UNIVERSITY of Minnesota twincitives

The EVSL package for symmetric eigenvalue problems
Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

15th Copper Mountain Conference Mar. 28, 2018

First:
> Joint work with Ruipeng Li, Yuanzhe Xi, and Luke Erlandson
> Application side: collaboration with Jia Shi, Maarten V. de Hoop (Rice)
> Support: NSF

"Spectrum Slicing"

> Context: very large number of eigenvalues to be computed
> Goal: compute spectrum by slices by applying filtering
> Apply Lanczos or Subspace iteration to problem:

$$
\phi(A) u=\mu u
$$

$\phi(t) \equiv$ a polynomial or rational function that enhances wanted eigenvalues

Pol. of degree 32 approx $\delta(.5)$ in $\left[\begin{array}{ll}-1 & 1\end{array}\right]$

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other :

> Idea: Get the spectrum by 'slices' or 'windows' [e.g., a few hundreds or thousands of pairs at a time]
$>$ Note: Orthogonalization cost can be very high if we do not slice the spectrum

Illustration: All eigenvalues in [0, 1] of a 49^{3} Laplacean

Note: This is a small pb. in a scalar environment. Effect likely much more pronounced in a fully parallel case.

How do I slice my spectrum?

Answer: Use the spectral density, aka, 'Density Of States' (DOS)
$>$ DOS inexpensive to compute

Slice spectrum into 8 with the DOS

$$
\int_{t_{i}}^{t_{i+1}} \phi(t) d t=\frac{1}{n_{\text {slices }}} \int_{a}^{b} \phi(t) d t
$$

Polynomial filtering: The δ-Dirac function approach

Three filters using different smoothing

Pol. of degree 32 approx $\delta(.5)$ in $\left[\begin{array}{ll}-1 & 1\end{array}\right]$

\longleftarrow Damping: Jackson, Lanczos σ damping, or none.

'The soul of a new filter' - A few technical details

Issue \# one: | 'balance the filter'
> To facilitate the selection of 'wanted' eigenvalues [Select λ 's such that $\rho(\lambda)>$ bar] we need to ...

$>\ldots$ find γ so that $\rho(\xi)-\rho(\eta)=0$
Procedure: Solve the equation $\rho_{\gamma}(\xi)-\rho_{\gamma}(\eta)=0$ with respect to γ, accurately.
Use Newton scheme

Issue \# two: | Determine degree \& polynomial (automatically)

Start low then increase degree until value (s) at the boundary (ies) become small enough - Exple for [0.833, 0.907..]

Which Projection: Lanczos, w/o restarts, Subspace iteration,..

Options:

> Subspace iteration: quite appealing in some applications (e.g., electronic structure): Can re-use previous subspace.
> Simplest: (+ most efficient) Lanczos without restarts
> Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos et al '98, Wu \& Simon'00]
$>$ Crucial tool in TR Lanczos: deflation ('Locking')
Main idea: Keep extracting eigenvalues in interval $[\xi, \eta]$ until none are left [remember: deflation]
> If filter is good: Can catch all eigenvalues in interval thanks to deflation + Lanczos.

Polynomial filtered Lanczos: No-Restart version

> Use Lanczos with full reorthogonalization on $\rho(A)$. Eigenvalues of $\rho(A): \rho\left(\lambda_{i}\right)$
$>$ Accept if $\boldsymbol{\rho}\left(\boldsymbol{\lambda}_{i}\right) \geq$ bar
$>$ Ignore if $\rho\left(\boldsymbol{\lambda}_{i}\right)<$ bar

Rational filters: Why?

> Consider a spectrum like this one:

> Polynomial filtering utterly ineffective for this case
> Second issue: situation when Matrix-vector products are expensive
> Generalized eigenvalue problems.
> Alternative is to use rational filters:

$$
\phi(z)=\sum_{j} \frac{\alpha_{j}}{z-\sigma_{j}}
$$

$$
\phi(A)=\sum_{j} \alpha_{j}\left(A-\sigma_{j} I\right)^{-1}
$$

We now need to solve linear systems
> Tool: Cauchy integral representations of spectral projectors

$$
P=\frac{-1}{2 i \pi} \int_{\Gamma}(A-s I)^{-1} d s
$$

- Numer. integr. $\boldsymbol{P} \rightarrow \tilde{\boldsymbol{P}}$
- Use Krylov or S.I. on $\tilde{\boldsymbol{P}}$
> Sakurai-Sugiura approach [Krylov]
$>$ FEAST [Subs. iter.] (E. Polizzi)

The Gauss viewpoint: Least-squares rational filters

$>$ Given: poles $\sigma_{1}, \sigma_{2}, \cdots, \sigma_{p}$
$>$ Related basis functions $\phi_{j}(z)=\frac{1}{z-\sigma_{j}}$
Find $\phi(z)=\sum_{j=1}^{p} \alpha_{j} \phi_{j}(z)$ that minimizes

$$
\int_{-\infty}^{\infty} w(t)|h(t)-\phi(t)|^{2} d t
$$

$>h(t)=$ step function $\chi_{[-1,1]}$.
$>w(t)=$ weight function.
For example $a=10$, $\beta=0.1$

$$
w(t)=\left\{\begin{array}{lll}
0 & \text { if } & |t|>a \\
\beta & \text { if } & |t| \leq 1 \\
1 & \text { else } &
\end{array}\right.
$$

> Many advantages

Spectrum Slicing and the EVSL project

$>$ EVSL package now at version 1.1.x
> Uses polynomial and rational filtering: Each can be appealing in different situations.

Spectrum slicing: Invokes Kernel Polynomial Method or Lanczos quadrature to cut the overall interval containing the spectrum into small sub-intervals.

Levels of parallelism

The two main levels of parallelism in EVSL

gVSL Main Contributors (version 1.1.0+) \& Support

- Ruipeng Li LLNL

- Yuanzhe Xi

Post-doc (UMN)

- Luke Erlandson

UG Intern (UMN)
> Work supported by NSF (also past work: DOE)
> See web-site for details:
http://www-users.cs.umn.edu/~saad/software/EVSL/

EVSL: current status \& plans

Version_1.0 Released in Sept. 2016

- Matrices in CSR format (only)
- Standard Hermitian problems (no generalized)
- Spectrum slicing with KPM (Kernel Polynomial Meth.)
- Trivial parallelism across slices with OpenMP
- Methods:
- Non-restart Lanczos - polynomial \& rational filters
- Thick-Restart Lanczos - polynomial \& rational filters
- Subspace iteration - polynomial \& rational filters

Version_1.1.x V_1.1.0 Released back in August $2017 .^{2}$

- general matvec [passed as function pointer]
- $\boldsymbol{A x}=\boldsymbol{\lambda} \boldsymbol{B x}$
- Fortran (03) interface.
- Spectrum slicing by Lanczos and KPM
- Efficient Spectrum slicing for $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{\lambda} \boldsymbol{B} \boldsymbol{x}$ (no solves with B).

Version_1.2.x pEVSL - In progress

- Fully parallel version [MPI + openMP]

Spectrum slicing and the EVSL package

- All eigenvalues in [0, 1] of of a 49^{3} discretized Laplacian
- eigs(A, 1971,'sa'): 14830.66 sec
- Solution: Use DOS to partition $[0,1]$ into 5 slices
- Polynomial filtering from EVSL on Mesabi MSI, 23 threads/slice

$\left[a_{i}, a_{i+1}\right]$	$\#$ eigs	CPU time (sec)		max residual	
		matvec	orth.		
$[0.00000,0.37688]$	386	1.31	18.26	28.66	$2.5 \times \mathbf{1 0}^{-14}$
$[0.37688,0.57428]$	401	3.28	38.25	56.75	8.7×10^{-13}
$[0.57428,0.73422]$	399	4.69	36.47	56.73	1.7×10^{-12}
$[0.73422,0.87389]$	400	5.97	38.60	61.40	6.6×10^{-12}
$[0.87389,1.00000]$	385	6.84	36.16	59.45	4.3×10^{-12}

$>$ Grand tot. $=263 \mathrm{~s}$. Time for slicing the spectrum: 1.22 sec .

Computing the Earth normal modes

- Collaborative effort: Rice-UMN:
J. Shi, R. Li, Y. Xi, YS, and M. V. De Hoop
- FEM model leads to a generalized eigenvalue problem:

$$
\left[\begin{array}{ccc}
\boldsymbol{A}_{s} & & \boldsymbol{E}_{f s} \\
& 0 & \boldsymbol{A}_{d} \\
\boldsymbol{E}_{f s}^{T} & \boldsymbol{A}_{d}^{T} & \boldsymbol{A}_{p}
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}^{s} \\
\boldsymbol{u}^{f} \\
\boldsymbol{p}^{e}
\end{array}\right]=\omega^{2}\left[\begin{array}{lll}
\boldsymbol{M}_{s} & & \\
& \boldsymbol{M}_{f} & \\
& &
\end{array}\right]\left[\begin{array}{l}
\boldsymbol{u}^{s} \\
\boldsymbol{u}^{f} \\
\boldsymbol{p}^{e}
\end{array}\right]
$$

- Want all eigen-values/vectors inside a given interval
- Issue 1: 'mass' matrix has a large null space..
- Issue 2: interior eigenvalue problem
- Solution for 1: change formulation of matrix problem [eliminate p^{e}...]
> New formulation:

$$
\begin{aligned}
& \underbrace{\left\{\left(\begin{array}{cc}
A_{s} & 0 \\
0 & 0
\end{array}\right)-\binom{\boldsymbol{E}_{f s}}{\boldsymbol{A}_{d}} \boldsymbol{A}_{p}^{-1}\left(\begin{array}{ll}
\boldsymbol{E}_{f s}^{T} & \boldsymbol{A}_{d}^{T}
\end{array}\right)\right\}}_{\widehat{A}}\binom{u^{s}}{u^{f}}= \\
& \omega^{2} \underbrace{\left(\begin{array}{cc}
\boldsymbol{M}_{s} & 0 \\
0 & M_{f}
\end{array}\right)}_{\overparen{M}}\binom{\boldsymbol{u}^{s}}{u^{f}}
\end{aligned}
$$

> Use polynomial filtering - need to solve with \widehat{M} but ...

- ... severe scaling problems if direct solvers are used Hence:
$>$ Replace action of M^{-1} by a low-deg. polynomial in M [to avoid direct solvers]
> Memory : parallel shift-invert and polynomial filtering Machine: Comet, SDSC

Matrix size	

Recent: weak calability test for different solid (Mars-like) models on TACC Stampede2

nn/np	Mat-size	$\boldsymbol{A} \boldsymbol{v}(m \mathrm{~s})$	\leftarrow Eff.	$\boldsymbol{M} \boldsymbol{v}(\boldsymbol{m s})$	\leftarrow Eff.	$M^{-1} v(\mu \mathrm{~s})$	\leftarrow Eff.
$2 / 96$	$1,038,084$	1760	1.0	495	1.0	0.01044	1.0
$4 / 192$	$2,060,190$	1819	0.960	568	0.865	0.0119	0.870
$8 / 384$	$3,894,783$	1741	0.948	571	0.813	0.0119	0.825
$16 / 768$	$7,954,392$	1758	0.959	621	0.763	0.0129	0.774
$32 / 1536$	$15,809,076$	1660	1.009	572	0.824	0.0119	0.834
$64 / 3072$	$31,138,518$	1582	1.043	566	0.820	0.0117	0.837
$128 / 6144$	$61,381,362$	1435	1.133	546	0.838	0.0113	0.851
$256 / 12288$	$120,336,519$	1359	1.173	592	0.757	0.01221	0.774

Conclusion

> EVSL code available here: [Current version: version 1.1.1]

```
www.cs.umn.edu/~saad/software/EVSL
```

$>$ EVSL Also on github (development)
Plans: (1) Release fully parallel code; (2) Block versions;
(3) Iterative solvers for rational filt.; (4) Nonhermitian case;
> Earth modes calculations done with fully parallel code
\rightarrow Not quite ready for distribution

A final note: Scalability issues with parallel direct solvers ...
> ... Needed: iterative solvers for the highly indefinite case

