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Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful
Information or patterns from data. Very broad area — In-
cludes: data analysis, machine learning, pattern recognition,
information retrieval, ...

» Maintools used: linear algebra; graph theory; approximation
theory; optimization; ...

» In this talk: emphasis on dimension reduction techniques
and the interrelations between techniques
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Introduction: a few factoids

» Data is growing exponentially at an “alarming” rate:

e 90% of data in world today was created in last two years
e Every day, 2.3 Million terabytes (2.3 x 10'® bytes) created
» Mixed blessing: Opportunities & big challenges.
» Trend is re-shaping & energizing many research areas ...

» ... including my own: numerical linear algebra
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» Focus on two main problems

— Information retrieval

— Face recognition

» and 2 types of dimension reduction methods
— Standard subspace methods [SVD, Lanczos]

— Graph-based methods
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Major tool of Data Mining: Dimension reduction

» Goal is not as much to reduce size (& cost) but to:

e Reduce noise and redundancy in data before performing a
task [e.g., classification as in digit/face recognition]

e Discover important ‘features’ or ‘paramaters’

The problem: \Given: X =[xy, ,x,] € R™*™ find a

low-dimens. representation Y = [y, ,y,] € R>"of X

» Achievedbyamapping @®:ax € R™ — y € R®  so:

¢(wz):yza 7::19"'9”/
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» dmaybelinear: y=W'z; ,ie, Y =W'X ,.

» ... or nonlinear (implicit).

» Mapping @ required to: Preserve proximity? Maximize
variance? Preserve a certain graph?
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Example: Principal Component Analysis (PCA)

In  Principal Component Analysis W is computed to maxi-
mize variance of projected data:

_ T
max E yi——§ Yill » ¥yi =W a;.
WeRmMXdWTW =] n

i=1 j=1

» Leads to maximizing
T [WH(X —pe" ) (X —pe”)TW], p=_ 3"

» Solution W = { dominant eigenvectors } of the covariance
matrix = Set of left singular vectors of X = X — pe'
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SVD:

X=UXVT, U'U=1, V'V =1, ¥ = Diag

» Optimal W = U,; = matrix of first d columns of U

» Solution W also minimizes ‘reconstruction error’ ..

Y o flws — WW || =) |l — Wy

» In some methods recentering to zero is not done, i.e., X
replaced by X.
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Unsupervised learning

PCA - digits : 5 ——7

“Unsupervised learning” : meth-
ods that do not exploit known labels
» Example of digits: perform a 2-D
projection
» Images of same digit tend to
cluster (more or less)

» Such 2-D representations are
popular for visualization

» (Can also try to find natural clus-
ters in data, e.g., in materials

» Basic clusterning technique: K-
means
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Example: The ‘Swill-Roll’ (2000 points in 3-D)

Original Data in 3-D
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2-D ‘reductions’: |

PCA LPP
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Example: Digit images (a random sample of 30)
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2-D ‘reductions’:

PCA - digits: 0 —— 4

LLE - digits : 0 —— 4
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Application: Information Retrieval

» Given: collection of doc- oo Lo 0
uments (columns of a matrix e . %%e e
A) and a query vector q. T 0o o °
» Representation: m X n e, °° ° ° o o
term by document matrix ° ° o' o o

» A query q is a (sparse) vector in R™ (‘pseudo-document’)
Problem: find a column of A that best matches q

» Vector space model: use cos{((A(:,7),q), 7 =1:n

» Requires the computation of Alq

» Literal Matching — ineffective
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Common approach: Dimension reduction (SVD)

» LSI: replace A by a low rank approximation [from SVD]

> Replace similarity vector: s = Atq by sp= Algq
» Main issues: 1) computational cost 2) Updates

ldea: Replace A, by Ap(AT A), where ¢ == a filter function

Consider the step- b(z) = 0, 0 <z< ak
function (Heaviside): 1,0 <x< o7

» Would yield the same result as TSVD but not practical
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Use of polynomial filters

» Solution : use a polynomial approximation to ¢

» Note: |sT = gl A¢p(AT A)|, requires only Mat-Vec’s

» |deal for situations where data must be explored once or a
small number of times only —

» Details skipped — see:

E. Kokiopoulou and YS, Polynomial Filtering in Latent Semantic
Indexing for Information Retrieval, ACM-SIGIR, 2004.
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IR: Use of the Lanczos algorithm (J. Chen, YS °09)

» Lanczos algorithm = Projection method on Krylov subspace
Span{v, Av,--- , A™ v}

» (Can get singular vectors with Lanczos, & use them in LS

» Better: Use the Lanczos vectors directly for the projection

» K. Blom and A. Ruhe [SIMAX, vol. 26, 2005] perform a
Lanczos run for each query [expensive].

» Proposed: One Lanczos run- random initial vector. Then
use Lanczos vectors in place of singular vectors.

» In short: Results comparable to those of SVD at a much
lower cost.
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Information # Terms # Docs # queries sparsity
retrieval MED 7,014 1,033 30 0.735
datasets CRAN 3,763 1,398 225 1.412
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Average retrieval precision

Med dataset
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Supervised learning: classification

Problem:  Given labels
(say “A” and “B”) for each Lo
item of a given set, finda =
mechanism to classify an
unlabelled item into either
the “A” or the “B" class. o

f)

» Many applications.
» Example: distinguish SPAM and non-SPAM messages

» (Can be extended to more than 2 classes.
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Supervised learning: classification

» Best illustration: written digits recognition example

Digit 0
" Digfit 1
' Digit 2

Given: a set of

Digit 9
1 Digit ??

labeled samples mEm

(training set), and| ||/l 11 11— 5
an (unlabeled) test] | ||| 2
image. Training data Test data :
Problem: find -
label of test image : § 3 S

Digit 9
Digit ??

0000000000 - - - UDDD |

» Roughly speaking: we seek dimension reduction so that
recognition is ‘more effective’ in low-dim. space
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Supervised learning: Linear classification

Linear classifiers: Find
a hyperplane which best
separates the data In
classes A and B.

» Example of applica-
tion: Distinguish between
SPAM and non-SPAM e-

mails Linear
classifier

» Note: The world in non-linear. Often this is combined with
Kernels — amounts to changing the inner product
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A harder case

Spectral Bisection (PDDP)

-1

» Use kernels to transform



Projection with Kernels —— 0% = 2.7463
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Graph-based methods

» Start with a graph of data. e.g.: graph
of k nearest neighbors (k-NN graph)

Want: | Perform a projection which pre-
serves the graph in some sense

» Define a graph Laplacean:

L=D-W
_ o 1if 3 € Adj(2) . o N
e.g.,: w”_{O olse D = diag dm—;wm
- "7 v -

with Adj(z2) = neighborhood of 2 (excluding )
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A side note: | Graph partitioning

If x is a vector of signs (1=1) then

x' Lz = 4 x (‘number of edge cuts’)
edge-cut = pair (¢, 7) with ; # x;

» (Consequence: Can be used for partitioning graphs, or ‘clus-
tering’ [take p = sign(u-2), where us = 2nd smallest eigenvec-
tor..]
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Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

n

f(Y) — Z wwllyz — yjllz subject to YDY' =1

1,7=1

Motivation: if ||x; — ;|| is small
(orig. data), we want ||y; — y;|| to be
also small (low-Dim. data)

»  Original data used indirectly
through its graph

» Leads to n X n sparse eigenvalue
problem [In ‘sample’ space]
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» Problem translates to:

min Ty {Y(D - W)YT} .
Y E Ran
YDYT =1

» Solution (sort eigenvalues increasingly):

(D—W)u; =A\Du;; yi=u; t=1,---,d

» Note: can assume D = I. Amounts to rescaling data.
Problem becomes

(I — W)u; = Aju ; yz:u;rv 1 =1,---,d
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Locally Linear Embedding (Roweis-Saul-00)

» LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an ‘affinity’ graph

2) Objective function is changed.

1. Graph: Each x; is written as a
convex combination of its k nearest
neighbors:

Xr; ~ E’wija:j, ZjENi W;; — 1
» Optimal weights computed (‘local
calculation’) by minimizing

||£UZ — Ewme” for 2 = l,:--,m
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2. Mapping:

The y;’s should obey the same ’affinity’ as x;'s ~~
Minimize:

Z Yi — sz’jyj subjectto: Y1 =0, YY' =1
J

()

Solution:

» (I —WT")(I—W) replaces the graph Laplacean of eigen-
maps
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ONPP (Kokiopoulou and YS °05)

» Orthogonal Neighborhood Preserving Projections

» A linear (orthogonoal) version of LLE obtained by writing Y
intheformY =V 'X

» Same graph as LLE. Objective: preserve the affinity graph
(as in LEE) *but* with the constraintY = V' X

» Problem solved to obtain mapping:

VvV
st VIV =1

minTr |[VTX(I - WT)(I - W)X V|

» InLLEreplace V' X by Y
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Implicit vs explicit mappings

» In PCA the mapping ® from high-dimensional space (R™)
to low-dimensional space (R?) is explicitly known:

y=®(x) =Vig
» In Eigenmaps and LLE we only know
Yi = qb(azz),z =1,---,n

Mapping ¢ is complex, i.e.,
Difficult to get ¢p(a) for an arbitrary « not in the sample.

Inconvenient for classification

Yy Y VYY

“The out-of-sample extension” problem
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Face Recognition — background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.
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Face Recognition — background

Problem: We are given a database of images: [arrays of pixel
values]. And a test (new) image.

CeReTeTe

N TS

-

Question: Does this new image correspond to one of those
in the database?

Difficulty | Positions, Expressions, Lighting, ...,
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Example: Eigenfaces [Turk-Pentland, °91]

» |dea identical with the one we saw for digits:

— Consider each picture as a (1-D) column of all pixels

— Put together into an array A of size #_pixels X # _i1mages.

HEEEE N -

- 7

A

— Do an SVD of A and perform comparison with any

In low-dim. space
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Graph-based methods in a supervised setting

Graph-based methods can be adapted to supervised mode.
ldea: Build G so that nodes in the same class are neighbors.
If ¢ = # classes, G consists of ¢ cliques.

» Weight matrix W =block-diagonal (W1 \
» Note: rank(W) = n — c. W,
» As before, graph Laplacean: W =

L.=D—-—W \ Wc)

» (Can be used for ONPP and other graph based methods

» Improvement: add repulsion Laplacean [Kokiopoulou, YS
09]
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Class 1 class2 |Leads to eigenvalue problem
with matrix:

Lc — pLR

AV

e L. = class-Laplacean,
e Ly =repulsion Laplacean,
e p — parameter

Class 3

Test: ORL 40 subjects 10 sample Images each example:

# of pixels : 112 x 92; TOT. # images : 400
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ORL -- TrainPer—Class=5

0.98
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» QObservation: some values of p yield better results than
using the optimum p obtained from maximizing trace ratio
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Conclusion

» |Interesting new matrix problems in areas that involve the
effective mining of data

» Among the most pressing issues is that of reducing compu-
tational cost - [SVD, SDP, ..., too costly]

» Many online resources available

» Huge potential in areas like materials science though inertia
has to be overcome

» To a researcher in computational linear algebra : big tide of
change on types or problems, algorithms, frameworks, culture,..

» But change should be welcome



When one door closes, another opens; but we often look so
long and so regretfully upon the closed door that we do not
see the one which has opened for us.

Alexander Graham Bell (1847-1922)

» In the words of “Who Moved My Cheese?” [ Spencer John-
son, 2002]:

“If you do not change, you can become extinct !”
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