OF MINNESOTA TWIN CITIES

The EVSL package for symmetric eigenvalue problems

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

15th Copper Mountain Conference Mar. 28, 2018

First:

- **Joint work with Ruipeng Li, Yuanzhe Xi, and Luke Erlandson**
- Application side: collaboration with Jia Shi, Maarten V. de Hoop (Rice)
- Support: NSF

"Spectrum Slicing"

- Context: very large number of eigenvalues to be computed
- Goal: compute spectrum by slices by applying filtering
- Apply Lanczos or Subspace iteration to problem:

 $\phi(A)u=\mu u$

 $\phi(t) \equiv$ a polynomial or rational function that enhances wanted eigenvalues

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other :

Idea: Get the spectrum by 'slices' or 'windows' [e.g., a few hundreds or thousands of pairs at a time]

Note: Orthogonalization cost can be very high if we do not slice the spectrum

Illustration: All eigenvalues in [0, 1] of a 49³ Laplacean

Note: This is a small pb. in a scalar environment. Effect likely much more pronounced in a fully parallel case.

Copper Mountain, 03.28.2018

How do I slice my spectrum?

Answer: Use the spectral density, aka, 'Density Of States' (DOS)

DOS inexpensive to compute

> We must have:

$$\int_{t_i}^{t_{i+1}} \phi(t) dt = rac{1}{n_{slices}} \int_a^b \phi(t) dt$$

Polynomial filtering: The δ -Dirac function approach

$\leftarrow Damping: Jackson, Lanczos \sigma damping, or none.$

'The soul of a new filter' – A few technical details

Issue # one: 'balance the filter'

To facilitate the selection of 'wanted' eigenvalues [Select λ 's such that $\rho(\lambda) > bar$] we need to ...

► ... find γ so that $\rho(\xi) - \rho(\eta) = 0$ *Procedure:* Solve the equation $\rho_{\gamma}(\xi) - \rho_{\gamma}(\eta) = 0$ with respect to γ , accurately.

Use Newton scheme

Copper Mountain, 03.28.2018

Issue # two: Determine degree & polynomial (automatically)

Start low then increase degree until value (s) at the boundary (ies) become small enough - Exple for [0.833, 0.907..]

Which Projection: Lanczos, w/o restarts, Subspace iteration,...

Options:

- Subspace iteration: quite appealing in some applications (e.g., electronic structure): Can re-use previous subspace.
- Simplest: (+ most efficient) Lanczos without restarts
- Lanczos with Thick-Restarting [TR Lanczos, Stathopoulos et al '98, Wu & Simon'00]
- Crucial tool in TR Lanczos: deflation ('Locking')

Main idea: Keep extracting eigenvalues in interval $[\xi, \eta]$ until none are left [remember: deflation]

If filter is good: Can catch all eigenvalues in interval thanks to deflation + Lanczos.

Polynomial filtered Lanczos: No-Restart version

Rational filters: Why?

Consider a spectrum like this one:

Polynomial filtering utterly ineffective for this case

Second issue: situation when Matrix-vector products are expensive

Generalized eigenvalue problems.

Alternative is to use rational filters: $\phi(z) = \sum_j \frac{\alpha_j}{z - \sigma_j}$

$$\phi(A) = \sum_j lpha_j (A - \sigma_j I)^{-1}$$

We now need to solve linear systems

Tool: Cauchy integral representations of spectral projectors

 \rightarrow

$$P=rac{-1}{2i\pi}\int_{\Gamma}(A-sI)^{-1}ds$$
 .

• Numer. integr.
$$P
ightarrow P_{\sim}$$

Sakurai-Sugiura approach [Krylov]

FEAST [Subs. iter.] (E. Polizzi)

The Gauss viewpoint: Least-squares rational filters

$$\blacktriangleright$$
 Given: poles $\sigma_1, \sigma_2, \cdots, \sigma_p$

> Related basis functions
$$\phi_j(z) = \frac{1}{z - \sigma_j}$$

Find $\phi(z) = \sum_{j=1}^p lpha_j \phi_j(z)$ that minimizes $\int_{-\infty}^\infty w(t) |h(t) - \phi(t)|^2 dt$

► h(t) = step function $\chi_{[-1,1]}$.

• w(t)= weight function. For example a = 10, $\beta = 0.1$

$$w(t) = egin{cases} 0 ext{ if } & |t| > a \ eta ext{ if } & |t| \leq 1 \ 1 ext{ else } \end{cases}$$

Many advantages

Copper Mountain, 03.28.2018

Spectrum Slicing and the EVSL project

- EVSL package now at version 1.1.x
- Uses polynomial and rational filtering: Each can be appealing in different situations.
 - Spectrum slicing: Invokes Kernel Polynomial Method or Lanczos quadrature to cut the overall interval containing the spectrum into small sub-intervals.

The two main levels of parallelism in EVSL

EVSL Main Contributors (version 1.1.0+) & Support

Ruipeng Li
 LLNL

Yuanzhe Xi
 Post-doc (UMN)

Luke Erlandson
 UG Intern (UMN)

Work supported by NSF (also past work: DOE)

See web-site for details:

http://www-users.cs.umn.edu/~saad/software/EVSL/

EVSL: current status & plans

Version_1.0 Released in Sept. 2016

- Matrices in CSR format (only)
- Standard Hermitian problems (no generalized)
- Spectrum slicing with KPM (Kernel Polynomial Meth.)
- Trivial parallelism across slices with OpenMP
- Methods:
 - Non-restart Lanczos polynomial & rational filters
 - Thick-Restart Lanczos polynomial & rational filters
 - Subspace iteration polynomial & rational filters

Version 1.1.x V 1.1.0 Released back in August 2017.

- general matvec [passed as function pointer]
- $Ax = \lambda Bx$
- Fortran (03) interface.
- Spectrum slicing by Lanczos and KPM
- Efficient Spectrum slicing for $Ax = \lambda Bx$ (no solves with B).

Version_1.2.x pEVSL – In progress

Fully parallel version [MPI + openMP]

Spectrum slicing and the EVSL package

- All eigenvalues in [0, 1] of of a 49^3 discretized Laplacian
- eigs(A,1971,'sa'): 14830.66 sec
- \bullet Solution: Use DOS to partition $[0,\ 1]$ into 5 slices
- Polynomial filtering from EVSL on Mesabi MSI, 23 threads/slice

	# eigs	CPU time (sec)			max recidual	
$[a_i,a_{i+1}]$		matvec	orth.	total	max residuar	
[0.00000, 0.37688]	386	1.31	18.26	28.66	$2.5 imes10^{-14}$	
[0.37688, 0.57428]	401	3.28	38.25	56.75	$8.7 imes 10^{-13}$	
[0.57428, 0.73422]	399	4.69	36.47	56.73	$1.7 imes 10^{-12}$	
[0.73422, 0.87389]	400	5.97	38.60	61.40	$6.6 imes 10^{-12}$	
[0.87389, 1.00000]	385	6.84	36.16	59.45	$4.3 imes10^{-12}$	

Grand tot. = 263 s. Time for slicing the spectrum: 1.22 sec.

Computing the Earth normal modes

- Collaborative effort: Rice-UMN:
 J. Shi, R. Li, Y. Xi, YS, and M. V. De Hoop
- FEM model leads to a generalized eigenvalue problem:

$$egin{bmatrix} A_s & E_{fs} \ 0 & A_d \ E_{fs}^T & A_d^T & A_p \end{bmatrix} egin{bmatrix} u^s \ u^f \ p^e \end{bmatrix} = \omega^2 egin{bmatrix} M_s & \ & M_f \ & \ & 0 \end{bmatrix} egin{bmatrix} u^s \ u^f \ p^e \end{bmatrix}$$

- Want all eigen-values/vectors inside a given interval
- Issue 1: 'mass' matrix has a large null space..
- Issue 2: interior eigenvalue problem
- Solution for 1: change formulation of matrix problem [eliminate p^e ...]

$$egin{aligned} &\left\{egin{pmatrix} A_s & 0 \ 0 & 0 \end{pmatrix} - egin{pmatrix} E_{fs} \ A_d \end{pmatrix} A_p^{-1} \left(E_{fs}^T \ A_d^T
ight)
ight\} egin{pmatrix} u^s \ u^f \end{pmatrix} = \ &\widehat{A} \ & \widehat{A} \ & \omega^2 \underbrace{egin{pmatrix} M_s & 0 \ 0 & M_f \end{pmatrix} \ & 0 \ M_f \end{pmatrix} egin{pmatrix} u^s \ u^f \end{pmatrix} \end{aligned}$$

- > Use polynomial filtering need to solve with \widehat{M} but ...
- ... severe scaling problems if direct solvers are used

Hence:

> Replace action of M^{-1} by a low-deg. polynomial in M [to avoid direct solvers]

Memory : parallel shift-invert and polynomial filtering Machine: Comet, SDSC

Matrix size	# Proc.s			
591,303	32			
1, 157, 131	64			
2, 425, 349	128			
4,778,004	256			
9,037,671	512			

Recent: weak calability test for different solid (Mars-like) models on TACC Stampede2

nn/np	Mat-size	Av~(ms)	← Eff.	Mv~(ms)	← Eff.	$M^{-1} v \ (\mu$ S)	← Eff.
2/96	1,038,084	1760	1.0	495	1.0	0.01044	1.0
4/192	2,060,190	1819	0.960	568	0.865	0.0119	0.870
8/384	3,894,783	1741	0.948	571	0.813	0.0119	0.825
16/768	7,954,392	1758	0.959	621	0.763	0.0129	0.774
32/1536	15,809,076	1660	1.009	572	0.824	0.0119	0.834
64/3072	31,138,518	1582	1.043	566	0.820	0.0117	0.837
128/6144	61,381,362	1435	1.133	546	0.838	0.0113	0.851
256/12288	120,336,519	1359	1.173	592	0.757	0.01221	0.774

Conclusion

EVSL code available here: [Current version: version 1.1.1]
www.cs.umn.edu/~saad/software/EVSL

EVSL Also on github (development)

Plans: (1) Release fully parallel code; (2) Block versions;
(3) Iterative solvers for rational filt.; (4) Nonhermitian case;

Earth modes calculations done with fully parallel code → Not quite ready for distribution

A final note: Scalability issues with parallel direct solvers ...

Meeded: iterative solvers for the highly indefinite case