OF MINNESOTA TWIN CITIES

Dimension reduction methods: Algorithms and Applications

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

Université du Littoral- Calais July 11, 2016

Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful information or patterns from data. Very broad area – includes: data analysis, machine learning, pattern recognition, information retrieval, ...

Main tools used: linear algebra; graph theory; approximation theory; optimization; ...

In this talk: emphasis on dimension reduction techniques and the interrelations between techniques

Introduction: a few factoids

- Data is growing exponentially at an "alarming" rate:
 - 90% of data in world today was created in last two years
 - Every day, 2.3 Million terabytes (2.3 $\times 10^{18}$ bytes) created
- Mixed blessing: Opportunities & big challenges.
- Trend is re-shaping & energizing many research areas ...
- including my own: numerical linear algebra

Topics

- Focus on two main problems
- Information retrieval
- Face recognition
- and 2 types of dimension reduction methods
- Standard subspace methods [SVD, Lanczos]
- Graph-based methods

Major tool of Data Mining: Dimension reduction

- Goal is not as much to reduce size (& cost) but to:
- Reduce noise and redundancy in data before performing a task [e.g., classification as in digit/face recognition]
- Discover important 'features' or 'paramaters'

The problem:Given: $X = [x_1, \cdots, x_n] \in \mathbb{R}^{m \times n}$, find alow-dimens. representation $Y = [y_1, \cdots, y_n] \in \mathbb{R}^{d \times n}$ of XAchieved by a mapping $\Phi : x \in \mathbb{R}^m \longrightarrow y \in \mathbb{R}^d$ so: $\phi(x_i) = y_i, \quad i = 1, \cdots, n$

- \blacktriangleright may be linear : $y_i = W^ op x_i$, i.e., $Y = W^ op X$, ..
- ... or nonlinear (implicit).
- > Mapping Φ required to: Preserve proximity? Maximize variance? Preserve a certain graph?

Example: Principal Component Analysis (PCA)

In *Principal Component Analysis* W is computed to maximize variance of projected data:

$$\max_{W\in \mathbb{R}^{m imes d}; W^ op W=I} \quad \sum_{i=1}^n \left\|y_i - rac{1}{n}\sum_{j=1}^n y_j
ight\|_2^2, \,\, y_i = W^ op x_i.$$

Leads to maximizing

$${
m Tr}\left[W^ op(X-\mu e^ op)^ op W
ight], \hspace{1em} \mu=rac{1}{n}\Sigma_{i=1}^n x_i$$

> Solution $W = \{$ dominant eigenvectors $\}$ of the covariance matrix \equiv Set of left singular vectors of $\bar{X} = X - \mu e^{\top}$

SVD:

$$ar{X} = oldsymbol{U} \Sigma oldsymbol{V}^ op, \quad oldsymbol{U}^ op oldsymbol{U} = oldsymbol{I}, \quad oldsymbol{V}^ op oldsymbol{V} = oldsymbol{I}, \quad \Sigma = extsf{Diag}$$

> Optimal $W = U_d \equiv$ matrix of first d columns of U

Solution W also minimizes 'reconstruction error' ..

$$\sum_i \|x_i - WW^T x_i\|^2 = \sum_i \|x_i - Wy_i\|^2$$

In some methods recentering to zero is not done, i.e., \bar{X} replaced by X.

Unsupervised learning

"Unsupervised learning": methods that do not exploit known labels Example of digits: perform a 2-D projection Images of same digit tend to cluster (more or less) Such 2-D representations are popular for visualization Can also try to find natural clusters in data, e.g., in materials Basic clusterning technique: Kmeans

Example: The 'Swill-Roll' (2000 points in 3-D)

Original Data in 3-D

2-D 'reductions':

Eigenmaps

Example: Digit images (a random sample of 30)

2-D 'reductions':

APPLICATION: INFORMATION RETRIEVAL

Application: Information Retrieval

Given: collection of documents (columns of a matrix *A*) and a query vector *q*.
 Representation: *m* × *n* term by document matrix

A query q is a (sparse) vector in \mathbb{R}^m ('pseudo-document')

Problem: find a column of A that best matches q

- > Vector space model: use $\cos\langle (A(:,j),q), j = 1:n \rangle$
- > Requires the computation of $A^T q$
- \blacktriangleright Literal Matching \rightarrow ineffective

Common approach: Dimension reduction (SVD)

LSI: replace A by a low rank approximation [from SVD] $A = U\Sigma V^T \quad \rightarrow \quad A_k = U_k \Sigma_k V_k^T$

Feelace similarity vector: $s = A^T q$ by $s_k = A_k^T q$ Main issues: 1) computational cost 2) Updates *Idea:* Replace A_k by $A\phi(A^T A)$, where $\phi ==$ a filter function
Consider the step-function (Heaviside): $\phi(x) = \begin{cases} 0, & 0 \le x \le \sigma_k^2 \\ 1, & \sigma_k^2 \le x \le \sigma_1^2 \end{cases}$

Would yield the same result as TSVD but not practical

Use of polynomial filters

> Solution : use a polynomial approximation to ϕ

> Note: $s^T = q^T A \phi(A^T A)$, requires only Mat-Vec's

Ideal for situations where data must be explored once or a small number of times only –

Details skipped – see:

E. Kokiopoulou and YS, Polynomial Filtering in Latent Semantic Indexing for Information Retrieval, ACM-SIGIR, 2004.

IR: Use of the Lanczos algorithm (J. Chen, YS '09)

Lanczos algorithm = Projection method on Krylov subspace $Span\{v, Av, \dots, A^{m-1}v\}$

- Can get singular vectors with Lanczos, & use them in LSI
- Better: Use the Lanczos vectors directly for the projection
- ► K. Blom and A. Ruhe [SIMAX, vol. 26, 2005] perform a Lanczos run for each query [expensive].

Proposed: One Lanczos run- random initial vector. Then use Lanczos vectors in place of singular vectors.

In short: Results comparable to those of SVD at a much lower cost.

Tests: IR

Information		# Terms	# Docs	# queries	sparsity
retrieval	MED	7,014	1,033	30	0.735
datasets	CRAN	3,763	1,398	225	1.412

Med dataset.

Average retrieval precision

Med dataset

Cran dataset

Retrieval precision comparisons

Supervised learning: classification

Problem: Given labels (say "A" and "B") for each item of a given set, find a mechanism to classify an unlabelled item into either the "A" or the "B" class.

- Many applications.
- Example: distinguish SPAM and non-SPAM messages
- Can be extended to more than 2 classes.

Supervised learning: classification

Best illustration: written digits recognition example

Roughly speaking: we seek dimension reduction so that recognition is 'more effective' in low-dim. space

Supervised learning: Linear classification

Linear classifiers: Find a hyperplane which best separates the data in classes A and B.
Example of application: Distinguish between SPAM and non-SPAM emails

Note: The world in non-linear. Often this is combined with Kernels – amounts to changing the inner product

Use kernels to transform

Transformed data with a Gaussian Kernel

GRAPH-BASED TECHNIQUES

Graph-based methods

Start with a graph of data. e.g.: graph of k nearest neighbors (k-NN graph)
 Want: Perform a projection which preserves the graph in some sense

Define a *graph Laplacean:*

$$L = D - W$$

Г

e.g.,:
$$w_{ij} = \left\{ egin{array}{ccc} 1 & ext{if} & j \in Adj(i) \\ 0 & ext{else} \end{array} & D = ext{diag} & \left| d_{ii} = \sum_{j
eq i} w_{ij}
ight|$$

with Adj(i) = neighborhood of *i* (excluding *i*)

A side note: Graph partitioning

If x is a vector of signs (± 1) then

 $x^{ op}Lx = 4 imes$ ('number of edge cuts')

edge-cut = pair (i, j) with $x_i \neq x_j$

Consequence: Can be used for partitioning graphs, or 'clustering' [take $p = sign(u_2)$, where $u_2 = 2nd$ smallest eigenvector..]

Example: The Laplacean eigenmaps approach

Laplacean Eigenmaps [Belkin-Niyogi '01] *minimizes*

$$\mathcal{F}(Y) = \sum_{i,j=1}^n w_{ij} \|y_i - y_j\|^2$$
 subject to $YDY^ op = I$

Motivation: if $||x_i - x_j||$ is small (orig. data), we want $||y_i - y_j||$ to be also small (low-Dim. data) \blacktriangleright Original data used indirectly through its graph \blacktriangleright Leads to $n \times n$ sparse eigenvalue problem [In 'sample' space]

$$\min_{\substack{Y \in \mathbb{R}^{d imes n} \ YD \ Y^ op = I}} \operatorname{Tr} \left[Y(D - W)Y^ op
ight] \,.$$

Solution (sort eigenvalues increasingly):

$$(D-W)u_i = \lambda_i D u_i \ ; \quad y_i = u_i^ op; \quad i=1,\cdots,d$$

> Note: can assume D = I. Amounts to rescaling data. Problem becomes

$$(I-W)u_i=\lambda_i u_i\,; \hspace{1em} y_i=u_i^ op; \hspace{1em} i=1,\cdots,d$$

Locally Linear Embedding (Roweis-Saul-00)

LLE is very similar to Eigenmaps. Main differences:
1) Graph Laplacean matrix is replaced by an 'affinity' graph
2) Objective function is changed.

1. Graph: Each x_i is written as a convex combination of its k nearest neighbors:

 $x_i \approx \Sigma w_{ij} x_j, \quad \sum_{j \in N_i} w_{ij} = 1$ > Optimal weights computed ('local calculation') by minimizing

$$\|x_i - \Sigma w_{ij} x_j\|$$
 for $i=1,\cdots,n$

2. Mapping:

The y_i 's should obey the same 'affinity' as x_i 's \rightsquigarrow

Minimize:

$$\sum_i \left\| y_i - \sum_j w_{ij} y_j \right\|^2$$
 subject to: $Y \mathbf{1} = \mathbf{0}, \quad Y Y^{ op} = I$

Solution:

$$(I-W^ op)(I-W)u_i=\lambda_i u_i; \qquad y_i=u_i^ op$$
 .

 \blacktriangleright $(I - W^{\top})(I - W)$ replaces the graph Laplacean of eigenmaps

ONPP (Kokiopoulou and YS '05)

Orthogonal Neighborhood Preserving Projections

> A linear (orthogonoal) version of LLE obtained by writing Y in the form $Y = V^{\top}X$

Same graph as LLE. Objective: preserve the affinity graph (as in LEE) *but* with the constraint $Y = V^{\top}X$

Problem solved to obtain mapping:

$$\min_{V} \operatorname{Tr} \left[V^{\top} X (I - W^{\top}) (I - W) X^{\top} V \right]$$

s.t. $V^{T} V = I$

 \blacktriangleright In LLE replace $V^{ op}X$ by Y

Implicit vs explicit mappings

▶ In PCA the mapping Φ from high-dimensional space (\mathbb{R}^m) to low-dimensional space (\mathbb{R}^d) is explicitly known:

$$y = \Phi(x) \equiv V^T x$$

In Eigenmaps and LLE we only know

$$y_i=\phi(x_i), i=1,\cdots,n$$

- > Mapping ϕ is complex, i.e.,
- > Difficult to get $\phi(x)$ for an arbitrary x not in the sample.
- Inconvenient for classification
- "The out-of-sample extension" problem

Face Recognition – background

Problem: We are given a database of images: [arrays of pixel values]. And a test (new) image.

Face Recognition – background

Problem: We are given a database of images: [arrays of pixel values]. And a test (new) image.

Question: Does this new image correspond to one of those in the database?

Difficulty Positions, Expressions, Lighting, ...,

Example: Eigenfaces [Turk-Pentland, '91]

- Idea identical with the one we saw for digits:
- Consider each picture as a (1-D) column of all pixels
- Put together into an array A of size $\#_pixels \times \#_images$.

– Do an SVD of \boldsymbol{A} and perform comparison with any test image in low-dim. space

Graph-based methods in a supervised setting

Graph-based methods can be adapted to supervised mode. Idea: Build G so that nodes in the same class are neighbors. If c = # classes, G consists of c cliques.

- Weight matrix W = block-diagonal
 Note: rank(W) = n c.
 As before, graph Laplacean: W = $\begin{pmatrix} W_1 \\ W_2 \\ \vdots \\ U_c = D W \end{pmatrix}$
- Can be used for ONPP and other graph based methods
- Improvement: add repulsion Laplacean [Kokiopoulou, YS 09]

Leads to eigenvalue problem with matrix:

$$L_c -
ho L_R$$

•
$$L_c$$
 = class-Laplacean,

•
$$L_R$$
 = repulsion Laplacean,

 $\rho = parameter$

Test: ORL 40 subjects, 10 sample images each – example:

of pixels : 112×92 ; TOT. # images : 400

> Observation: some values of ρ yield better results than using the optimum ρ obtained from maximizing trace ratio

Conclusion

Interesting new matrix problems in areas that involve the effective mining of data

Among the most pressing issues is that of reducing computational cost - [SVD, SDP, ..., too costly]

Many online resources available

Huge potential in areas like materials science though inertia has to be overcome

► To a researcher in computational linear algebra : big tide of change on types or problems, algorithms, frameworks, culture,...

But change should be welcome

When one door closes, another opens; but we often look so long and so regretfully upon the closed door that we do not see the one which has opened for us.

Alexander Graham Bell (1847-1922)

In the words of "Who Moved My Cheese?" [Spencer Johnson, 2002]:

"If you do not change, you can become extinct !"