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First..

ä ... to the memory of Mohammed Bellalij
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Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful
information or patterns from data. Very broad area – in-
cludes: data analysis, machine learning, pattern recognition,
information retrieval, ...

ä Main tools used: linear algebra; graph theory; approximation
theory; optimization; ...

ä In this talk: emphasis on dimension reduction techniques
and the interrelations between techniques
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Introduction: a few factoids

ä Data is growing exponentially at an “alarming” rate:

• 90% of data in world today was created in last two years

• Every day, 2.3 Million terabytes (2.3×1018 bytes) created

ä Mixed blessing: Opportunities & big challenges.

ä Trend is re-shaping & energizing many research areas ...

ä ... including my own: numerical linear algebra
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Topics

ä Focus on two main problems

– Information retrieval

– Face recognition

ä and 2 types of dimension reduction methods

– Standard subspace methods [SVD, Lanczos]

– Graph-based methods
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Major tool of Data Mining: Dimension reduction

ä Goal is not as much to reduce size (& cost) but to:

• Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

• Discover important ‘features’ or ‘paramaters’

The problem: Given: X = [x1, · · · , xn] ∈ Rm×n, find a

low-dimens. representation Y = [y1, · · · , yn] ∈ Rd×n of X

ä Achieved by a mapping Φ : x ∈ Rm −→ y ∈ Rd so:

φ(xi) = yi, i = 1, · · · , n
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ä Φ may be linear : yi = W>xi , i.e., Y = W>X , ..

ä ... or nonlinear (implicit).

ä Mapping Φ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Example: Principal Component Analysis (PCA)

In Principal Component Analysis W is computed to maxi-
mize variance of projected data:

max
W∈Rm×d;W>W=I

n∑
i=1

∥∥∥∥∥∥yi − 1

n

n∑
j=1

yj

∥∥∥∥∥∥
2

2

, yi = W>xi.

ä Leads to maximizing

Tr
[
W>(X − µe>)(X − µe>)>W

]
, µ = 1

n
Σn
i=1xi

ä SolutionW = { dominant eigenvectors } of the covariance
matrix≡ Set of left singular vectors of X̄ = X − µe>
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SVD:

X̄ = UΣV >, U>U = I, V >V = I, Σ = Diag

ä Optimal W = Ud ≡ matrix of first d columns of U

ä Solution W also minimizes ‘reconstruction error’ ..

∑
i

‖xi −WW Txi‖2 =
∑
i

‖xi −Wyi‖2

ä In some methods recentering to zero is not done, i.e., X̄
replaced by X.
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Unsupervised learning

“Unsupervised learning” : meth-
ods that do not exploit known labels
ä Example of digits: perform a 2-D
projection
ä Images of same digit tend to
cluster (more or less)
ä Such 2-D representations are
popular for visualization
ä Can also try to find natural clus-
ters in data, e.g., in materials
ä Basic clusterning technique: K-
means
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Example: The ‘Swill-Roll’ (2000 points in 3-D)
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2-D ‘reductions’:
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Example: Digit images (a random sample of 30)
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2-D ’reductions’:
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APPLICATION: INFORMATION RETRIEVAL



Application: Information Retrieval

ä Given: collection of doc-
uments (columns of a matrix
A) and a query vector q.
ä Representation: m × n
term by document matrix

ä A query q is a (sparse) vector in Rm (‘pseudo-document’)

Problem: find a column of A that best matches q

ä Vector space model: use cos〈(A(:, j), q), j = 1 : n

ä Requires the computation of ATq

ä Literal Matching→ ineffective
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Common approach: Dimension reduction (SVD)

ä LSI: replace A by a low rank approximation [from SVD]

A = UΣV T → Ak = UkΣkV
T
k

ä Replace similarity vector: s = ATq by sk = AT
kq

ä Main issues: 1) computational cost 2) Updates

Idea: ReplaceAk byAφ(ATA), where φ == a filter function

Consider the step-
function (Heaviside):

φ(x) =

{
0, 0 ≤ x ≤ σ2

k

1, σ2
k ≤ x ≤ σ2

1

ä Would yield the same result as TSVD but not practical
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Use of polynomial filters

ä Solution : use a polynomial approximation to φ

ä Note: sT = qTAφ(ATA) , requires only Mat-Vec’s

ä Ideal for situations where data must be explored once or a
small number of times only –

ä Details skipped – see:

E. Kokiopoulou and YS, Polynomial Filtering in Latent Semantic
Indexing for Information Retrieval, ACM-SIGIR, 2004.
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IR: Use of the Lanczos algorithm (J. Chen, YS ’09)

ä Lanczos algorithm = Projection method on Krylov subspace
Span{v,Av, · · · , Am−1v}

ä Can get singular vectors with Lanczos, & use them in LSI

ä Better: Use the Lanczos vectors directly for the projection

ä K. Blom and A. Ruhe [SIMAX, vol. 26, 2005] perform a
Lanczos run for each query [expensive].

ä Proposed: One Lanczos run- random initial vector. Then
use Lanczos vectors in place of singular vectors.

ä In short: Results comparable to those of SVD at a much
lower cost.
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Tests: IR

Information
retrieval
datasets

# Terms # Docs # queries sparsity
MED 7,014 1,033 30 0.735
CRAN 3,763 1,398 225 1.412
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Average retrieval precision

Med dataset
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Supervised learning: classification

Problem: Given labels
(say “A” and “B”) for each
item of a given set, find a
mechanism to classify an
unlabelled item into either
the “A” or the “B" class.

?

?
ä Many applications.

ä Example: distinguish SPAM and non-SPAM messages

ä Can be extended to more than 2 classes.
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Supervised learning: classification

ä Best illustration: written digits recognition example

Given: a set of
labeled samples
(training set), and
an (unlabeled) test
image.
Problem: find

label of test image
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ä Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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Supervised learning: Linear classification

Linear classifiers: Find
a hyperplane which best
separates the data in
classes A and B.
ä Example of applica-
tion: Distinguish between
SPAM and non-SPAM e-
mails Linear

classifier

ä Note: The world in non-linear. Often this is combined with
Kernels – amounts to changing the inner product
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A harder case:
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GRAPH-BASED TECHNIQUES



Graph-based methods

ä Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)
Want: Perform a projection which pre-

serves the graph in some sense

ä Define a graph Laplacean:

L = D −W

x

x
j

i

e.g.,: wij =

{
1 if j ∈ Adj(i)
0 else D = diag

dii =
∑
j 6=i

wij


with Adj(i) = neighborhood of i (excluding i)
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A side note: Graph partitioning

If x is a vector of signs (±1) then

x>Lx = 4× (’number of edge cuts’)

edge-cut = pair (i, j) with xi 6= xj

ä Consequence: Can be used for partitioning graphs, or ‘clus-
tering’ [take p = sign(u2), where u2 = 2nd smallest eigenvec-
tor..]
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Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi ’01] *minimizes*

F(Y ) =
n∑

i,j=1

wij‖yi − yj‖2 subject to Y DY > = I

Motivation: if ‖xi − xj‖ is small
(orig. data), we want ‖yi − yj‖ to be
also small (low-Dim. data)
ä Original data used indirectly
through its graph
ä Leads to n× n sparse eigenvalue
problem [In ‘sample’ space]

x

x
j

i

y
i

y
j
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ä Problem translates to:

min Y ∈ Rd×n
Y D Y > = I

Tr
[
Y (D −W )Y >

]
.

ä Solution (sort eigenvalues increasingly):

(D −W )ui = λiDui ; yi = u>i ; i = 1, · · · , d

ä Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I −W )ui = λiui ; yi = u>i ; i = 1, · · · , d
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Locally Linear Embedding (Roweis-Saul-00)

ä LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed.

1. Graph: Each xi is written as a
convex combination of its k nearest
neighbors:
xi ≈ Σwijxj,

∑
j∈Ni

wij = 1
ä Optimal weights computed (’local
calculation’) by minimizing

‖xi − Σwijxj‖ for i = 1, · · · , n

x

x
j

i
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2. Mapping:

The yi’s should obey the same ’affinity’ as xi’s 

Minimize:∑
i

∥∥∥∥∥∥yi −
∑
j

wijyj

∥∥∥∥∥∥
2

subject to: Y 1 = 0, Y Y > = I

Solution:

(I −W>)(I −W )ui = λiui; yi = u>i .

ä (I−W>)(I−W ) replaces the graph Laplacean of eigen-
maps

Calais 05/18/2016 p. 33



ONPP (Kokiopoulou and YS ’05)

ä Orthogonal Neighborhood Preserving Projections

ä A linear (orthogonoal) version of LLE obtained by writing Y
in the form Y = V >X

ä Same graph as LLE. Objective: preserve the affinity graph
(as in LEE) *but* with the constraint Y = V >X

ä Problem solved to obtain mapping:

min
V

Tr
[
V >X(I −W>)(I −W )X>V

]
s.t. V TV = I

ä In LLE replace V >X by Y
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Implicit vs explicit mappings

ä In PCA the mapping Φ from high-dimensional space (Rm)
to low-dimensional space (Rd) is explicitly known:

y = Φ(x) ≡ V Tx

ä In Eigenmaps and LLE we only know

yi = φ(xi), i = 1, · · · , n

ä Mapping φ is complex, i.e.,

ä Difficult to get φ(x) for an arbitrary x not in the sample.

ä Inconvenient for classification

ä “The out-of-sample extension” problem
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Face Recognition – background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.
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Face Recognition – background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.

↖ ↑ ↗

Question: Does this new image correspond to one of those
in the database?

Difficulty Positions, Expressions, Lighting, ...,
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Example: Eigenfaces [Turk-Pentland, ’91]

ä Idea identical with the one we saw for digits:

– Consider each picture as a (1-D) column of all pixels
– Put together into an arrayA of size #_pixels×#_images.

. . . =⇒ . . .

︸ ︷︷ ︸
A

– Do an SVD ofA and perform comparison with any test image
in low-dim. space
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Graph-based methods in a supervised setting

Graph-based methods can be adapted to supervised mode.
Idea: Build G so that nodes in the same class are neighbors.
If c = # classes, G consists of c cliques.

ä Weight matrixW =block-diagonal
ä Note: rank(W ) = n− c.
ä As before, graph Laplacean:

Lc = D −W
W =


W1

W2
. . .

Wc


ä Can be used for ONPP and other graph based methods

ä Improvement: add repulsion Laplacean [Kokiopoulou, YS
09]
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Class 1 Class 2

Class 3

Leads to eigenvalue problem
with matrix:

Lc − ρLR

• Lc = class-Laplacean,
• LR = repulsion Laplacean,
• ρ = parameter

Test: ORL 40 subjects, 10 sample images each – example:

# of pixels : 112× 92; TOT. # images : 400
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ä Observation: some values of ρ yield better results than
using the optimum ρ obtained from maximizing trace ratio
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Conclusion

ä Interesting new matrix problems in areas that involve the
effective mining of data

ä Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

ä Many online resources available

ä Huge potential in areas like materials science though inertia
has to be overcome

ä To a researcher in computational linear algebra : big tide of
change on types or problems, algorithms, frameworks, culture,..

ä But change should be welcome



When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

ä In the words of “Who Moved My Cheese?” [ Spencer John-
son, 2002]:

“If you do not change, you can become extinct !”
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