## UNIVERSITY <br> OF Minnesota twin cities

Dimension reduction methods: Algorithms and Applications

Yousef Saad
Department of Computer Science and Engineering

## University of Minnesota

## Université du Littoral- Calais

$$
\text { July 11, } 2016
$$

> ... to the memory of Mohammed Bellalij

## Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful information or patterns from data. Very broad area - includes: data analysis, machine learning, pattern recognition, information retrieval, ...
> Main tools used: linear algebra; graph theory; approximation theory; optimization; ...
$>$ In this talk: emphasis on dimension reduction techniques and the interrelations between techniques

## Introduction: a few factoids

$>$ Data is growing exponentially at an "alarming" rate:

- $90 \%$ of data in world today was created in last two years
- Every day, 2.3 Million terabytes ( $2.3 \times 10^{18}$ bytes) created
> Mixed blessing: Opportunities \& big challenges.
> Trend is re-shaping \& energizing many research areas ...
... including my own: numerical linear algebra


## Topics

$>$ Focus on two main problems

- Information retrieval
- Face recognition
$>$ and 2 types of dimension reduction methods
- Standard subspace methods [SVD, Lanczos]
- Graph-based methods


## Major tool of Data Mining: Dimension reduction

> Goal is not as much to reduce size (\& cost) but to:

- Reduce noise and redundancy in data before performing a task [e.g., classification as in digit/face recognition]
- Discover important 'features' or 'paramaters'

The problem: Given: $\boldsymbol{X}=\left[x_{1}, \cdots, x_{n}\right] \in \mathbb{R}^{m \times n}$, find a
low-dimens. representation $\boldsymbol{Y}=\left[\boldsymbol{y}_{1}, \cdots, \boldsymbol{y}_{n}\right] \in \mathbb{R}^{d \times n}$ of $\boldsymbol{X}$
$>$ Achieved by a mapping

$$
\Phi: x \in \mathbb{R}^{m} \longrightarrow y \in \mathbb{R}^{d}
$$

$$
\phi\left(x_{i}\right)=y_{i}, \quad i=1, \cdots, n
$$


$>\Phi$ may be linear : $y_{i}=W^{\top} x_{i}$, i.e., $\boldsymbol{Y}=W^{\top} \boldsymbol{X}, .$.
> ... or nonlinear (implicit).
$>$ Mapping $\Phi$ required to: Preserve proximity? Maximize variance? Preserve a certain graph?

## Example: Principal Component Analysis (PCA)

In Principal Component Analysis $W$ is computed to maximize variance of projected data:

$$
\max _{W \in \mathbb{R}^{m \times d} ; W^{\top} W=I} \sum_{i=1}^{n}\left\|y_{i}-\frac{1}{n} \sum_{j=1}^{n} y_{j}\right\|_{2}^{2}, y_{i}=W^{\top} x_{i} .
$$

> Leads to maximizing

$$
\operatorname{Tr}\left[\boldsymbol{W}^{\top}\left(\boldsymbol{X}-\boldsymbol{\mu} e^{\top}\right)\left(\boldsymbol{X}-\boldsymbol{\mu} e^{\top}\right)^{\top} \boldsymbol{W}\right], \quad \boldsymbol{\mu}=\frac{1}{n} \Sigma_{i=1}^{n} x_{i}
$$

$>$ Solution $\boldsymbol{W}=\{$ dominant eigenvectors $\}$ of the covariance matrix $\equiv$ Set of left singular vectors of $\overline{\boldsymbol{X}}=\boldsymbol{X}-\boldsymbol{\mu} e^{\top}$

## SVD:

$$
\overline{\boldsymbol{X}}=\boldsymbol{U} \Sigma \boldsymbol{V}^{\top}, \quad \boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{I}, \quad \boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}, \quad \boldsymbol{\Sigma}=\text { Diag }
$$

> Optimal $W=U_{d} \equiv$ matrix of first $d$ columns of $U$
> Solution $W$ also minimizes 'reconstruction error' ..

$$
\sum_{i}\left\|x_{i}-W W^{T} x_{i}\right\|^{2}=\sum_{i}\left\|x_{i}-W y_{i}\right\|^{2}
$$

$>$ In some methods recentering to zero is not done, i.e., $\overline{\boldsymbol{X}}$ replaced by $\boldsymbol{X}$.

## Unsupervised learning

"Unsupervised learning" : methods that do not exploit known labels $>$ Example of digits: perform a 2-D projection
> Images of same digit tend to cluster (more or less)
> Such 2-D representations are popular for visualization
> Can also try to find natural clusters in data, e.g., in materials
$>$ Basic clusterning technique: Kmeans


## Example: The 'Swill-Roll' (2000 points in 3-D)

Original Data in 3-D


## 2-D 'reductions':



Eigenmaps




ONPP


Calais 05/18/2016

## Example: Digit images (a random sample of 30)



## 2-D 'reductions':



## APPLICATION: INFORMATION RETRIEVAL

## Application: Information Retrieval

> Given: collection of documents (columns of a matrix $\boldsymbol{A})$ and a query vector $\boldsymbol{q}$.
> Representation: $m \times n$ term by document matrix

$>$ A query $q$ is a (sparse) vector in $\mathbb{R}^{m}$ ('pseudo-document')
Problem: find a column of $\boldsymbol{A}$ that best matches $\boldsymbol{q}$
$>$ Vector space model: use $\cos \langle(A(:, j), q), j=1: n$
$>$ Requires the computation of $\boldsymbol{A}^{T} \boldsymbol{q}$
$>$ Literal Matching $\rightarrow$ ineffective

## Common approach: Dimension reduction (SVD)

> LSI: replace $\boldsymbol{A}$ by a low rank approximation [from SVD]

$$
A=U \Sigma V^{T} \quad \rightarrow \quad A_{k}=U_{k} \Sigma_{k} V_{k}^{T}
$$

$>$ Replace similarity vector: $s=A^{T} \boldsymbol{q} \quad$ by $\quad s_{k}=A_{k}^{T} \boldsymbol{q}$
> Main issues: 1) computational cost 2) Updates
Idea: Replace $A_{k}$ by $\boldsymbol{A} \phi\left(A^{T} A\right)$, where $\phi==$ a filter function
Consider the stepfunction (Heaviside):

$$
\phi(x)=\left\{\begin{array}{l}
0, \quad 0 \leq x \leq \sigma_{k}^{2} \\
1, \quad \sigma_{k}^{2} \leq x \leq \sigma_{1}^{2}
\end{array}\right.
$$

> Would yield the same result as TSVD but not practical

## Use of polynomial filters

$>$ Solution : use a polynomial approximation to $\phi$
$>$ Note: $s^{T}=q^{T} \boldsymbol{A} \phi\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)$, requires only Mat-Vec's
> Ideal for situations where data must be explored once or a small number of times only -
> Details skipped - see:
E. Kokiopoulou and YS, Polynomial Filtering in Latent Semantic Indexing for Information Retrieval, ACM-SIGIR, 2004.

## IR: Use of the Lanczos algorithm (J. Chen, YS '09)

$>$ Lanczos algorithm = Projection method on Krylov subspace $\operatorname{Span}\left\{v, A v, \cdots, A^{m-1} v\right\}$
> Can get singular vectors with Lanczos, \& use them in LSI
> Better: Use the Lanczos vectors directly for the projection
> K. Blom and A. Ruhe [SIMAX, vol. 26, 2005] perform a Lanczos run for each query [expensive].
> Proposed: One Lanczos run- random initial vector. Then use Lanczos vectors in place of singular vectors.
> In short: Results comparable to those of SVD at a much lower cost.

## Tests: IR

## Information retrieval datasets

$$
\begin{array}{lrrrr} 
& \text { \# Terms \# Docs \# queries } & \text { sparsity } \\
\text { MED } & 7,014 & 1,033 & 30 & 0.735 \\
\text { CRAN } & 3,763 & 1,398 & 225 & 1.412
\end{array}
$$

## Med dataset.

Cran dataset.



## Average retrieval precision

Med dataset


Cran dataset


Retrieval precision comparisons

## Supervised learning: classification

Problem: Given labels (say "A" and "B") for each item of a given set, find a mechanism to classify an unlabelled item into either the "A" or the "B" class.

> Many applications.
> Example: distinguish SPAM and non-SPAM messages
> Can be extended to more than 2 classes.

## Supervised learning: classification

> Best illustration: written digits recognition example

| Given: | a set of |
| :--- | ---: |
| labeled | samples |
| (training | set), |
| and <br> an (unlabeled) | test |
| image. |  |
| Problem: | find |
| label of test image |  |


> Roughly speaking: we seek dimension reduction so that recognition is 'more effective' in low-dim. space

## Supervised learning: Linear classification

Linear classifiers: Find a hyperplane which best separates the data in classes A and B.
$>$ Example of application: Distinguish between SPAM and non-SPAM emails

$>$ Note: The world in non-linear. Often this is combined with Kernels - amounts to changing the inner product

## A harder case:


> Use kernels to transform


Transformed data with a Gaussian Kernel

## GRAPH-BASED TECHNIQUES

## Graph-based methods

> Start with a graph of data. e.g.: graph of $\boldsymbol{k}$ nearest neighbors (k-NN graph)
Want: Perform a projection which preserves the graph in some sense
> Define a graph Laplacean:

$$
L=D-W
$$


e.g.,: $\quad w_{i j}=\left\{\begin{array}{l}1 \text { if } j \in \operatorname{Adj}(i) \\ 0 \quad \text { else }\end{array}\right.$

$$
\boldsymbol{D}=\operatorname{diag}\left[d_{i i}=\sum_{j \neq i} w_{i j}\right]
$$

with $\operatorname{Adj}(\boldsymbol{i})=$ neighborhood of $\boldsymbol{i}$ (excluding $\boldsymbol{i}$ )

## A side note: | Graph partitioning

If $x$ is a vector of signs $( \pm 1)$ then

$$
\boldsymbol{x}^{\top} \boldsymbol{L} \boldsymbol{x}=4 \times \text { ('number of edge cuts') }
$$

edge-cut $=$ pair $(i, j)$ with $\boldsymbol{x}_{i} \neq \boldsymbol{x}_{\boldsymbol{j}}$
$>$ Consequence: Can be used for partitioning graphs, or 'clustering' [take $p=\operatorname{sign}\left(u_{2}\right)$, where $u_{2}=2$ nd smallest eigenvector..]

## Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

$$
\mathcal{F}(\boldsymbol{Y})=\sum_{i, j=1}^{n} w_{i j}\left\|y_{i}-y_{j}\right\|^{2} \quad \text { subject to } \quad \boldsymbol{Y} \boldsymbol{D} \boldsymbol{Y}^{\top}=\boldsymbol{I}
$$

Motivation: if $\left\|x_{i}-x_{j}\right\|$ is small (orig. data), we want $\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|$ to be also small (low-Dim. data) > Original data used indirectly through its graph
$>$ Leads to $n \times n$ sparse eigenvalue problem [In ‘sample' space]


Problem translates to:

$$
\left\{\begin{array}{l}
\min _{\underset{\boldsymbol{Y} \in \mathbb{R}^{d \times n}}{ }} \operatorname{Tr}\left[\boldsymbol{Y}(\boldsymbol{D}-\boldsymbol{W}) \boldsymbol{Y}^{\top}\right] . \\
\boldsymbol{Y} \boldsymbol{D} \boldsymbol{Y}^{\top}=\boldsymbol{I}
\end{array}\right.
$$

$>$ Solution (sort eigenvalues increasingly):

$$
(D-W) u_{i}=\lambda_{i} D u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

Note: can assume $\boldsymbol{D}=\boldsymbol{I}$. Amounts to rescaling data. Problem becomes

$$
(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

## Locally Linear Embedding (Roweis-Saul-00)

> LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph
2) Objective function is changed.
1. Graph: Each $x_{i}$ is written as a convex combination of its $k$ nearest neighbors:
$x_{i} \approx \Sigma w_{i j} x_{j}, \quad \sum_{j \in N_{i}} w_{i j}=1$
$>$ Optimal weights computed ('local calculation') by minimizing

$$
\left\|x_{i}-\Sigma w_{i j} x_{j}\right\| \quad \text { for } \quad i=1, \cdots, n
$$



## 2. Mapping:

The $y_{i}$ 's should obey the same 'affinity' as $x_{i}$ 's $\rightsquigarrow$
Minimize:

$$
\sum_{i}\left\|y_{i}-\sum_{j} w_{i j} y_{j}\right\|^{2} \quad \text { subject to: } \quad Y 1=0, \quad Y Y^{\top}=I
$$

Solution:

$$
\left(I-W^{\top}\right)(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top}
$$

$>\left(\boldsymbol{I}-\boldsymbol{W}^{\top}\right)(\boldsymbol{I}-\boldsymbol{W})$ replaces the graph Laplacean of eigenmaps

## ONPP (Kokiopoulou and YS '05)

> Orthogonal Neighborhood Preserving Projections
$>$ A linear (orthogonoal) version of LLE obtained by writing $\boldsymbol{Y}$ in the form $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
> Same graph as LLE. Objective: preserve the affinity graph (as in LEE) *but* with the constraint $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
> Problem solved to obtain mapping:

$$
\begin{aligned}
& \quad \min _{\boldsymbol{V}} \operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}\left(\boldsymbol{I}-\boldsymbol{W}^{\top}\right)(\boldsymbol{I}-\boldsymbol{W}) \boldsymbol{X}^{\top} \boldsymbol{V}\right] \\
& \text { s.t. } \boldsymbol{V}^{T} \boldsymbol{V}=\boldsymbol{I}
\end{aligned}
$$

$>\operatorname{In}$ LLE replace $\boldsymbol{V}^{\top} \boldsymbol{X}$ by $\boldsymbol{Y}$

## Implicit us explicit mappings

$>$ In PCA the mapping $\Phi$ from high-dimensional space $\left(\mathbb{R}^{m}\right)$ to low-dimensional space $\left(\mathbb{R}^{d}\right)$ is explicitly known:

$$
y=\Phi(x) \equiv V^{T} x
$$

> In Eigenmaps and LLE we only know

$$
y_{i}=\phi\left(x_{i}\right), i=1, \cdots, n
$$

$>$ Mapping $\phi$ is complex, i.e.,
$>$ Difficult to get $\phi(x)$ for an arbitrary $x$ not in the sample.
> Inconvenient for classification
>"The out-of-sample extension" problem

## Face Recognition - background

Problem: We are given a database of images: [arrays of pixel values]. And a test (new) image.


## Face Recognition - background

Problem: We are given a database of images: [arrays of pixel values]. And a test (new) image.


Question: Does this new image correspond to one of those in the database?

Difficulty Positions, Expressions, Lighting, ...,

## Example: Eigenfaces [Turk-Pentland, '91]

> Idea identical with the one we saw for digits:

- Consider each picture as a (1-D) column of all pixels
- Put together into an array $\boldsymbol{A}$ of size $\#$ pixels $\times \#$ images.

- Do an SVD of $\boldsymbol{A}$ and perform comparison with any test image in low-dim. space


## Graph-based methods in a supervised setting

Graph-based methods can be adapted to supervised mode. Idea: Build $G$ so that nodes in the same class are neighbors. If $c=\#$ classes, $G$ consists of $c$ cliques.
$>$ Weight matrix $W=$ block-diagonal
$>$ Note: $\operatorname{rank}(W)=n-c$.
$>$ As before, graph Laplacean:

$$
L_{c}=D-W
$$

$$
\boldsymbol{W}=\left(\begin{array}{llll}
\boldsymbol{W}_{1} & & & \\
& \boldsymbol{W}_{2} & & \\
& & \cdots & \\
& & & \boldsymbol{W}_{c}
\end{array}\right)
$$

> Can be used for ONPP and other graph based methods
> Improvement: add repulsion Laplacean [Kokiopoulou, YS 09]


Class 3
Test: ORL 40 subjects, 10 sample images each - example:

\# of pixels : $112 \times 92 ; \quad$ TOT. \# images : 400

$>$ Observation: some values of $\rho$ yield better results than using the optimum $\rho$ obtained from maximizing trace ratio

## Conclusion

$>$ Interesting new matrix problems in areas that involve the effective mining of data
$>$ Among the most pressing issues is that of reducing computational cost - [SVD, SDP, ..., too costly]
> Many online resources available
$>$ Huge potential in areas like materials science though inertia has to be overcome
$>$ To a researcher in computational linear algebra : big tide of change on types or problems, algorithms, frameworks, culture,..
> But change should be welcome

When one door closes, another opens; but we often look so long and so regretfully upon the closed door that we do not see the one which has opened for us.

Alexander Graham Bell (1847-1922)
> In the words of "Who Moved My Cheese?" [ Spencer Johnson, 2002]:
"If you do not change, you can become extinct !"

