Dimension reduction and graph based methods in data mining

Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

NASCA-09 - 05/20/2009

Introduction: What is data mining?

> Common goal of data mining methods: to extract meaningful information or patterns from data. Very broad area - includes: data analysis, machine learning, pattern recognition, information retrieval, ...
> Main tools used: linear algebra; graph theory; approximation theory; optimization; ...
> In this talk: emphasis on dimension reduction techniques, interrelations between techniques, and graph theory tools.

Major tool of Data Mining: Dimension reduction

$>$ Goal is not just to reduce computational cost but to:

- Reduce noise and redundancy in data
- Discover 'features' or 'patterns' (e.g., supervised learning)
> Techniques depend on application: Preserve angles? Preserve distances? Maximize variance? ..

The problem of Dimension Reduction

$>$ Given $d \ll m$ find a mapping

$$
\Phi: x \in \mathbb{R}^{m} \longrightarrow y \in \mathbb{R}^{d}
$$

> Mapping may be explicit [typically linear], e.g.:

$$
y=V^{T} x
$$

> Or implicit (nonlinear)

Practically: Given $X \in \mathbb{R}^{m \times n}$,

we want to find a low-dimensional representation $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$ of \boldsymbol{X}

Linear Dimensionality Reduction

Given: a data set $\boldsymbol{X}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and d the dimension of the desired reduced space $\boldsymbol{Y}=\left[\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \ldots, \boldsymbol{y}_{n}\right]$.
Want: a linear transformation from \boldsymbol{X} to \boldsymbol{Y}

$>m$-dimens. objects $\left(x_{i}\right)$ 'flattened' to d-dimens. space $\left(\boldsymbol{y}_{i}\right)$
Constraint: The y_{i} 's must satisfy certain properties
> Optimization problem

Example 1: The 'Swill-Roll' (2000 points in 3-D)

Original Data in 3-D

2-D 'reductions':

Eigenmaps

ONPP

Example 2: Digit images (a random sample of 30)

2-D 'reductions':

Basic linear dimensionality reduction method: PCA

$>$ We are given points in \mathbb{R}^{n} and we want to project them in \mathbb{R}^{d}. Best way to do this?
$>$ i.e.: find the best axes for projecting the data
$>$ Q: "best in what sense"?
> A: maximize variance of new data

$>$ Principal Component Analysis [PCA]
$>$ Recall $y_{i}=V^{T} x_{i}$, where V is $m \times d$ orthogonal
$>$ We need to maximize over all orthogonal $m \times d$ matrices V :

$$
\sum_{i}\left\|\boldsymbol{y}_{i}-\frac{1}{n} \sum_{j} \boldsymbol{y}_{j}\right\|_{2}^{2}=\cdots=\operatorname{Tr}\left[\boldsymbol{V}^{\top} \overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{\top} \boldsymbol{V}\right]
$$

Where: $\overline{\boldsymbol{X}}=\boldsymbol{X}\left(\boldsymbol{I}-\frac{1}{n} 11^{T}\right)==$ origin-recentered version of \boldsymbol{X}
$>$ Solution $V=\{$ dominant eigenvectors $\}$ of the covariance matrix $==$ Set of left singular vectors of \bar{X}
> Solution V also minimizes 'reconstruction error' ..

$$
\sum_{i}\left\|x_{i}-V V^{T} x_{i}\right\|^{2}=\sum_{i}\left\|x_{i}-V y_{i}\right\|^{2}
$$

$>.$. and it also maximizes [Korel and Carmel 04] $\sum_{i, j}\left\|\boldsymbol{y}_{\boldsymbol{i}}-\boldsymbol{y}_{j}\right\|^{2}$

Unsupervised learning: Clustering

Problem: partition a given set into subsets such that items of the same subset are most similar and those of two different subsets most dissimilar. Photovoltaic

> Basic technique: K-means algorithm [slow but effective.]
> Example of application : cluster bloggers by 'social groups' (anarchists, ecologists, sports-fans, liberals-conservative, ...)

Sparse Matrices viewpoint

$>$ Communities modeled by an ‘affinity’ graph [e.g., 'user \boldsymbol{A} sends frequent e-mails to user $\left.B^{\prime}\right]$
> Adjacency Graph represented by a sparse matrix

> Goal: find reordering such that blocks are as dense as possible:

$>$ Advantage of this viewpoint: no need to know number of clusters.
> Use 'blocking' techniques for sparse matrices [O'Neil Szyld '90, YS 03, ...]

Example of application

in knowledge discovery. Data set from :

```
http://www-personal.umich.edu/~mejn/netdata/
```

> Network connecting bloggers of different political orientations [2004 US presidentual election]
> 'Communities': liberal vs. conservative
$>$ Graph: 1, 490 vertices (blogs) : first 758: liberal, rest: conservative.
$>$ Edge: $i \rightarrow j$ means there is a citation between blogs i and j
> Blocking algorithm (Density theshold=0.4) found 2 subgraphs
$>$ Note: density $=|\boldsymbol{E}| /|\boldsymbol{V}|^{2}$.
$>$ Smaller subgraph: conservative blogs, larger one: liberals
$>$ One observation: smaller subgraph is denser than that of the larger one. Concl. agrees with [L. A. Adamic and N. Glance 05] : 'right-leaning (conservative) blogs have a denser structure of strong connections than the left (liberal)"

Supervised learning: classification

Problem: Given labels (say "A" and "B") for each item of a given set, find a way to classify an unlabelled item into either the " A " or the " B " class.

$>$ Many applications.

- Example: distinguish between SPAM and non-SPAM messages
> Can be extended to more than 2 classes.

Linear classifiers: Find a hyperplane which best separates the data in classes A and B.

Spectral Bisection (PDDP)

> Use kernels to transorm

Linear classifiers

$>$ Let $\boldsymbol{X}=\left[x_{1}, \cdots, x_{n}\right]$ be the data matrix.
$>$ and $L=\left[l_{1}, \cdots, l_{n}\right]$ the labels either +1 or -1 .
$>$ First Solution: Find a vector v such that $\boldsymbol{v}^{T} x_{i}$ close to l_{i} for all i.
> More common solution: Use SVD to reduce dimension of data [e.g. 2D] then do comparison in this space. e.g. A: $\boldsymbol{v}^{T} x_{i} \geq 0, \mathrm{~B}: \boldsymbol{v}^{T} x_{i}<0$
[Note: for clarity v principal axis drawn below where it should be]

Better solution: Linear Discriminant Analysis (LDA)

Define "between scatter": a measure of how well separated two distinct classes are.
Define "within scatter": a measure of how well clustered items of the same class are.
> Goal: to make "between scatter" measure large, while making "within scatter" small.

Idea: Project the data in low-dimensional space so as to maximize the ratio of the "between scatter" measure over "within scatter" measure of the classes.
$>$ Let $\boldsymbol{\mu}=$ mean of \boldsymbol{X},
$>$ and $\mu^{(k)}=$ mean of the \boldsymbol{k}-th class (of size \boldsymbol{n}_{k}).

- CLUSTER CENTROIDS
\star GLOBAL CENTROID

Define

$$
\begin{aligned}
S_{B} & =\sum_{k=1}^{c} n_{k}\left(\mu^{(k)}-\mu\right)\left(\mu^{(k)}-\mu\right)^{T}, \\
S_{W} & =\sum_{k=1}^{c} \sum_{x_{i} \in X_{k}}\left(x_{i}-\mu^{(k)}\right)\left(x_{i}-\mu^{(k)}\right)^{T} .
\end{aligned}
$$

$>$ Project set on a one-dimensional space spanned by a vector a. Then:

$$
a^{T} S_{B} a=\sum_{i=1}^{c} n_{k}\left|a^{T}\left(\mu^{(k)}-\mu\right)\right|^{2}, \quad a^{T} S_{W} a=\sum_{k=1}^{c} \sum_{x_{i} \in X_{k}}\left|a^{T}\left(x_{i}-\mu^{(k)}\right)\right|^{2}
$$

$>$ LDA projects the data so as to maximize the ratio of these two numbers:

$$
\max _{a} \frac{a^{T} S_{B} a}{a^{T} S_{W} a}
$$

> Optimal $a=$ eigenvector associated with the largest eigenvalue of:

$$
S_{B} u_{i}=\lambda_{i} S_{W} u_{i}
$$

LDA - Extension to arbitrary dimension

$>$ Would like to project in d dimensions -
$>$ Normally we wish to maximize the ratio of two traces

$$
\frac{\operatorname{Tr}\left[U^{T} S_{B} U\right]}{\operatorname{Tr}\left[U^{T} S_{W} U\right]}
$$

$>U$ subject to being unitary $U^{T} U=I$ (orthogonal projector).
$>$ Reduced dimension data: $\boldsymbol{Y}=\boldsymbol{U}^{T} \boldsymbol{X}$.
Difficulty: Hard to maximize. See Bellalij \& YS (in progress).
> Common alternative: Solve instead the (easier) problem:

$$
\max _{U^{T} S_{W} U=I} \operatorname{Tr}\left[U^{T} S_{B} U\right]
$$

> Solution: largest eigenvectors of

$$
S_{B} u_{i}=\lambda_{i} S_{W} u_{i}
$$

Motivating example: Collaborative filtering, Netflix Prize

> Important application in commerce ..
> .. but potential for other areas too
> When you order a book in Amazon you will get recommendations >

'Recommender system'

> A very hot topic at the height of the dot-com era ...
$>$ Some of the tools used: statistics, clustering, kNN graphs, LSI (a form of PCA), ...
> Visit the page GoupLens page http://www.grouplens.org/
$>$ Netflix: "qui veut gagner un million?" [who wants to win a \$ million?]

Face Recognition - background

Problem: We are given a database of images: [arrays of pixel values]. And a test (new) image.

Question: Does this new image correspond to one of those in the database?

Difficulty

> Different positions, expressions, lighting, ..., situations :

Common approach: eigenfaces - Principal Component Analysis technique
$>$ See real-life examples - [international man-hunt]
> Poor images or deliberately altered images ['occlusion']
> See recent paper by John Wright et al.

Eigenfaces

- Consider each picture as a one-dimensional colum of all pixels
- Put together into an array \boldsymbol{A} of size $\#$ _pixels $\times \#$ images .

- Do an SVD of \boldsymbol{A} and perform comparison with any test image in low-dim. space
- Similar to LSI in spirit - but data is not sparse.

Idea: replace SVD by Lanczos vectors (same as for IR)

Tests: Face Recognition

Tests with 2 well-known data sets:
ORL 40 subjects, 10 sample images each - example:

\# of pixels: 112×92 TOT. \# images : 400

AR set 126 subjects - 4 facial expressions selected for each [natural, smiling, angry, screaming] - example:

\# of pixels : 112×92 \# TOT. \# images : 504

Tests: Face Recognition

Recognition accuracy of Lanczos approximation vs SVD

ORL dataset

AR dataset

Vertical axis shows average error rate. Horizontal = Subspace dimension

GRAPH-BASED TECHNIQUES

Laplacean Eigenmaps (Belkin-Niyogi-02)

$>$ Not a linear (projection) method but a Nonlinear method
$>$ Starts with k-nearest-neighbors graph:

$$
\mathrm{k}-\mathrm{NN} \text { graph }=\text { graph of } k \text { nearest neighbors }
$$

> Then define a graph Laplacean:

$$
L=D-W
$$

> Simplest:

$$
w_{i j}=\left\{\begin{array}{ll}
1 & \text { if } j \in N_{i} \\
0 & \text { else }
\end{array} \quad D=\operatorname{diag}\left[d_{i i}=\sum_{j \neq i} w_{i j}\right]\right.
$$

with $N_{i}=$ neighborhood of $\boldsymbol{i}(\mathrm{excl} . \boldsymbol{i})$

A few properties of graph Laplacean matrices

$>$ Let $L=$ any matrix s.t. $L=D-W$, with $D=\operatorname{diag}\left(d_{i}\right)$ and

$$
w_{i j} \geq 0, \quad d_{i}=\sum_{j \neq i} w_{i j}
$$

Property 1: for any $x \in \mathbb{R}^{n}$:

$$
x^{\top} \boldsymbol{L} x=\frac{1}{2} \sum_{i, j} w_{i j}\left|x_{i}-x_{j}\right|^{2}
$$

Property 2: (generalization) for any $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$:

$$
\operatorname{Tr}\left[\boldsymbol{Y} L \boldsymbol{Y}^{\top}\right]=\frac{1}{2} \sum_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}
$$

Property 3: For the particular $L=I-\frac{1}{n} 11^{\top}$

$$
\boldsymbol{X} \boldsymbol{L} \boldsymbol{X}^{\top}=\overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{\top}==n \times \text { Covariance matrix }
$$

[Proof: 1) \boldsymbol{L} is a projector: $\boldsymbol{L}^{\top} \boldsymbol{L}=\boldsymbol{L}^{2}=\boldsymbol{L}$, and 2) $\boldsymbol{X} \boldsymbol{L}=\overline{\boldsymbol{X}}$]
$>$ Consequence-1: PCA equivalent to maximizing $\sum_{i j}\left\|y_{i}-y_{j}\right\|^{2}$
$>$ Consequence-2: what about replacing trivial L with something else? [viewpoint in Koren-Carmel'04]

Property 4: (Graph partitioning) If x is a vector of signs (± 1) then

$$
\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}=4 \times \text { ('number of edge cuts') }
$$

edge-cut $=$ pair (i, j) with $x_{i} \neq x_{j}$
> Consequence: Can be used for partitioning graphs, or 'clustering' [take $p=\operatorname{sign}\left(u_{2}\right)$, where $u_{2}=2$ nd smallest eigenvector..]

Return to Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

$$
\mathcal{F}_{E M}(Y)=\sum_{i, j=1}^{n} w_{i j}\left\|y_{i}-y_{j}\right\|^{2} \quad \text { subject to } \quad Y D Y^{\top}=I
$$

Notes:

1. Motivation: if $\left\|x_{i}-x_{j}\right\|$ is small (orig. data), we want $\left\|y_{i}-y_{j}\right\|$ to be also small (low-D data)
2. Note: Min instead of Max as in PCA [counter-intuitive]
3. Above problem uses original data indirectly through its graph

$>$ Problem translates to:

$$
\left\{\begin{array}{l}
\min _{\boldsymbol{Y} \in \mathbb{R}^{d \times n}} \operatorname{Tr}\left[\boldsymbol{Y}(\boldsymbol{D}-\boldsymbol{W}) \boldsymbol{Y}^{\top}\right] \\
\boldsymbol{Y} \boldsymbol{D} \boldsymbol{Y}^{\top}=I
\end{array}\right.
$$

> Solution (sort eigenvalues increasingly):

$$
(D-W) u_{i}=\lambda_{i} D u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

$>$ An $\boldsymbol{n} \times \boldsymbol{n}$ sparse eigenvalue problem [In 'sample' space]
$>$ Note: can assume $\boldsymbol{D}=\boldsymbol{I}$. Amounts to rescaling data. Problem becomes

$$
(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

Why smallest eigenvalues vs largest for PCA?

Intuition:
Graph Laplacean and 'unit' Laplacean are very different: one involves a sparse graph (More like a discr. differential operator). The other involves a dense graph. (More like a discr. integral operator). They should be treated as the inverses of each other.
> Viewpoint confirmed by what we learn from Kernel approach

A unified view

> Most techniques lead to one of two types of problems
First:
$>\boldsymbol{Y}$ obtained from solving an eigenvalue problem
> LLE, Eigenmaps (normalized), ..

$$
\min _{\operatorname{Vin} d \times n} \operatorname{Tr}\left[\boldsymbol{Y} M Y^{\top}\right]
$$

Second:
> Low-Dimensional data:
$\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
$>G$ is either the identity matrix or $\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\top}$ or $\boldsymbol{X} \boldsymbol{X}^{\top}$.

Important observation: 2 nd is just a projected version of the 1st.

Graph-based methods in a supervised setting

> Subjects of training set are known (labeled). Q: given a test image (say) find its label.

Question: Find label (best match) for test image.

Methods can be adapted to supervised mode by building the graph to take into account class labels. Idea is simple: Build G so that nodes in the same class are neighbors. If $c=\#$ classes, G will consist of c cliques.
> Matrix W will be block-diagonal

$$
W=\left(\begin{array}{lllll}
W_{1} & & & & \\
& W_{2} & & & \\
& & W_{3} & & \\
& & & W_{4} & \\
& & & & W_{5}
\end{array}\right)
$$

$>$ Easy to see that $\operatorname{rank}(W)=n-c$.
$>$ Can be used for LPP, ONPP, etc..
> Recent improvement: add repulsion Laplacean [Kokiopoulou, YS 09]

TIME FOR A MATLAB DEMO

Supervised learning experiments: digit recognition

> Set of 390 images of digits (39 of each digit)
> Each picture has $20 \times 16=320$ pixels.
$>$ Select any one of the digits and try to recognize it among the 389 remaining images
> Methods: PCA, LPP, ONPP

MULTILEVEL METHODS

Multilevel techniques

> Divide and conquer paradigms as well as multilevel methods in the sense of 'domain decomposition'
> Main principle: very costly to do an SVD [or Lanczos] on the whole set. Why not find a smaller set on which to do the analysis - without too much loss?

> Main tool used: graph coarsening

Hypergraphs and Hypergraph coarsening

A hypergraph $\boldsymbol{H}=(\boldsymbol{V}, \boldsymbol{E})$ is a generalizaition of a graph
> $V=$ set of vertices V
$>E=$ set of hyperedges. Each $e \in E$ is a nonempty subset of V
$>$ Standard undirected graphs: each e consists of two vertices.
$>$ degree of $e=|e|$
$>$ degree of a vertex $v=$ number of hyperedges e s.t. $x \in e$.
$>$ Two vertices are neighbors if there is a hyperedge connecting them

$>$ Canonical hypergraph representation for sparse data (e.g. text)

Hypergraph Coarsening

> Coarsening a hypergraph $\boldsymbol{H}=(\boldsymbol{V}, \boldsymbol{E})$ means finding a 'coarse' approximation $\hat{\boldsymbol{H}}=(\hat{\boldsymbol{V}}, \hat{\boldsymbol{E}})$ to \boldsymbol{H} with $|\hat{\boldsymbol{V}}|<|\boldsymbol{V}|$, which tries to retain as much as possible of the structure of the original hypergraph
$>$ Idea: repeat coarsening recursively.
> Result: succession of smaller hypergraphs which approximate the original graph.
> Several methods exist. We use 'matching', which successively merges pairs of vertices
$>$ Used in most graph partitioning methods: hMETIS, Patoh, zoltan, ..

- Algorithm successively selects pairs of vertices to merge - based on measure of similarity of the vertices.

Application: Multilevel Dimension Reduction

Main Idea:

coarsen to a certain level. Then use the resulting data set $\hat{\boldsymbol{X}}$ to find projector from \mathbb{R}^{m} to \mathbb{R}^{d}. This projector can be used to project the original data or any new data.

> Main gain: Dimension reduction is done with a much smaller set. Hope: not much loss compared to using whole data

Application to text mining

> Recall common approach:

1. Scale data [e.g. TF-IDF scaling:]
2. Perform a (partial) SVD on resulting matrix $X \approx U_{d} \Sigma_{d} V_{d}^{T}$
3. Process query by same scaling (e.g. TF-IDF)
4. Compute similarities in d-dimensional space: $s_{i}=\left\langle\hat{q}, \hat{x}_{i}\right\rangle /\|\hat{q}\|\left\|\hat{x}_{i}\right\|$ where $\left[\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{n}\right]=V_{d}^{T} \in \mathbb{R}^{d \times n} ; \quad \hat{q}=\Sigma_{d}^{-1} U_{d}^{T} \bar{q} \in \mathbb{R}^{d}$
> Multilevel approach: replace SVD (or any other dim. reduction) by dimension reduction on coarse set. Only difference: TF-IDF done on the coarse set not original set.

Tests

Three public data sets used for experiments: Medline, Cran and NPL (cs.cornell.edu)
$>$ Coarsening to a max. of 4 levels.

Data set	Medline	Cran	NPL
\# documents	1033	1398	11429
\# terms	7014	3763	7491
sparsity (\%)	0.74%	1.41%	0.27%
\# queries	30	225	93
avg. \# rel./query	23.2	8.2	22.4

Results with NPL

Statistics

Level	coarsen. time	\# doc.	optimal \# dim.	
optimal avg.				
precision				

Precision-Recall curves

CPU times for preprocessing (Dim. reduction part)

Conclusion

> Eigenvalue problems of data-mining are not cheap to solve..
> .. and cost issue does not seem to bother practitioners too much for now.
$>$ Ingredients that will become mandatory:
1 Avoid the SVD
2 Fast algorithms that do not sacrifice quality.
3 In particullar: Multilevel approaches
4 Multilinear algebra [tensors]

