
Acceleration, inexact Newton, and Nonlinear
Krylov subspace methods

Yousef Saad
Department of Computer Science and

Engineering

University of Minnesota

ICERM, Providence, RI
Aug. 31, 2015

Introduction

ä Often need to accelerate a sequence of scalars or vectors
s0, s1, · · · , sn, .. that occur in some calculation

ä For example: sn+1 = g(sn) [Fixed point iteration]

ä or sn =
∑n

j=0 α jz j [series]

ä Various viewpoints adopted: Newton-type method, acceleration
from Pade tables, Krylov projections, etc/

ä Often the various communities are not familiar with each other’s
work..

Providence , 08-31-2015 p. 2

Outline:

ä Motivation

ä Acceleration techniques

ä Anderson acceleration

ä Epsilon algorithm and related topics

ä Nonlinear Krylov

Providence , 08-31-2015 p. 3

Kohn-Sham equations→ a nonlinear eigenvalue problem

[
−

1
2
∇

2 + (Vion + VH + Vxc)
]

Ψi = EiΨi, i = 1, ..., no

ρ(r) =

no∑
i

|Ψi(r)|2

∇
2VH = −4πρ(r)

ä Both Vxc and VH, depend on ρ.
ä Potentials & charge densities must be self-consistent.
ä Broyden-type quasi-Newton technique used
ä Most time-consuming part: diagonalization

Providence , 08-31-2015 p. 4

Initial Guess for v, v = vat

Solve (−1
2∇

2 + v)ψi = εiψi

Calculate new ρ(r) =
∑occ

i |ψi|
2

Find new VH: −∇2vH = 4πρ(r)

Find new vxc = f [ρ(r)]

vnew = vion + vH + vxc + ‘Mixing’

If |vnew − vold| < tol stop

vold = vnew

?

?

?

?

?

?

6

�

Matrix completion

Problem: A matrix B ∈ Rm×n of small rank is partially known from
its entries in some locations (i, j) ∈ Ω. Task: fully recover B.

Example: Recommender systems. Matrix of ratings:

Ite
m

s

Individuals
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?

Providence , 08-31-2015 p. 6

ä Important problem in many other applications

ä Let Ω = {(i, j)|Bi j is observed} and PΩ(X) ∈ Rm×n the pro-
jected matrix defined by

PΩ(X)i j =

 Xi j if(i, j) ∈ Ω

0 otherwise.

ä Wish: find matrix of smallest rank s.t. PΩ(X) = PΩ(B)
ä Hard problem

Providence , 08-31-2015 p. 7

ä Alternative: min
{X | rank(X)=k}

‖PΩ(X) − PΩ(B)‖F

ä Several algorithms developed.

ä In some cases convergence is slow and acceleration has been
advocated.

ä Consider a form of subspace iteration for the SVD of B

ä B is not known - but can use its latest approximation

ä Start : truncated rank-k SVD approximation of PΩ(B)

Providence , 08-31-2015 p. 8

ALGORITHM : 1 Subspace Iteration for incomplete matrices.

1. Initialize: [U0, S0,V0] = svdk(PΩ(B)), X0 = U0S0VT
0

;
2. For i = 0,1,2,..., Do:
3. Xi+1 = Xi + t iEi where Ei = PΩ(B − Xi)
4. Ui+1 = qf(Xi+1Vi); Vi+1 = qf(XT

i+1
Ui+1)

5. Si+1 = UT
i+1

Xi+1Vi+1; Xi+1 := Ui+1Si+1VT
i+1

.
6. EndFor

From Line 4 easy to show that:

Vi+1 = qf(XT
i+1

Xi+1Vi)

ä Standard subspace iteration step applied to XT
i+1

Xi+1.

Providence , 08-31-2015 p. 9

An example: (m = 128, n = 16, p = 8)

X = had(m,p)/sqrt(m); % First p columns of Hadamard
% matrix (X’*X == I)

X = X*diag([1:p]/p); % Resets singular values
u = [1:n]/(2*n+1); v = [1:p];
B = X*cos(2*pi*v’*u); % Mix X with a cosine-type transform

% B is now 128 × 16 of rank p = 8

ä Create a ‘mask’ matrix C (sparse) – then
ä incomplete matrix: X = B .* C [zero-out all those entries bi j

for which Ci j = 0]
ä result: 293 entries (out of 2048) are lost (replaced by zeros).
ä Goal: recover original B

Providence , 08-31-2015 p. 10

ä Let u1 = dominant singular vector of B,
u(i)

1
= dominant singular vector of Xi,

ä Plot error ‖u1 − u(i)
1
‖

ä + ‖error‖ resulting from Aitken acceleration

0 5 10 15 20 25 30 35 40
10

−5

10
−4

10
−3

10
−2

10
−1

Orig

Aitken

Providence , 08-31-2015 p. 11

What is acceleration (or extrapolation)?

(Brezinski,’97) “Let (sn) be a sequence of vectors (...). An
extrapolation method is a method whose purpose is to ac-
celarate the convergence of (sn). It consists of transforming
this sequence into a set of new sequences

(
t(n)

k

)
given by(

t(n)
k

)
= a0sn + a1sn+1 + · · · + aksn+k

where the ai’s can depend on k and n.”

ä We must have a0 + a1 + · · · ak = 1

ä If s is the limit, we
also would like to have

lim
n→∞

‖t(n)
k
− s‖

‖s(n)
k
− s‖

= 0

Providence , 08-31-2015 p. 12

A few historal landmarks

ä Richardson’s ‘deferred approach to the limit’ (h2 extrapolation)
– 1910. Used for discretized problems

ä Aitken [1926] – initially to compute zeros of polynomials.

ä Romberg [1955] – integration, ...

ä Shanks [1949] generalizes Aitken’s method

ä Turning point: Wynn [1956] – found an elegant recursion to
compute Shanks’ transformation: the ε-algorithm

ä Discovery ignited substantial following starting in the late late
1960s - early 1970s

Providence , 08-31-2015 p. 13

ä C. Brezinski, H. Sadok, K. Jbilou, M. Redivo Zaglia, Germain-
Bonne, G. Walz, ...

ä A. Sidi and co-workers ...
ä Cabay-Jackson, Mesina, Kaniel-Stein, Mc-Leod, ...

ä In physics: Different approaches - e.g., Anderson mixing, DIIS,
..., were developed - with a similar goal

ä Viewpoint closer to quasi-Newton than to extrapolation

ä Acceleration for linear systems : Chebyshev acceleration (old),
but also Minimal Polynomial Extrapolation (MPE- Cabay-Jackson);
Reduced Rank Extrapolation, many others
ä A maze of connections and interesting (and often complex)
results !

Providence , 08-31-2015 p. 14

Example: Aitken δ2 acceleration

Let sn−1, sn, sn+1 be given. And let limn→∞ = s
Assumption behind Aitken’s process is that sequence satisfies

sn+1 − s = λ(sn − s) ∀n

ä These sequences form the ‘Kernel’ of Aitken’s process.

ä λ, and s determined from sn, sn+1, sn+2 by writing:
sn+1 − s
sn − s

= λ,
sn+2 − s
sn+1 − s

= λ → λ =
sn+2 − sn+1

sn+1 − sn
and:

s =
snsn+2 − s2

n+1

sn+2 − 2sn+1 + sn
= sn −

(∆sn)2

∆2sn

ä Here ∆ = forward difference operator (∆xi = xi+1 − xi).
Providence , 08-31-2015 p. 15

Generalization: Shanks transform & the ε-algorithm

ä Kernel for Aitken’s process is of the form
a1(sn − s) + a2(sn+1 − s) = 0 ∀n

ä What if we generalize this to

a1(sn − s) + a1(sn+1 − s) + · · · + ak(sn+k − s) = 0 ?

ä Consider a1, · · · , ak+1, s as unknowns.

ä Write above for n, n + 1, · · · , n + k. Then add constraint:
a1 + a2 + · · · + ak+1 = 1

(k + 2) × (k + 2)
system.

∑k+1
j=1

a j = 1∑k+1
j=1

a jsn+ j+i−1 −s = 0, i = 0, .., k

Providence , 08-31-2015 p. 16

ä Get s using Cramer’s rule

ä Result: The Shanks (or ’Schmidt-Shanks’) Transformation for
scalar sequences

t(n)
k

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
sn sn+1 · · · sn+k

∆sn ∆sn+1 · · · ∆sn+k
...

∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

∆sn ∆sn+1 · · · ∆sn+k
...

∆sn+k−1 ∆sn+k · · · ∆sn+2k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Providence , 08-31-2015 p. 17

ä Generalization of Aitken’s δ2 process (k = 1):

t(n)
2

=

∣∣∣∣∣∣∣ sn sn+1

∆sn ∆sn+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣ 1 1
∆sn ∆sn+1

∣∣∣∣∣∣∣
= sn − ∆sn(∆2sn)−1∆sn

Q: How do we compute t(n)
k

?

ä Determinants involve Hankel matrices→ recurrences but com-
plex and not numerically viable.

ä P. Wynn [1956]: Simple recurrence relation to compute t(n)
k

-
known as the ε-algorithm

Providence , 08-31-2015 p. 18

ä From Ford, Smith & Sidi, SIAM review paper,’87:
“With a remarkable burst of insight Wynn[] discovered very soon
after Shanks [] published his paper (...), that the required ratio of
determinants could be evaluated recursively for increasing k and n
without the use of determinants”

ä From Brezinki’s book [Pade-type approximation and general
ortho. polynomials, ’80, p. 162]:
“Wynn’s proof of this equivalence between the ε algorithm and
Shanks transformation was quite tedious; it involved very unusual
properties of determinants. The same proof has now been achieved
without any special knowledge of these properties but, of course
(...) a proof is always easier when both the starting point and the
end point are known”

Providence , 08-31-2015 p. 19

Start with ε(0)
−1

= 0,

ε(n)
0

= sn - then:
ε(n)

k+1
= ε(n+1)

k−1
+

1

ε(n+1)
k

− ε(n)
k

ä ε2k = ek(sn) = Shanks transform of sn,
ä ε2k+1 = 1/[ek(sn)] = auxilliary variables

k−1 k k+1

n+1

n

n−1

ε

εε

ε

(n+1)

(n)(n)

(n+1)(n+1)

k

k k+1

k−1

Providence , 08-31-2015 p. 20

0

0

0

0

x
0

x
1

x
2

x
3

x
4

ε
1

(0)

ε
1

(1)

ε
1

(2)

ε
1

(3)

ε
2

(0)

ε
2

(1)

ε
2

(2)

ε
3

(0)

ε
3

(1)
ε

4

(0)

ä Practical implementation: Once xn is available compute
ε(n−1)

1
, ε(n−2)

2
, · · · , ε(n−k)

k

ä More stable variants exist [Brezinski, Redivo-Zaglia, ’91]

Providence , 08-31-2015 p. 21

ä Great for parallel
processing too..

YS and A. Sameh,
COMPAR’81

Providence , 08-31-2015 p. 22

Vector ε-algorithms

ä Easiest generalization define in-
verse of a vector:

v−1
≡

v
‖v‖2

ä Another version [Brezinski]: Topological ε-algorithm (TEA)

ε(n)
−1

= 0; ε(n)
0

= xn; y = rand()

ε(n)
2k+1

= ε(n+1)
2k−1

+
y

(y, ε(n+1)
2k

− ε(n)
2k

)

ε(n)
2k+2

= ε(n+1)
2k

+
ε(n+1)

2k
− ε(n)

2k

(ε(n+1)
2k+1

− ε(n)
2k+1

, ε(n+1)
2k

− ε(n)
2k

)

ä Based on the definition: v−1 ≡ y/(v, y).
Providence , 08-31-2015 p. 23

ä Corresponds to

e(n)
k

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xn xn+1 · · · xn+k

(y, ∆xn) (y, ∆xn+1) · · · (y, ∆xn+k)
...

(y, ∆xn+k−1) (y, ∆xn+k) · · · (y, ∆xn+2k−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

(y, ∆xn) (y, ∆xn+1) · · · (y, ∆xn+k)
...

(y, ∆xn+k−1) (y, ∆xn+k) · · · (y, ∆xn+2k−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Providence , 08-31-2015 p. 24

0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Vector acceleration. k = 6 for ε alg. and TEA

Orig

Aitken

eps−alg

TEA

Providence , 08-31-2015 p. 25

A few references

1. C. Brezinski, Padé Type Approximation and General Orthogonal Polyno-

mials, Birkhäuser-Verlag, Basel-Boston-Stuttgart, 1980.

2. , Projection Methods for Systems of Equations, North-Holland, Amster-

dam, 1997.

3. C. Brezinski and M. Redivo Zaglia, Extrapolation Methods: Theory and

Practice, North-Holland, Amsterdam, 1991.

4. A. Sidi, Extrapolation vs. projection methods for linear systems of equa-

tions, J. of Comput. Appl. Math., 22 (1988), pp. 71–88.

5. D. A. Smith, W. F. Ford, and A. Sidi, Extrapolation methods for vector

sequences, SIAM review, 29 (1987), pp. 199–233.

Providence , 08-31-2015 p. 26

ä Ahh Those nasty bugs

The inexact Newton framework

To solve F(u) = 0 (F : RN → RN) we can use Newton iteration:

Set u0 = an initial guess.
For n = 0, 1, 2, · · · until convergence do:

Solve: J(un)δn = −F(un) (*)
Set: un+1 = un + δn

where J(un) = F′(un) = system Jacobian.

Inexact Newton methods: solve system (*) approximately.

Quasi-Newton methods: solve system (*) in which Jacobian is
replaced by an estimate obtained from previous iterates.

Newton-Krylov methods: solve system (*) by a Krylov subspace
method

Providence , 08-31-2015 p. 28

Note: In Krylov-Newton, Jacobian of F not needed explicitly.
ä To compute Jv use finite difference approximation:

∂F
∂u v ≈ F(u+εv)−F(u)

ε

ä Newton-Krylov can be viewed as a special case of quasi-Newton
approaches
ä Can use this framework to accelerate sequences of the form

un+1 = M(un)

.. by solving F(x) = 0 where F(x) = M(x) − x

Important difference with extrapolation techniques:
we now need to compute F(un + εv) for arbitrary v,
ä ... instead of using only the u j’s and f j’s generated (f j = f (u j)).

Providence , 08-31-2015 p. 29

Anderson Acceleration

ä Given: x j j = n − k, · · · , n
f j = f (x j) j = n − k, · · · , n

ä Let: ∆xi = xi+1 − xi

∆ fi = fi+1 − fi,
Xn = [∆xn−k · · · ∆xn−1],
Fn = [∆ fn−k · · · ∆ fn−1],

Anderson mixing: seek an ‘accelerated’ sequence in the form

x̄n = xn −

n−1∑
i=n−k

γ(n)
i

∆xi = xn − Xnγn, with γn =

γ(n)

n−k
...

γ(n)
n−1

Notation issues: n is index of most recent iterate.
Read as: xnew = xlast− Lin. Comb. previous ∆xi’s

Providence , 08-31-2015 p. 30

Anderson Acceleration

ä γn obtained by writing:

f̄n = fn −

n−1∑
i=n−k

γ(n)
i

∆ fi = fn − Fnγn,

ä So compute γn as

γn = argminγ ‖ fn − Fnγ‖2

Note: Can formulate problem in the standard ‘acceleration’ form

x̄n =

n∑
i=n−k

µ(n)
i

xi with
∑
µ(n)

i
= 1

ä Mathematically equivalent

Providence , 08-31-2015 p. 31

0 5 10 15 20 25 30 35 40
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Iteration

Vector acceleration. nv = 6 for ε alg. and anderson

Orig

Aitken

V−Eps

TEA

Anderson

Providence , 08-31-2015 p. 32

Relation with other methods

ä In “generalized Broyden methods” [Louis & Vanderbilt’84, Ey-
ert’96] approximate Jacobian Gn satisfies m secant conditions:

Gn∆ fi = ∆xi for i = n − k, . . . , n − 1.

ä Matrix form: GnFn = Xn

ä No-change condition:

(Gn − Gn−k)q = 0 ∀q ∈ Span{∆ fn−k, . . . , ∆ fn−1}
⊥

ä After calculations we get a rank-k update formula:

Gn = Gn−k + (Xn − Gn−kFn)(F T
nFn)−1

F
T
n ,

Providence , 08-31-2015 p. 33

... and an update of the form:

xn+1 = xn − Gn−k fn − (Xn − Gn−kFn)γn; γn = F
†

n fn

ä Setting Gn−k = −βI yields exactly Anderson’s original method
[which includes a parameter β]
ä Result shown by Eyert (1996) [See also H-r Fang and YS]

ä With β = 0 update is simply: xn+1 = xn − XnF
†

n fn

ä Walker and Ni’11: equivalence with GMRES in linear case.

Q: Any relations to any one of the extrapolation techniques in
nonlinear case?

Providence , 08-31-2015 p. 34

Extrapolation by projection: MPE, RRE, MMPE

[See: Jbilou and Sadok, Numer. Math. ’95]

ä Given xn, ∆xn, ∆
2xn,

for n = 0, 1, 2, · · · ,
ä Accelerated sequences:

↗
t(k)

n =

k∑
j=0

α jxn+ j

ä Coefficients α j satisfy:
↘

with ηi j = (yi, ∆xn+ j) and:
• yi = ∆xn+i for MPE
• yi = ∆2xn+i for RRE
• yi = vectori for MMPE

k∑
j=0

α j = 1

k∑
j=0

ηi jα j = 0

• For TEA ηi j = (y, ∆xn+i+ j) where y = some vector

Providence , 08-31-2015 p. 35

ä Let us exclude TEA. Cramer’s rule gives:

t(n)
k

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
xn xn+1 · · · xn+k

(y0, ∆xn) (y0, ∆xn+1) · · · (y0, ∆xn+k)
...

(yk−1, ∆xn) (yk−1, ∆xn+1) · · · (yk−1, ∆xn+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
1 1 · · · 1

(y0, ∆xn) (y0, ∆xn+1) · · · (y0, ∆xn+k)
...

(yk−1, ∆xn) (yk−1, ∆xn+1) · · · (yk−1, ∆xn+k)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
ä Let: Yk = [y0, · · · , yk−1], Xn = [xn, · · · xn+k−1]. Then

t(n)
k

= xn − ∆Xn(YT
k
∆2Xn)−1YT

k
∆xn

Providence , 08-31-2015 p. 36

RRE: Let n = 0, k = 0, 1, 2, ... and U ≡ ∆X0; V ≡ ∆2X0. Then:

t(0)
k

= x0 − ∆X0(∆2X0)†∆x0 = x0 − UV†∆x0

Claim: t(0)
k

= x j − UV†∆x j for any 0 ≤ j ≤ k

Proof for j = 3: Note that

∆x0 = ∆x3 − (∆x3 − ∆x2) − (∆x2 − ∆x1) − (∆x1 − ∆x0)
= ∆x3 − ∆2x2 − ∆2x1 − ∆2x0

and that (UV†)∆2xi = ∆xi since
∆X0[(∆2XT

0
∆2X0)−1∆2XT

0
]∆2X0 = ∆X0. In the end:

x0 − UV†∆x0 = x0 − UV†[∆x3 − ∆2x2 − ∆2x1 − ∆2x0]
= x0 − UV†∆x3 + (x3 − x2) + (x2 − x1) + (x1 − x0)
= x3 − UV†∆x3 �

Providence , 08-31-2015 p. 37

Reduced Rank Extrapolation (RRE) – rewritten

ä Mesina’77, Eddy’79, Kaniel and Stein’74,
ä Developed for linear systems – Used for nonlinear

0. Given x0, x1, x2, · · · ,

1. Compute u j = ∆x j, v j = ∆u j, j = 0, · · · , k − 1.
2. Let: U ≡ Uk = [u0, u1, · · · , uk−1]

V ≡ Vk = [v0, v1, · · · , vk−1]
3. Compute x̄k = x0 − UV†u0

Recall: Can replace line 3 by x̄k = x j − UV†u j for 0 ≤ j ≤ k →

x̄k = xk − UV†∆xk

Providence , 08-31-2015 p. 38

ä For fixed point mappings x j+1 = M(x j) then ∆x j = M(x j) − x j.

ä Let F(x) = M(x) − x Then

U = [∆x0, ∆x1, · · · , ∆xk−1],
V = [∆ f0, ∆ f1, · · · , ∆ fk−1],

ä compare results with those of Anderson: x̄k = xk − XkF
†

k
fk

ä in both cases:

x̄k = xk − UV† fk

Conclusion:
RRE is mathematically equivalent to Anderson’s
acceleration. (even in nonlinear case).

Providence , 08-31-2015 p. 39

ä Several other connections exist

ä In linear case:

ä Brezinski [1980] showed that TEA is equivalent to Lanczos
algorithm

ä A. Sidi [’88] showed several equivalences between Krylov sub-
space methods and ’polynomial acceleration’ methods [MMPE, RRE,
TEA]. Also shown by Beuneu’84 [unpublished report]. See also
NumMath paper by Jbilou & Sadok’95.

• RRE is mathematically equivalent to GMRES.
• MPE is equivalent to Arnoldi (FOM)
• TEA is equivalent to Lanczos (biCG)

Providence , 08-31-2015 p. 40

Conclusion

ä A huge variety of acceleration techniques developed over the
years

ä Many are mathematically equivalent to other methods in linear
case

ä Not clear which work best in nonlinear case in specific situa-
tions

ä Quasi-Newton [and “generalized Broyden”] is a fairly compre-
hensive viewpoint.

Providence , 08-31-2015 p. 41

