precond. Krylov subs. methods

ILU preconditioning operations require L/U solves: $x \leftarrow U^{-1}L^{-1}x$ Sequential outer loop.

for i=1:n for j=ia(i):ia(i+1) $x(i) = x(i) - a(j)^*x(ja(j))$ end end

Parallelism can be achieved with level scheduling:

- Group unknowns into levels
- Compute unknowns x(i) of same level simultaneously
- $ullet 1 \leq nlev \leq n$

ILU: Sparse Forward/Backward Sweeps

• Very poor performance [relative to CPU]

Matrix	N	CPU	GPU-Lev			
Iviatita	IN	<u>M</u> flops	#lev	<u>M</u> flops	ble	
Boeing/bcsstk36	23,052	627	4,457	43	era	
FEM/Cantilever	62,451	653	2,397	168	nis	
COP/CASEYK	696,665	394	273	142		
COP/CASEKU	208,340	373	272	115	rec	

GPU Sparse Triangular Solve with Level Scheduling

- Very poor performance when #levs is large
- A few things can be done to reduce the # levels but perf. will remain poor

...Either GPUs must go...

... or ILUs must go...

Alternatives to ILU preconditioners

What would be a good alternative?

Wish-list: A preconditioner that

- Requires few 'irregular' computations
- Trades volume of computations for speed
- Is robust for indefinite problems
- Candidate:

• Multilevel Low-Rank (MLR) approximate inverse preconditioners

Related work:

- Work on H-matrices [Hackbusch, ...]
- Work on HSS matrices [e.g., JIANLIN XIA, SHIVKUMAR CHAN-DRASEKARAN, MING GU, AND XIAOYE S. LI, *Fast algorithms for hierarchically semiseparable matrices*, Numerical Linear Algebra with Applications, 17 (2010), pp. 953–976.]
- Work on 'balanced incomplete factorizations' (R. Bru et al.)
- Work on "sweeping preconditioners" by Engquist and Ying.
- Work on computing the diagonal of a matrix inverse [Jok Tang and YS (2010) ..]

Low-rank Multilevel Approximations

Starting point: symmetric matrix derived from a 5-point discretization of a 2-D Pb on $n_x \times n_y$ grid

Corresponding splitting on FD mesh:

 \blacktriangleright $A_{11} \in \mathbb{R}^{m imes m}$, $A_{22} \in \mathbb{R}^{(n-m) imes (n-m)}$

In the simplest case second matrix is:

Above splitting can be rewritten as

$$A = \underbrace{(A + EE^T)}_B - EE^T$$

Note: $B_1 := A_{11} + E_1 E_1^T$, $B_2 := A_{22} + E_2 E_2^T$.

Next :
 Use Shermann Morrison formula:

$$A^{-1} = B^{-1} + (B^{-1}E)X^{-1}(B^{-1}E)^{T}$$
$$X = I - E^{T}B^{-1}E$$

Method: Use low- $B^{-1}E pprox U_k V_k^T, egin{array}{c} U_k \in \mathbb{R}^{n imes k}, \ V_k \in \mathbb{R}^{n_x imes k}, \ V_k \in \mathbb{R}^{n_x imes k}. \end{array}$ rank approx. for $B^{-1}E$

► Replace $B^{-1}E$ by $U_kV_k^T$ in $X = I - (E^TB^{-1})E$: $X \approx G_k = I - V_k U_k^T E$, $(\in \mathbb{R}^{n_x \times n_x})$ Leads to ... Preconditioner

$$M^{-1} = B^{-1} + U_k H_k U_k^T, \quad H_k = V_k^T G_k^{-1} V_k$$

We can show :

$$egin{array}{ll} H_k &= (I - U_k^T E V_k)^{-1} & ext{and} \ H_k^T &= H_k & \end{array}$$

Recursive multilevel framework

•
$$A_i = B_i + E_i E_i^T$$
, $B_i \equiv \begin{pmatrix} B_{i_1} \\ B_{i_2} \end{pmatrix}$.

- Next level, set $A_{i_1}\equiv B_{i_1}$ and $A_{i_2}\equiv B_{i_2}$
- Repeat on A_{i_1}, A_{i_2}
- Last level, factor A_i (IC, ILU)
- Binary tree structure:

Theory: 2-level analysis for model problem

► Interested in eigenvalues γ_j of $A^{-1} - B^{-1} = B^{-1}EX^{-1}E^TB^{-1}$ when A = Pure Laplacean ... They are:

> Decay of the γ_j 's when nx = ny = 32.

Note $\sqrt{\beta_j}$ are the singular values of $B^{-1}E$.

In this particular case 3 eigenvectors will capture 92 % of the inverse whereas 5 eigenvectors will capture 97% of the inverse.

Generalization: Domain Decomposition framework

Domain partitioned into 2 domains with an edge separator

- Previous approach extended to this case –
- Issue with this general approach: recursive implementation

Avoiding recursivity: 'standard' DD framework

Goal: avoid recursivity
 Consider a domain partitioned in *p* sub-domains using vertex- based partitioniong (edge-separator)
 Interface nodes in each domain are listed last.

Local view:

 $\begin{pmatrix} B_i & F_i \\ E_i^T & C_i \end{pmatrix} \begin{pmatrix} u_i \\ y_i \end{pmatrix} + \begin{pmatrix} 0 \\ \sum_{j \in N_i} E_{ij} y_j \end{pmatrix} = \begin{pmatrix} f_i \\ g_i \end{pmatrix}$

The global system: Global view

▶ Global system can be permuted to the form →
 ▶ u_i's internal variables
 ▶ y interface variables

> \hat{F}_i maps local interface points to interior points in domain Ω_i

 \hat{E}_i^T does the reverse operation

Example:

Splitting

Split as:
$$A \equiv \begin{pmatrix} B & \hat{F} \\ \hat{E}^T & C \end{pmatrix} = \begin{pmatrix} B \\ C \end{pmatrix} + \begin{pmatrix} \hat{F} \\ \hat{E}^T \end{pmatrix}$$
Define:
$$F \equiv \begin{pmatrix} \alpha^{-1}\hat{F} \\ -\alpha I \end{pmatrix}; \quad E \equiv \begin{pmatrix} \alpha^{-1}\hat{E} \\ -\alpha I \end{pmatrix} \quad \text{Then:}$$

$$\begin{bmatrix} B & |\hat{F} \\ \hat{E}^T & C \end{bmatrix} = \begin{bmatrix} B + \alpha^{-2}\hat{F}\hat{E}^T & 0 \\ 0 & |C + \alpha^2 I \end{bmatrix} - FE^T.$$

 $\succ \alpha$ is a parameter

► Property: $\hat{F}\hat{E}^{T}$ is 'local', i.e., no inter-domain couplings →

$$A_0 \equiv egin{bmatrix} B+lpha^{-2}\hat{F}\hat{E}^T & 0 \ 0 & C+lpha^2 I \end{bmatrix}$$

= block-diagonal

Low-Rank Approximation DD preconditioners

 $Sherman-Morrison \rightarrow$

$$A^{-1} = A_0^{-1} + A_0^{-1} F G^{-1} E^T A_0^{-1}$$
$$G \equiv I - E^T A_0^{-1} F$$

Options: (a) Approximate $A_0^{-1}F$, $E^T A_0^{-1}$, G^{-1} [as before] (b) Approximate only G^{-1} [new]

> (b) requires 2 solves with A_0 .

Let $G \approx G_k$ Preconditioner \rightarrow

$$M^{-1} = A_0^{-1} + A_0^{-1} F G_k^{-1} E^T A_0^{-1}$$

Symmetric Positive Definite case

> Recap: Let
$$G \equiv I - E^T A_0^{-1} E \equiv I - H$$
. Then
 $A^{-1} = A_0^{-1} + A_0^{-1} E G^{-1} E^T A_0^{-1}$

> Approximate G^{-1} by $G_k^{-1} \rightarrow$ preconditioner: $M^{-1} = A_0^{-1} + (A_0^{-1}E)G_k^{-1}(E^TA_0^{-1})$

> Matrix
$$A_0$$
 is SPD

 \succ Can show: $0 \leq \lambda_j(H) < 1$.

► Now take rank-*k* approximation to *H*: $H \approx U_k D_k U_k^T$ $G_k = I - U_k D_k U_k^T$ → $G_k^{-1} \equiv (I - U_k D_k U_k^T)^{-1} = I + U_k [(I - D_k)^{-1} - I] U_k^T$

► Observation: $A^{-1} = M^{-1} + A_0^{-1} E[G^{-1} - G_k^{-1}] E^T A_0^{-1}$

> G_k : k largest eigenvalues of H matched – others set == 0

> Result: AM^{-1} has

• n - s + k eigenvalues == 1

All others between 0 and 1

Alternative: reset lowest eigenvalues to constant

- > Let $H = U\Lambda U^T$ = exact (full) diagonalization of H
- > We replaced Λ by:
- > Alternative: replace Λ by

- > Interesting case: $\theta = \lambda_{k+1}$
- > Question: related approximation to G^{-1} ?

► Result: Let $\gamma = 1/(1 - \theta)$. Then approx. to G^{-1} is: $G_{k,\theta}^{-1} \equiv \gamma I + U_k [(I - D_k)^{-1} - \gamma I] U_k^T$

- > G_k : k largest eigenvalues of G matched others set == θ
- > $\theta = 0$ yields previous case
- \blacktriangleright When $\lambda_{k+1} \leq heta < 1$ we get
- > Result: AM^{-1} has

•
$$n - s + k$$
 eigenvalues == 1
• All others ≥ 1

Next: An example for a 900×900 Laplacean, 4 domains, s = 119

k = 5 Eigenvalues of AM^{-1} for the case $\theta = 0$

Stanford 04-20-2015 p.

k = 15 Eigenvalues of AM^{-1} for the case $\theta = \lambda_{k+1}$

PropositionAssume
$$\theta$$
 is so that $\lambda_{k+1} \leq \theta < 1$. Thenthe eigenvalues η_i of AM^{-1} satisfy: $1 \leq \eta_i \leq 1 + \frac{1}{1-\theta} \|A^{1/2}A_0^{-1}E\|_2^2$.

• Can Show: For the Laplacean (FD) and when $\alpha = 1$, $\|A^{1/2}A_0^{-1}E\|_2^2 = \|E^TA_0^{-1}AA_0^{-1}E\|_2 \le \frac{1}{4}$

regardless of the mesh-size.

Best upper bound for $heta = \lambda_{k+1}$

Set $\theta = \lambda_{k+1}$. Then $\kappa(AM^{-1}) \leq \text{constant}$, if k large enough so that $\lambda_{k+1} \leq \text{constant}$.

i.e., need to capture sufficient part of spectrum

The symmetric indefinite case

> Appeal of this approach over ILU: approximate inverse \rightarrow Not as sensitive to indefiniteness

- Part of the results shown still hold
- > But $\lambda_i(H)$ can be > 1 now.
- > Parameter α now plays a more important role

Example:Take Laplacean on a 30×30 FD grid.Subtract 0.4I - result: 26 negative eigenvalues $\lambda_{min} = -0.379477..., \quad \lambda_{max} = 7.579477...$

> Use
$$\alpha = 4.0, \theta = 0.9;$$

> We do test for k = 10 and then k = 5

k = 10 Eigenvalues of AM^{-1} [$\theta = 0.90, \alpha = 4$]

k = 5 Eigenvalues of AM^{-1} [$\theta = 0.90, \alpha = 4$]

Stanford 04-20-2015 p. 45

Parallel implementations

$$M^{-1} = A_0^{-1} \left[I + E G_{k, heta}^{-1} E^T A_0^{-1}
ight]
onumber \ G_{k, heta}^{-1} = \gamma I + U_k [(I - D_k)^{-1} - \gamma I] U_k^T$$

 \succ Steps involved in applying M^{-1} to a vector x :

ALGORITHM : 1 Preconditioning operation

1.
$$z = A_0^{-1} x$$

2. $y = E^T z$
3. $y_k = G_{k,\theta}^{-1} y$
4. $z_k = E y_k$
5. $u = A_0^{-1} (x + z_k)$

 $// \hat{B}_i \text{-solves and } C_{\alpha} \text{--solve}$ // Interior points to interface (Loc.) // Use Low-Rank approx. // Interface to interior points (Loc.) $// \hat{B}_i \text{-solves and } C_{\alpha} \text{--solve}$

 \blacktriangleright Recall $\hat{B}_i = B_i + \alpha^{-2} E_i E_i^T$

> A solve with A_0 amounts to all $p \ \hat{B}_i$ -solves and a C_{lpha} -solve

- > Can replace C_{α}^{-1} by a low degree polynomial [Chebyshev]
- > Can use any solver for the \hat{B}_i 's

Parallel tests: Itasca (MSI)

► HP linux cluster- with Xeons 5560 ("Nehalem") processors

	Mesh	Npro	c	Ran	k	#its	Pre	c-t	Iter-	t	
	256 imes256		2		8	29	2.3	0	.343	3	
2-D	512 imes 512		8	1	6	57	2.6	2	.747	7	
	1024 imes 1024	3	32	3	2	96	3.3	0	1.32	2	
	2048 imes2048	12	28	6	4	154	4.84		2.38		
	Mesh		Np	oroc	R	ank	#its	Pr	ec-t	lt	er-t
3-D	32 imes 32 imes 3		2		8	12	1	.09	.0	972	
	64 imes 64 imes 6	34	-	16		16	31	1	.18	.3	381
	128 imes 128 imes	128	1	28		32	62	2	.42	3.	378

Schur complement techniques

Assume A is Symmetric Positive Definite (SPD)

The global system: Global view

▶ Global system can be permuted to the form →
 ▶ u_i's internal variables
 ▶ y interface variables

> E_i maps local interface points to interior points in domain Ω_i

 E_i^T does the reverse operation

> Global matrix has the form $\begin{pmatrix} B & E \\ E^T & C \end{pmatrix}$

Schur Complement System

Background:

$$\begin{pmatrix} B & E \\ E^T & C \end{pmatrix} = \begin{pmatrix} I \\ E^T B^{-1} & I \end{pmatrix} \begin{pmatrix} B & E \\ S \end{pmatrix} \quad S = C - E^T B^{-1} E$$

S ∈ ℝ^{s×s} == 'Schur complement' matrix
 Solution obtained from two solves with B, one with S

Focus now: Solving Schur complement systems

- > Assume C is SPD and let $C = LL^T$. Then: $S = L \left(I - L^{-1}E^TB^{-1}EL^{-T}\right)L^T \equiv L(I - H)L^T$.
- Define: $H = L^{-1}E^TB^{-1}EL^{-T}$ Note: $S^{-1} = L^{-T}(I H)^{-1}L^{-1}$

Decay properties of $S^{-1} - C^{-1}$

► Spectral factorization of $H \in \mathbb{R}^{s \times s}$ $H = U\Lambda U^T$ where $U^T U = I$ and $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_s)$

 \succ Can show : $\lambda_j(H) \in [0,1)$

> $S^{-1} = L^{-T}(I - H)^{-1}L^{-1}$. Can we write

 $(I - H)^{-1} = I + L.R.C.$? [L.R.C : Low rank correction]

$$(I-H)^{-1} - I = L^T S^{-1} L - I = L^T (S^{-1} - C^{-1}) L \equiv X$$

- Thus, $S^{-1} = C^{-1} + L^{-T} X L^{-1}$
- $\theta_k = \lambda(X), \lambda_k = \lambda(H)$. Can show: $\theta_k = \frac{\lambda_k}{1 \lambda_k}$
- $rac{d heta_k}{d\lambda_k} = rac{1}{(1-\lambda_k)^2} \Rightarrow heta_k$ well separated when $\lambda_k o 1$

Decay properties of $S^{-1} - C^{-1}$

 \blacktriangleright Example: 2-D Laplacian, $n_x=n_y=32,\,4$ subdomains

Eigenvalues of X [the same as those of $\lambda(S^{-1}C - I)$], and $S^{-1} - C^{-1} = L^{-T}XL^{-1}$

Two-domain analysis for model problem

- ullet $-\Delta$ on $\Omega=n_x imes(2n_y+1)$ grid
- ullet DD: $\Omega=(\Omega_1,\Omega_2,\Gamma)$, $\Omega_1,\Omega_2:n_x imes n_y$, $\Gamma:n_x imes 1$
- $ullet C,S\in \mathbb{R}^{n_x imes n_x}.$

Eigenvalues:

•
$$\gamma_k$$
 of $S^{-1}-C^{-1}$,

•
$$\zeta_k$$
 of X
($X \sim CS^{-1} - I$

$$egin{aligned} &\gamma_kpproxrac{1}{2}\left[rac{1}{\sqrt{\eta_k^2-1}}-rac{1}{\eta_k}
ight] \ &\zeta_k=2\eta_k\gamma_kpproxrac{\eta_k}{\sqrt{\eta_k^2-1}}-1 \ &\eta_k=1+2\sin^2rac{k\pi}{2(n_x+1)} \end{aligned}$$

Eigenvalues γ_k of $S^{-1}-C^{-1}$ and ζ_k of $S^{-1}C-I$

Low-rank approximations to S^{-1}

• Preconditioner for A:

$$M = egin{pmatrix} I \ E^TB^{-1} \ I \end{pmatrix} egin{pmatrix} B \ E \ ilde{S} \end{pmatrix}$$

- ullet (n-s) of $\lambda_i(AM^{-1})=1$, the other $s o\lambda_i(S ilde{S}^{-1})$
- Eigendecomposition $H = U\Lambda U^T$. Replace Λ with $\tilde{\Lambda}$
- Recall $S^{-1} = L^{-T}(I H)^{-1}L^{-1}$, and rewrite

$$egin{aligned} S^{-1} &= L^{-T} m{U} (m{I} - \Lambda)^{-1} m{U}^T L^{-1} \ ilde{S}^{-1} &= L^{-T} m{U} (m{I} - ilde{\Lambda})^{-1} m{U}^T L^{-1} \end{aligned}$$

$$ullet$$
 Can show: $\lambda(S ilde{S}^{-1}) = rac{1-\lambda_i}{1- ilde{\lambda}_i}, \hspace{1em} i=1,\ldots,s$

ullet As before, let $ilde{\Lambda}$ be ullet Then $\lambda(S ilde{S}^{-1})$

$$ilde{\lambda}_i = egin{cases} \lambda_i \ i \leq k \ heta \ i > k \end{cases} egin{array}{cc} 1 & i \leq k \ (1-\lambda_i)/(1- heta) \ i > k \end{cases}$$

ullet The spectral condition number $\kappa(heta)$ of $S ilde{S}^{-1}$

$$\kappa(\theta) = \begin{cases} \frac{1-\theta}{1-\lambda_{k+1}} & \theta \in [0,\lambda_s) \\ \frac{1-\lambda_s}{1-\lambda_{k+1}} & \theta \in [\lambda_s,\lambda_{k+1}] \\ \frac{1-\lambda_s}{1-\theta} & \theta \in (\lambda_{k+1},1) \end{cases}$$

Minimum:
$$\frac{1-\lambda_s}{1-\lambda_{k+1}} \text{ for any } \theta \in [\lambda_s,\lambda_{k+1}]$$

• How does $\kappa(\theta)$ vary when θ varies between 0 and 1?

 $\kappa(\theta)$ for 2-D Laplacian with $n_x = n_y = 256$. # subdomains == 2; # eigenvectors used == 64.

Numerical Experiments

- Intel Xeon X5675 (12 MB Cache, 3.06 GHz, 6-core), Xeon X5560 (8 MB Cache, 2.8 GHz, 4-core) at MSI
- Written in C/C++, MKL; OpenMP parallelism
- Accelerators: CG, GMRES(40)
- Partitioning with METIS

Tests with SLR, SPD model problems

- Stopping: $||r_i||_2 \le 10^{-8} ||r_0||_2$, max nits = 300
- Comparison with ILU and RAS (one-level overlap)

Grid		IC	T-CG	ì	R	RAS-GMRES SLR-C						G		
	fill	p-t	its	i-t	fill	p-t	its	i-t	nd	rk	fill	p-t	its	i-t
256^2	4.5	.07	51	.239	4.5	.09	129	.281	32	16	4.3	.09	67	.145
512^2	4.6	.30	97	1.93	4.8	.36	259	2.34	64	32	4.9	.65	103	1.01
1024^{2}	5.4	1.4	149	14.2	6.2	1.9	F	-	128	32	5.7	5.2	175	7.95
40^{3}	4.4	.13	25	.152	4.5	.15	36	.101	32	16	4.0	.18	31	.104
64^3	6.8	.98	32	1.24	6.2	.91	49	.622	64	32	6.3	1.5	38	.633
100^{3}	7.3	4.1	47	7.52	6.1	3.5	82	4.29	128	32	6.5	5.5	67	4.48

SLR, indefinite model problems

• $-\Delta$ shifted by -sI. 2D: s = 0.01, 3D: s = 0.05

Grid	ILD	LT-(GMF	RES	RAS	S-GI	MR	ES	SLR-GMRES					
Ghu	fill	p-t	its	i-t	fill	p-t	its	i-t	nd	rk	fill	p-t	its	i-t
256^2	8.2	.17	F	-	6.3	.13	F	-	8	32	6.4	.21	33	.125
512^2	8.4	.70	F	-	8.4	.72	F	-	16	64	7.6	2.1	93	1.50
1024^{2}	13	5.1	F	-	19	22	F	-	8	128	11	25	50	4.81
40^{3}	6.9	.25	54	.54	6.7	.25	99	.30	64	32	6.7	.49	23	.123
64^3	9.0	1.4	F	-	11.8	2.2	F	-	128	64	9.1	3.9	45	1.16
100^{3}	15	11	F	-	12	15	F	-	128	180	15	63	88	13.9

SLR, general matrices

Matrix		CT/	ILDI	Л		SLR							
	fill	p-t	its	i-t	•	nd	rk	fill	p-t	its	i-t		
cant	4.7	3.8	150	9.34	•	32	90	4.9	5.5	82	1.92		
cfd1	6.9	2.9	295	11.9		32	32	6.9	2.1	64	1.07		
therm2	6.9	5.1	178	39.3		64	90	6.6	14	184	15.0		
tmtsym	6.0	1.9	122	11.6		64	80	5.9	6.6	127	5.23		
ecology	8.4	2.6	142	18.5		32	96	8.0	12	90	5.58		
Lin	11	1.9	F	-	•	64	64	9.9	3.7	73	1.75		
vibbox	6.0	.74	F	-	•	4	64	3.8	.43	226	.619		
qa8fk	4.2	.79	22	.51		16	64	4.5	1.9	28	.309		
F2	5.1	9.6	F	-	•	8	80	3.9	6.2	72	2.14		
helm2d	14	14	F	-	•	16	128	11	12	63	2.63		

Also tested: RAS – failed on all probems but one (qa8fk)

Conclusion

Promising alternatives to ILUs can be found in new forms of approximate inverse techniques

Seek "data-sparsity" instead of regular sparsity

DD approch easier to implement, easier to understand than recursive approach

Advantages of Multilevel Low-Rank preconditioners:

- > Approximate inverses \rightarrow less sensitive to indefiniteness
- Exploit dense computations
- Easy to update