UNIVERSITY
 OF Minnesota twin cities

Sampling algorithms in numerical linear algebra and their applications Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

EPASA-2014

Tsukuba, March 8, 2014

Introduction

> 'Random Sampling' or 'probabilistic methods': use of random data to solve a given problem.
$>$ Eigenvalues, eigenvalue counts, traces, ...
> Many well-known algorithms use a form of random sampling: The Lanczos algorithm
> Recent work : probabilistic methods - See [Halko, Martinsson, Tropp, 2010]
$>$ Huge interest spurred by 'big data'
> In this talk: A few specific applications of random sampling in numerical linear algebra

Introduction: A few examples

Problem 1: Compute $\operatorname{Tr}[i n v[A]]$ the trace of the inverse.
$>$ Arises in cross validation:
$\frac{\|(I-A(\theta)) g\|_{2}}{\operatorname{Tr}(I-A(\theta))} \quad$ with $\quad A(\theta) \equiv I-D\left(D^{T} D+\theta L L^{T}\right)^{-1} D^{T}$,
$D==$ blurring operator and L is the regularization operator
$>$ In [Huntchinson '90] $\operatorname{Tr[Inv[A]]~is~stochastically~estimated~}$
> Motivation for the work [Golub \& Meurant, "Matrices, Moments, and Quadrature", 1993, Book with same title in 2009]

Problem 2: Compute $\operatorname{Tr}[f(A)], f$ a certain function

 Arises in many applications in Physics. Example:$>$ Stochastic estimations of $\operatorname{Tr}(f(A))$ extensively used by quantum chemists to estimate Density of States, see
[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382 (1997)]
> Will be covered in detail later in this talk.

Problem 3: Compute diag[inv(A)] the diagonal of the inverse

$>$ Harder than just getting the trace
$>$ Arises in Dynamic Mean Field Theory [DMFT, motivation for our work on this topic].
> Related approach: Non Equilibrium Green's Function (NEGF) approach used to model nanoscale transistors.
$>$ In uncertainty quantification, the diagonal of the inverse of a covariance matrix is needed [Bekas, Curioni, Fedulova '09]

Problem 4: Compute diag[$\mathrm{f}(\mathrm{A})] ; \boldsymbol{f}=$ a certain function.

$>$ Arises in any density matrix approach in quantum modeling - for example Density Functional Theory.
$>$ Here, $f=$ Fermi-Dirac operator:

$$
f(\epsilon)=\frac{1}{1+\exp \left(\frac{\epsilon-\mu}{k_{B} T}\right)}
$$

Note: when $\boldsymbol{T} \rightarrow 0$ then $f \rightarrow$ a step function.

Note: if f is approximated by a rational function then $\operatorname{diag}[f(\mathrm{~A})]$ \approx a linear combination of terms like $\operatorname{diag}\left[\left(A-\sigma_{i} I\right)^{-1}\right]$
$>$ Linear-Scaling methods based on approximating $\boldsymbol{f}(\boldsymbol{H})$ and $\operatorname{Diag}(\boldsymbol{f}(\boldsymbol{H}))$ - avoid 'diagonalization' of \boldsymbol{H}
> Rich litterature on 'linear scaling' or 'order n' methods
> The review paper [Benzi, Boito, Razouk, "Decay properties of Specral Projectors with applications to electronic structure", SIAM review, 2013] provides theoretical foundations
$>$ Several references on approximating $\operatorname{Diag}(f(\boldsymbol{H}))$ for this purpose - See e.g., work by L. Lin, C. Yang, E. E [Code: Sellnv]

$\operatorname{diag}(\operatorname{inv}(A))$ in Dynamic Mean Field Theory (DMFT)

> Quantum mechanical studies of highly correlated particles
$>$ Equation to be solved (repeatedly) is Dyson's equation

$$
G(\omega)=[(\omega+\mu) I-V-\Sigma(\omega)+T]^{-1}
$$

- $\boldsymbol{\omega}$ (frequency) and $\boldsymbol{\mu}$ (chemical potential) are real
- $\boldsymbol{V}=$ trap potential $=$ real diagonal
- $\Sigma(\omega)==$ local self-energy - a complex diagonal
- \boldsymbol{T} is the hopping matrix (sparse real).
$>$ Interested only in diagonal of $G(\omega)$ - in addition, equation must be solved self-consistently and ...
$>$... must do this for many ω 's

Stochastic Estimator

- $A=$ original matrix, $B=A^{-1}$.
- $\delta(B)=\operatorname{diag}(B)$ [matlab notation]

Notation:

- $\mathcal{D}(B)=$ diagonal matrix with diagonal $\delta(B)$
- \odot and \oslash : Elementwise multiplication and division of vectors
- $\left\{v_{j}\right\}$: Sequence of s random vectors

Result:

$$
\boldsymbol{\delta}(\boldsymbol{B}) \approx\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{B} \boldsymbol{v}_{j}\right] \oslash\left[\sum_{j=1}^{s} \boldsymbol{v}_{j} \odot \boldsymbol{v}_{j}\right]
$$

Refs: C. Bekas, E. Kokiopoulou \& YS ('05); C. Bekas, A. Curioni, I. Fedulova '09; ...

Typical convergence curve for stochastic estimator

$>$ Estimating the diagonal of inverse of two sample matrices

$>$ Let $V_{s}=\left[v_{1}, v_{2}, \ldots, v_{s}\right]$. Then, alternative expression:

$$
\mathcal{D}(B) \approx \mathcal{D}\left(B V_{s} V_{s}^{\top}\right) \mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)
$$

Question: When is this result exact?

Answer:

- Let $V_{s} \in \mathbb{R}^{n \times s}$ with rows $\left\{v_{j,,}\right\}$; and $B \in \mathbb{C}^{n \times n}$ with elements $\left\{b_{j k}\right\}$
- Assume that: $\left\langle v_{j,:}, v_{k,:}\right\rangle=0, \forall j \neq k$, s.t. $b_{j k} \neq 0$

Then:

$$
\mathcal{D}(B)=\mathcal{D}\left(B V_{s} V_{s}^{\top}\right) \mathcal{D}^{-1}\left(V_{s} V_{s}^{\top}\right)
$$

$>$ Approximation to $b_{i j}$ exact when rows i and j of V_{s} are \perp

Eigenvalue counts [with E. Polizzi and E. Di Napoli]

The problem:

$>$ Find an estimate of the number of eigenvalues of a matrix in a given interval $[a, b]$.

Main motivation:

$>$ Eigensolvers based on splitting the spectrum intervals and extracting eigenpairs from each interval independently.
> Contour integration-type methods, see, e,g.,:

- FEAST approach [Polizzi 2011]
- Sakurai-Sugiura - related method [2003, 2007, ..]
> Polynomial filtering, e.g.,:
- Schofield, Chelikowsky, YS'2011.

Eigenvalue counts: Standard approach and an alternative

$>$ Let A be a Hermitian matrix with eigenpairs $\left(\lambda_{i}, u_{i}\right)$, where $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ and a, b such that $\lambda_{1} \leq a \leq b \leq \lambda_{n}$. $>$ Want number $\mu_{[a, b]}$ of λ_{i} 's $\in[a, b]$.
> Standard method: Use Sylvester inertia theorem. Requires two $L D L^{T}$ factorizations \rightarrow expensive!
$>$ Alternative: Exploit trace of the eigen-projector:

$$
\boldsymbol{P}=\sum_{\lambda_{i} \in[a b]} u_{i} u_{i}^{T}
$$

$>$ We know that :

$$
\operatorname{Tr}(P)=\boldsymbol{\mu}_{[a, b]}
$$

$>$ Goal: calculate an approximation to : $\operatorname{Tr}(\boldsymbol{P})$
> \boldsymbol{P} is not available ... but can be approximated by

- a polynomial in \boldsymbol{A}, or
- a rational function in \boldsymbol{A}.

Approximation theory viewpoint:

$>$ Interpret P as a step function of \boldsymbol{A}, namely:

$$
P=h(A) \quad \text { where } \quad h(t)= \begin{cases}1 & \text { if } t \in[a b] \\ 0 & \text { otherwise }\end{cases}
$$

$>$ Approximate $h(t)$ by a polynomial ψ
$>$ Then use statistical estimator for approximating $\operatorname{Tr}(\psi(\boldsymbol{A}))$
> Hutchinson's unbiased estimator uses only matrix-vector products to approximate the trace of a generic matrix \boldsymbol{A}.
$>$ Generate random unit vectors $v_{k}, k=1, . ., n_{v}$ with zero mean. Then

$$
\operatorname{tr}(\psi(A)) \approx \frac{n}{n_{v}} \sum_{k=1}^{n_{v}} \boldsymbol{v}_{k}^{\top} \psi(A) \boldsymbol{v}_{k}
$$

$>$ We use degree p Chebyshev polynomials, with Jackson damping (g_{i}^{k}) coefficients

$$
\psi(t)=\sum_{i=0}^{k} g_{i}^{k} \gamma_{i} T_{i}(t)
$$

$>$ To compute 'moments' $\boldsymbol{v}^{T} T_{k}(A) v$, let $v_{k} \equiv T_{k}(A) v$, and exploit 3-term recurrence $T_{k+1}(t)=2 t T_{k}(t)-T_{k-1}(t) \rightarrow$

$$
v_{k+1}=2 \boldsymbol{A} v_{k}-v_{k-1}
$$

Computing the polynomials: Jackson-Chebyshev

$$
\gamma_{i}=\frac{2-\delta_{i 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x) d x \quad \delta_{i 0}=\text { Kronecker symbol }
$$

> The g_{i}^{k} 's dampen high order terms in sum.
$>$ Explicit expression known [L. O. Jay, et al CPC, 118:21-30 (1999)]
> Expansion coefficients γ_{i} also known

Generalized eigenvalue problems

$$
A x=\lambda B x
$$

$>$ Matrices \boldsymbol{A} and \boldsymbol{B} are symmetric and \boldsymbol{B} is positive definite.
The projector \boldsymbol{P} becomes

$$
P=\sum_{\lambda_{i} \in[a b]} u_{i} u_{i}^{T} B
$$

$>$ Again: Eigenvalue count $\boldsymbol{\mu}_{[a, b]}$ equals the trace of \boldsymbol{P}
$>$ Exploit relation:

$$
\text { inertia }(A-\sigma B)=\operatorname{inertia}\left(B^{-1} A-\sigma I\right)
$$

> No need to factor or to solve systems

An example

> Matrix 'Na5' from PARSEC [see U. Florida collection]
$>n=5832$, $n \boldsymbol{n z}=305630$ nonzero entries.
$>$ Obtain the eigenvalue count when $a=\left(\lambda_{100}+\lambda_{101}\right) / 2$ and $b=\left(\boldsymbol{\lambda}_{200}+\lambda_{201}\right) / 2$ so $\mu_{[a, b]}=100$.
$>$ Use pol. of degree 70.

Without Jackson Damping

Chebyshev exp. deg. 70- No Jackson smoothing

With Jackson Damping

Chebyshev exp. deg. 70-With Jackson smoothing

An example from FEAST

> FEAST developed by Eric Polizzi (Amherst)..
$>$ Based on a form of subspace iteration with a rational function of \boldsymbol{A}
$>$ Also works for generalized problems $\boldsymbol{A} \boldsymbol{u}=\boldsymbol{\lambda} \boldsymbol{B}$.
$>$ Example: a small generalized problem ($n=12$, 450, $n n z=$ $86,808)$.
$>$ Result with standard Chebyshev shown. Deg=100, nv $=$ 70.

$>$ A few more comments:

- Method also works with rational approximations ...
- .. and it works for nonsymmetric problems (eigenvalues inside a given contour).
- For details see paper:
E. Di Napoli, E, Polizzi, and YS. Efficient estimation of eigenvalue counts in an interval. Preprint: arXiv: http://arxiv.org/abs/1308.4275.

Computing Densities of States [with Lin-Lin and Chao Yang]

$>$ Formally, the Density Of States (DOS) of a matrix \boldsymbol{A} is

$$
\phi(t)=\frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

- δ is the Dirac δ-function or Dirac distribution
where
- $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of A
$>$ Note: $\mu_{[a b]}$ can be obtained from ϕ
$>\phi(t)==$ a probability distribution function == probability of finding eigenvalues of \boldsymbol{A} in a given infinitesimal interval near t.
> Also known as the spectral density
$>$ Very important uses in Solid-State physics

The Kernel Polynomial Method

> Used by Chemists to calculate the DOS - see Silver and Röder'94, Wang '94, Drabold-Sankey'93, + others
> Basic idea: expand DOS into Chebyshev polynomials
$>$ Coefficients γ_{k} lead to evaluating $\operatorname{Tr}\left(T_{k}(A)\right)$
$>$ Use trace estimators [discovered independently] to get these traces
$>$ Next: A few details
$>$ Assume change of variable done so eigenvalues lie in $[-1,1]$.
> Include the weight function in the expansion so expand:

$$
\hat{\phi}(t)=\sqrt{1-t^{2}} \phi(t)=\sqrt{1-t^{2}} \times \frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

$>$ Then, (full) expansion is: $\hat{\phi}(t)=\sum_{k=0}^{\infty} \mu_{k} T_{k}(t)$.
$>$ Expansion coefficients μ_{k} are formally defined by:

$$
\begin{aligned}
\mu_{k} & =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \hat{\phi}(t) d t \\
& =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \sqrt{1-t^{2}} \phi(t) d t \\
& =\frac{2-\delta_{k 0}}{n \pi} \sum_{j=1}^{n} T_{k}\left(\lambda_{j}\right) . \quad \text { with } \quad \delta_{i j}=\text { Dirac symbol }
\end{aligned}
$$

$>$ Note: $\sum T_{k}\left(\lambda_{i}\right)=\operatorname{Trace}\left[T_{k}(A)\right]$
> Estimate this, e.g., via stochastic estimator

$$
\operatorname{Trace}\left(T_{k}(A)\right) \approx \frac{1}{n_{\text {vec }}} \sum_{l=1}^{n_{\text {vec }}}\left(\boldsymbol{v}^{(l)}\right)^{T} T_{k}(A) \boldsymbol{v}^{(l)} .
$$

$>$ To compute scalars of the form $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{T}_{k}(\boldsymbol{A}) \boldsymbol{v}$, exploit again 3 -term recurrence of the Chebyshev polynomial ...

An example with degree 80 polynomials

Left: Jackson damping; right: without Jackson damping.

Issue: How to deal with Distributions

> Highly discontinuous nature - not easy to handle
$>$ Solution for practical and theoretical purposes: replace ϕ by a 'blurred" (continuous) version ϕ_{σ} :

$$
\phi_{\sigma}(t)=\frac{1}{n} \sum_{j=1}^{n} h_{\sigma}\left(t-\lambda_{j}\right)
$$

where $h_{\sigma}(t)=$ any \mathcal{C}^{∞} function s.t.:

- $\int_{-\infty}^{+\infty} h_{\sigma}(s) d s=1$
- $\boldsymbol{h}_{\boldsymbol{\sigma}}$ has a peak at zero
$>$ An example is the Gaussian:

$$
h_{\sigma}(t)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

$>$ How to select σ ? Example for $S i_{2}$

$>$ Higher $\sigma \rightarrow$ smoother curve
$>$ But loss of detail ..
$>$ Compromise: $\sigma=\frac{h}{2 \sqrt{2 \log (\kappa)}}$,
$>h=$ resolution, $\kappa=$ parameter >1

Delta-Gauss Legendre

$>$ Idea: Instead of approximating ϕ directly, first select a representative ϕ_{σ} of ϕ for a given σ and then approximate ϕ_{σ}.
$>\phi_{\sigma}$ is a 'surrogate' for ϕ. Obtained by replacing δ_{λ} by :

$$
h_{\sigma}(\lambda-t)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \exp \left[-\frac{(\lambda-t)^{2}}{2 \sigma^{2}}\right]
$$

$>$ Goal: to expand into Legendre polynomials $L_{k}(\boldsymbol{\lambda})$
$>$ With normalization factor expansion is written as:

$$
h_{\sigma}(\lambda-t)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} \sum_{k=0}^{\infty}\left(k+\frac{1}{2}\right) \gamma_{k} L_{k}(\lambda)
$$

$>$ To determine the γ_{k} 's we will also need to compute:

$$
\psi_{k}=\int_{-1}^{1} L_{k}^{\prime}(s) e^{-\frac{1}{2}((s-t) / \sigma)^{2}} d s
$$

Set $\zeta_{k}=e^{-\frac{1}{2}((1-t) / \sigma)^{2}}-(-1)^{k} e^{-\frac{1}{2}((1+t) / \sigma)^{2}}$.
$>$ Then, for $k=0,1, \cdots$,

$$
\left\{\begin{aligned}
\gamma_{k+1} & =\frac{2 k+1}{k+1}\left[\sigma^{2}\left(\psi_{k}-\zeta_{k}\right)+t \gamma_{k}\right]-\frac{k}{k+1} \gamma_{k-1} \\
\psi_{k+1} & =(2 k+1) \gamma_{k}+\psi_{k-1}
\end{aligned}\right.
$$

Initiialization: set $\gamma_{-1}=\psi_{-1}=0 \psi_{1}=\gamma_{0}$, and $\psi_{0}=0$ and:

$$
\gamma_{0}=\sigma \sqrt{\frac{\pi}{2}}\left[\operatorname{erf}\left(\frac{1-t}{\sqrt{2} \sigma}\right)+\operatorname{erf}\left(\frac{1+t}{\sqrt{2} \sigma}\right)\right]
$$

Use of the Lanczos Algorithm

$>$ Let $\theta_{i}, i=1 \cdots, m$ be the Ritz values obtained from Lanczos with starting vector v
$>\boldsymbol{y}_{i}$'s associated eigenvectors; Ritz vectors: $\left\{\boldsymbol{V}_{\boldsymbol{m}} \boldsymbol{y}_{i}\right\}_{i=1: m}$
$>$ Ritz values approximate eigenvalues [from ‘outside in']
$>$ Could compute $\boldsymbol{\theta}_{i}$'s then get approximate DOS from these
$>$ Problem: $\boldsymbol{\theta}_{i}$ not good enough approximations - especially inside the spectrum.
$>$ Better idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

$$
\int p(t) d t \approx \sum_{i=1}^{m} a_{i} p\left(\theta_{i}\right) \quad a_{i}=\left[e_{1}^{T} y_{i}\right]^{2}
$$

$>$ See, e.g., Golub \& Meurant '93, and also Gautschi'81, Golub and Welsch '69.
$>$ Formula exact when p is a polynomial of degree $\leq 2 m+1$
$>$ Consider now $\int p(t) d t=$ discrete integral \equiv

$$
(p(A) v, v)=\sum \beta_{i}^{2} p\left(\lambda_{i}\right) \equiv<\phi_{v}, p>
$$

$>$ Then $\left\langle\phi_{v}, p\right\rangle \approx \sum a_{i} p\left(\theta_{i}\right)=\sum a_{i}\left\langle\delta_{\theta_{i}}, p\right\rangle \rightarrow$

$$
\phi_{v} \approx \sum a_{i} \delta_{\theta_{i}}
$$

$>$ To mimick the effect of $\boldsymbol{\beta}_{i}=1, \forall i$, use several vectors \boldsymbol{v} and average the result of the above formula over them..

Experiments

$>$ Goal: to compare errors for similar number of matrix-vector products
> Example: Kohn-Sham Hamiltonian associated with a benzene molecule generated from PARSEC; size $n=8,219$
> In all cases, we use 10 sampling vectors
> General observation: DGL, Lanczos, and KPM are best,
> Spectroscopic method does OK
> Haydock's method [another method based on the Lanczos algorithm] not as good

Method	\boldsymbol{L}^{1} error	\boldsymbol{L}^{2} error	\boldsymbol{L}^{∞} error
KPM w/ Jackson, deg=80	$2.592 \mathrm{e}-02$	$5.032 \mathrm{e}-03$	$2.785 \mathrm{e}-03$
KPM w/o Jackson, deg=80	$2.634 \mathrm{e}-02$	$4.454 \mathrm{e}-03$	$2.002 \mathrm{e}-03$
KPM Legendre, deg=80	$2.504 \mathrm{e}-02$	$3.788 \mathrm{e}-03$	$1.174 \mathrm{e}-03$
Spectroscopic, deg=40	$5.589 \mathrm{e}-02$	$8.652 \mathrm{e}-03$	$2.871 \mathrm{e}-03$
Spectroscopic, deg=100	$4.624 \mathrm{e}-02$	$7.582 \mathrm{e}-03$	$2.447 \mathrm{e}-03$
DGL, deg=80	$1.998 \mathrm{e}-02$	$3.379 \mathrm{e}-03$	$1.149 \mathrm{e}-03$
Lanczos, deg=80	$2.755 \mathrm{e}-02$	$4.178 \mathrm{e}-03$	$1.599 \mathrm{e}-03$
Haydock, deg=40	$6.951 \mathrm{e}-01$	$1.302 \mathrm{e}-01$	$6.176 \mathrm{e}-02$
Haydock, deg=100	$2.581 \mathrm{e}-01$	$4.653 \mathrm{e}-02$	$1.420 \mathrm{e}-02$

L^{1}, L^{2}, and L^{∞} error compared with the normalized "surrogate" DOS for benzene matrix

Other matrices

Matrix	\boldsymbol{n}	λ_{1}	λ_{n}
Ga $_{10} \mathrm{As}_{10} \mathrm{H}_{30}$	113,081	-1.2	$\mathbf{1 . 3} \times \mathbf{1 0}^{3}$
PE3K	9,000	$8.1 \times \mathbf{1 0}^{-6}$	$1.3 \times \mathbf{1 0}^{2}$
CFD1	70,656	$2.0 \times \mathbf{1 0}^{-5}$	6.8
SHWATER	81,920	5.8	2.0×10^{1}

Description of the size and the spectrum range of the test matrices.

Matrix	Method	L^{1} error	\boldsymbol{L}^{2} error	\boldsymbol{L}^{∞} error
$\mathrm{Ga}_{10} \mathrm{As}_{10} \mathrm{H}_{30}$	DGL	$3.937 \mathrm{e}-03$	$3.214 \mathrm{e}-04$	$4.301 \mathrm{e}-05$
	Lanczos	$4.828 \mathrm{e}-03$	$3.940 \mathrm{e}-04$	$5.452 \mathrm{e}-05$
PE3K	DGL	$4.562 \mathrm{e}-03$	$7.368 \mathrm{e}-04$	$3.143 \mathrm{e}-04$
	Lanczos	$5.459 \mathrm{e}-03$	$7.372 \mathrm{e}-04$	$3.294 \mathrm{e}-04$
CFD1	DGL	$2.276 \mathrm{e}-03$	$1.299 \mathrm{e}-03$	$1.746 \mathrm{e}-03$
	Lanczos	$2.024 \mathrm{e}-03$	$1.286 \mathrm{e}-03$	$2.478 \mathrm{e}-03$
SHWATER	DGL	$3.779 \mathrm{e}-03$	$1.282 \mathrm{e}-03$	$9.328 \mathrm{e}-04$
	Lanczos	$3.047 \mathrm{e}-03$	$9.829 \mathrm{e}-04$	$6.100 \mathrm{e}-04$

L^{1}, L^{2}, and L^{∞} error associated with the approximate spectral densities produced by the DGL and Lanczos methods for different test matrices.

Approximate spectral densities of CFD1 and SHWATER matrices obtained by DGL along with exact smoothed ones

Conclusion

> Probabilistic algorithms provide powerful tools for solving various problems: eigenvalue counts, DOS, Diag $(f(A))$..
$>$ Most of the algorithms we discussed rely on estimating trace of $f(A)$ or $\operatorname{Diag}(f(A))$.
> Still to do: adapt known decay bounds (Benzi al,..) to analyze convergence.
> Also: Can we do better than random sampling [e.g., probing,..]?
> Physicists are interested in modified forms of the density of states. \rightarrow Explore extentions of what we did.

