OF MINNESOTA TWIN CITIES

A brief tour of the spectral problems of data mining

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

Householder XVII, Zeuthen - June 6th, 2008

Team members involved in this work – Support

Past:

• Efi Kokiopoulou [Now at the U. of Lausanne]

Current:

- Jie Chen [grad student]
- Sofia Sakellaridi [grad student]
- Haw-Ren Fang [Post-Doc]

Support:

National Science Foundation

Introduction, background, and motivation

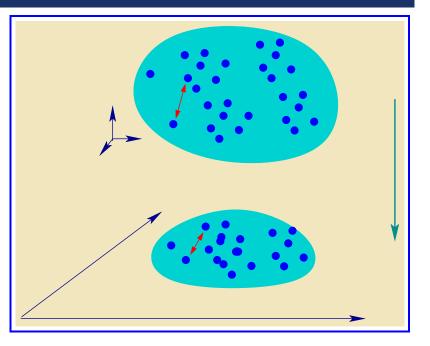
Common goal of data mining methods: to extract meaningful information or patterns from data. Very broad area – includes: data analysis, machine learning, pattern recognition, information retrieval, ...

Main tools used: linear algebra; graph theory; approximation theory; optimization; ...

In this talk: emphasis on dimension reduction techniques and the interrelations between techniques

The problem

- \blacktriangleright Given $d \ll m$ find a mapping
- $\Phi: x \ \in \mathbb{R}^m \longrightarrow y \ \in \mathbb{R}^d$
- Mapping may be explicit (e.g., $y = V^T x$)
- Or implicit (nonlinear)

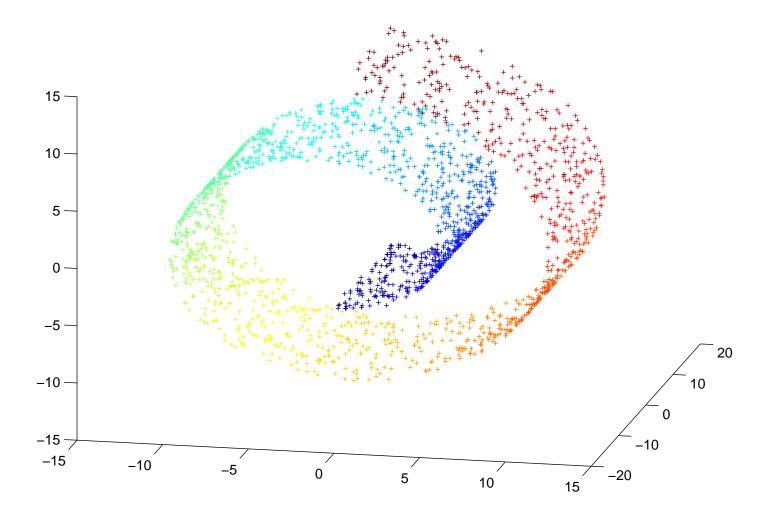


Given $X \in \mathbb{R}^{m \times n}$, we want to find a low-dimensional representation $Y \in \mathbb{R}^{d \times n}$ of X

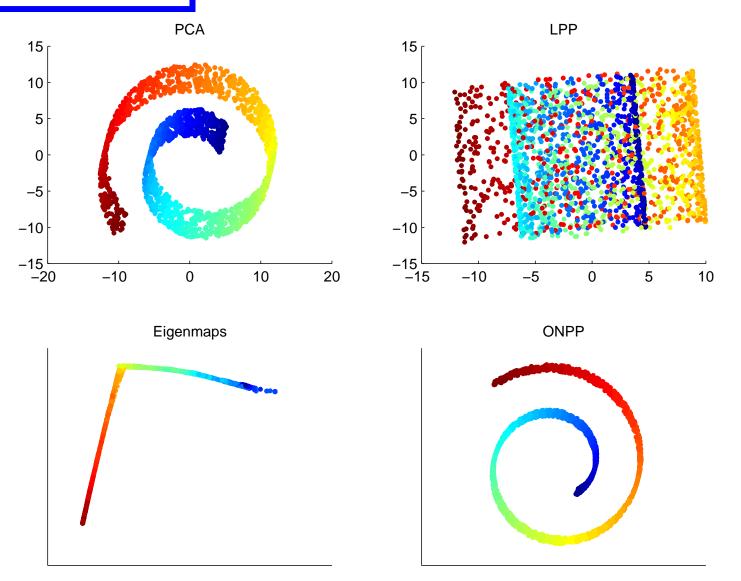
Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

Example 1: The 'Swill-Roll' (2000 points in 3-D)

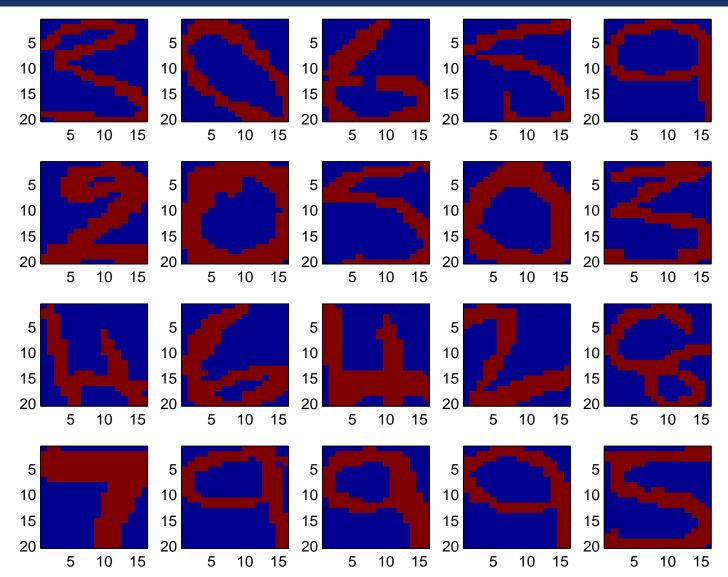
Original Data in 3-D



2-D 'reductions':

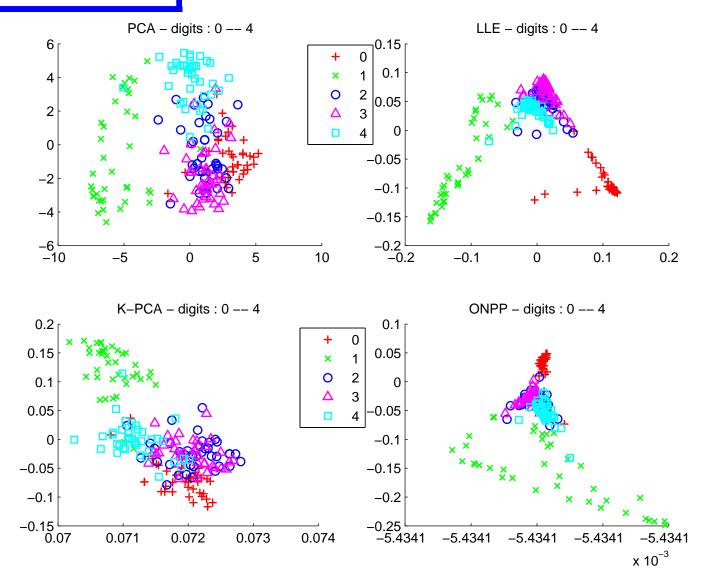


Example 2: Digit images (a sample of 20)



Zeuthen, 06-06-2008 p. 7

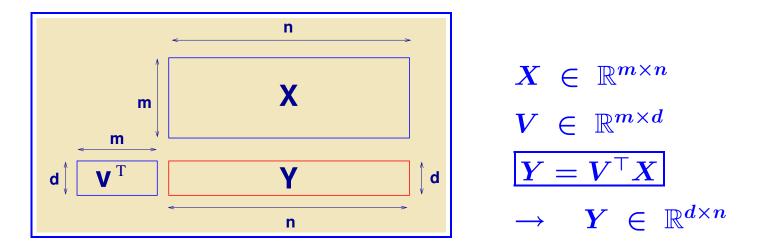
2-D 'reductions':



Projection-based Dimensionality Reduction

Given: a data set $X = [x_1, x_2, ..., x_n]$, and *d* the dimension of the desired reduced space *Y*.

Want: a linear transformation from X to Y



m-dimens. objects (x_i) 'flattened' to *d*-dimens. space (y_i)
 Constraint: The y_i's must satisfy certain properties
 Optimization problem

Linear Dimensionality Reduction: PCA

> In PCA projected data must have maximum variance, i.e., we need to maximize over all orthogonal $m \times d$ matrices V:

$$\sum_i \|y_i - rac{1}{n} \sum_j y_j\|_2^2 = \dots = \mathsf{Tr} \left[V^ op ar{X} ar{X}^ op V
ight]$$

Where: $\bar{X} = X(I - \frac{1}{n}\mathbf{1}\mathbf{1}^T) ==$ origin-recentered version of X

- Solution $V = \{$ dominant eigenvectors $\}$ of the covariance matrix
- == Set of left singular vectors of \bar{X}
- Solution V also minimizes 'reconstruction error' ..

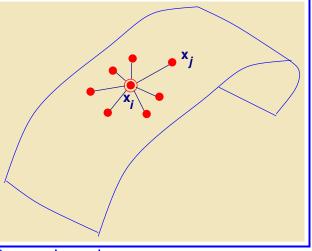
$$\sum_i \|x_i - VV^T x_i\|^2 = \sum_i \|x_i - Vy_i\|^2$$

> .. and it also maximizes [Korel and Carmel 04] $\sum_{i,j} \|y_i - y_j\|^2$

Laplacean Eigenmaps (Belkin-Niyogi-02)

- Not a linear (projection) method but a Nonlinear method
- Starts with k-nearest-neighors graph
- Defines the graph Laplacean L = D W. Simplest:

$$D = ext{diag}(deg(i)); \hspace{1em} w_{ij} = \left\{egin{array}{cc} 1 \hspace{1em} ext{if} \hspace{1em} j \in N_i \ 0 \hspace{1em} ext{else} \end{array}
ight.$$



with N_i = neighborhood of i (excl. i); $deg(i) = |N_i|$

A few properties of graph Laplacean matrices

 \blacktriangleright Let L = any matrix s.t. L = D - W, with $D = diag(d_i)$ and

$$w_{ij} \geq 0, \qquad d_i ~=~ \sum_{j
eq i} w_{ij}$$

Property 1: for any $x \in \mathbb{R}^n$:

$$x^ op Lx = rac{1}{2}\sum_{i,j}w_{ij}|x_i-x_j|^2$$
 .

Property 2: (generalization) for any $Y \in \mathbb{R}^{d \times n}$:

$$\mathsf{Tr}\left[oldsymbol{Y} L oldsymbol{Y}^ op
ight] = rac{1}{2} \sum_{i,j} w_{ij} \|oldsymbol{y}_i - oldsymbol{y}_j \|^2$$

Property 3: For the particular $L = I - \frac{1}{n} \mathbf{1} \mathbf{1}^{\top}$

 $XLX^{ op} = ar{X}ar{X}^{ op} = = n imes ext{Covariance matrix}$

[Proof: 1) L is a projector: $L^{\top}L = L^2 = L$, and 2) $XL = \overline{X}$]

- > Consequence-1: PCA equivalent to maximizing $\sum_{ij} \|y_i y_j\|^2$
- Consequence-2: what about replacing trivial L with something else? [viewpoint in Koren-Carmel'04]

Property 4: (Graph partitioning) If x is a vector of signs (± 1) then

 $x^{\top}Lx = 4 \times$ ('number of edge cuts')

edge-cut = pair (i, j) with $x_i \neq x_j$

Consequence: Can be used for partitioning graphs, or 'clustering' [take $p = sign(u_2)$, where $u_2 = 2nd$ smallest eigenvector..]

Return to Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

 $\mathcal{F}_{EM}(Y) = \sum_{i,j=1}^n w_{ij} \|y_i - y_j\|^2$ subject to $YDY^ op = I$.

Notes:

1. Motivation: if $||x_i - x_j||$ is small (orig. data), we want $||y_i - y_j||$ to be also small (low-D data)

- 2. Note Min instead of Max as in PCA [counter-intuitive]
- 3. Above problem uses original data indirectly through its graph

Problem translates to:

$$egin{aligned} \min & \operatorname{Tr} \left[Y(D-W)Y^{ op}
ight] \ & Y \in \mathbb{R}^{d imes n} \ & YD \; Y^{ op} = I \end{aligned}$$

Solution (sort eigenvalues increasingly):

$$(D-W)u_i = \lambda_i D u_i \ ; \quad y_i = u_i^ op; \quad i=1,\cdots,d$$

Note: an n × n sparse eigenvalue problem [In 'sample' space]
 Note: can assume D = I. Amounts to rescaling data. Problem becomes

$$(I-W)u_i=\lambda_i u_i \ ; \quad y_i=u_i^ op; \quad i=1,\cdots,d$$

Intuition:

Graph Laplacean and 'unit' Laplacean are very different: one involves a sparse graph (More like a discr. differential operator). The other involves a dense graph. (More like a discr. integral operator). They should be treated as the inverses of each other.

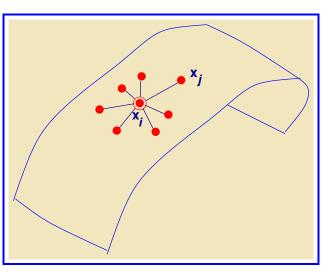
Viewpoint confirmed by what we learn from Kernel approach

Locally Linear Embedding (Roweis-Saul-00)

LLE is very similar to Eigenmaps. Main differences:
1) Graph Laplacean matrix is replaced by an 'affinity' graph
2) Objective function is changed: want to preserve graph

1. Graph:Each x_i is written as a convexcombination of its k nearest neighbors: $x_i \approx \Sigma w_{ij} x_j, \quad \sum_{j \in N_i} w_{ij} = 1$ > Optimal weights computed ('local calculation') by minimizing

$$\|x_i - \Sigma w_{ij} x_j\|$$
 for $i=1,\cdots,n$



2. Mapping:

The y_i 's should obey the same 'affinity' as x_i 's \rightsquigarrow

Minimize:

$$\sum_{i} \left\| y_i - \sum_{j} w_{ij} y_j \right\|^2$$
 subject to: $Y\mathbf{1} = 0, \quad YY^{ op} = I$

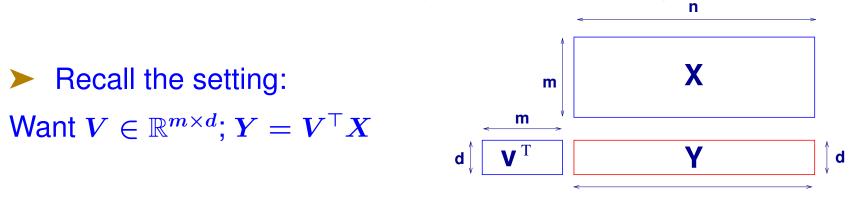
Solution:

$$(I-W^ op)(I-W)u_i=\lambda_i u_i; \qquad y_i=u_i^ op$$
 .

 $(I - W^{\top})(I - W)$ replaces the graph Laplacean of eigenmaps

Locally Preserving Projections (He-Niyogi-03)

LPP is a linear dimensionality reduction technique



Starts with the same neighborhood graph as Eigenmaps: $L \equiv D - W =$ graph 'Laplacean'; with $D \equiv diag(\{\Sigma_i w_{ij}\})$.

Optimization problem is to solve

$$\min_{\substack{Y \in \mathbb{R}^{d imes n}, \; YDY^ op = I}} \quad \Sigma_{i,j} w_{ij} \left\|y_i - y_j
ight\|^2, \; \; Y = V^ op X.$$

> Difference with eigenmaps: Y is a projection of X data

Solution (sort eigenvalues increasingly)

$$XLX^ op v_i = \lambda_i XDX^ op v_i \quad y_{i,:} = v_i^ op X_i$$

Note: essentially same method in [Koren-Carmel'04] called 'weighted PCA' [viewed from the angle of improving PCA]

ONPP (Kokiopoulou and YS '05)

- Orthogonal Neighborhood Preserving Projections
- Can be viewed as a linear version of LLE
- Uses the same graph as LLE. Objective: preserve the affinity graph (as in LEE) *but* by means of an orthogonal projection

Objective function

 $\Phi(Y) = \Sigma_i \|y_i - \Sigma_j w_{ij} y_j\|^2$ Constraint: $Y = V^\top X, V^\top V = I$

Notice that

 $\Phi(Y) = \|Y - YW^{ op}\|_F^2 = \cdots = \operatorname{Tr} \left[V^{ op}X(I - W^{ op})(I - W)X^{ op}V
ight]$

Resulting problem:

$$\min_{\substack{V \in \mathbb{R}^{m \times d}; \\ V^{\top}V = I}} \operatorname{Tr} \left[V^{\top} \underbrace{X(I - W^{\top})(I - W)X^{\top}}_{M} V \right]$$

Solution: Columns of V = eigenvectors of M associated with smallest d eigenvalues

Can be computed as d lowest left singular vectors of

 $X(I-W^{ op})$

A unified view

Method	Object. (min)	Constraint	
PCA/MDS	$Tr\left[V^ op X(-I+ee^ op)X^ op V ight]$	$V^{ op}V = I$	
LLE	$Tr\left[oldsymbol{Y}(I-W^ op)(I-W)oldsymbol{Y}^ op ight]$	$YY^{ op} = I$	
Eigenmaps	$Tr\left[oldsymbol{Y}(oldsymbol{I}-oldsymbol{W})oldsymbol{Y}^{ op} ight]$	$YY^{ op} = I$	
LPP	$Tr\left[oldsymbol{V}^ opoldsymbol{X}(oldsymbol{I}-oldsymbol{W})oldsymbol{X}^ opoldsymbol{V} ight]$	$V^ op X X^ op V = I$	
ONPP	$Tr\left[m{V}^ opm{X}m{X}(m{I}-m{W}^ op)(m{I}-m{W})m{X}^ opm{V} ight]$	$V^{ op}V = I$	
LDA	$Tr\left[V^ op X (I-H) X^ op V ight]$	$V^{ op}XX^{ op}V = I$	

Let M = I - W = a Laplacean matrix $(-I + ee^{\top}$ for PCA/MDS); or the LLE matrix $(I - W)(I - W^{\top})$, or geodesic distance matrix (ISOMAP).

All techniques lead to one of two types of problems

First type is:
$$\min_{\substack{Y \in \mathbb{R}^{d \times n} \\ YY^{ op} = I}} \operatorname{Tr} [YMY^{ op}]$$

- Y obtained from solving an eigenvalue problem
- LLE, Eigenmaps (normalized), ..

And the second type is:

 $egin{aligned} & \min & \mathsf{Tr} \; ig[V^ op X M X^ op V ig] \ V \in \mathbb{R}^{m imes d} \ V^ op \; G \; V = I \end{aligned}$

- > G is either the identity matrix or XDX^{\top} or XX^{\top} .
- > Low-Dim. data : $Y = V^{\top}X$

Important observation: 2nd is just a projected version of the 1st,

i.e., approximate eigenvectors are sought in Span $\{X\}$ [Rayleigh-Ritz procedure]

- > Problem is of dim. m (dim. of data) not n (# of samples).
- This difference can be mitigated by resorting to Kernels..

TIME FOR A MATLAB DEMO

A brief tour of Kernels

> Kernels emply an implicit nonlinear map of original data into a higher dimensional feature space \mathbb{H} .

$$\Phi$$
 : $\mathbb{R}^m \longrightarrow \mathbb{H}$

> Mapping Φ only known through its Kernel on data:

$$<\phi(x_i),\phi(x_j)>\equiv K(x_i,x_j)$$

> Can do PCA, eigenmaps, ..., on this data without using Φ

Kernel PCA (Ham et. al. 2004)

> Classical PCA on the set $\{\Phi\}$

min Tr $[V^{ op} \bar{\Phi} \bar{\Phi}^{ op} V]$ subject to $V^{ op} V = I$

- > Projected data $Y = V^{\top} \overline{\Phi}$
- \blacktriangleright Problem to solve $\bar{\Phi}\bar{\Phi}^{\top}u_i = \lambda u_i$

> Right singular vector approach. Multiply both sides by ϕ^{\top} :

$$[{ar \Phi^ op ar \Phi^ op u_i}] {ar \Phi^ op u_i} = \lambda_i {ar \Phi^ op u_i}$$

> Note

1.
$$\bar{\Phi}^{\top}\bar{\Phi} = (I - ee^{\top})K(I - ee^{\top})$$
 Denoted by \bar{K}
2. $\bar{\Phi}^{\top}u_i = y_i^{\top}$ (recall $Y = V^{\top}\bar{\Phi}$)

> Result: columns of Y^{\top} are largest eigenvectors of \bar{K}

$$ar{K} y_i^ op = \lambda_i y_i^ op$$
 or $y_i ar{K} = \lambda_i y_i$

► Compare with Eigenmaps: the columns of Y^{\top} (*n*-vectors) are smallest eigenvectors of L = I - W

► Interpretation [see Ham, Mika, and Scölkopf, 2004]: Eigenmaps can be interpreted as Kernel PCA with Kernel $K = L^{\dagger}$.

Kernel LPP & ONPP

Proceed similarly to PCA.

Assumption & notation: $\Phi \equiv \Phi(X)$, $K \equiv \Phi^{\top} \Phi$ is invertible

LPP: Problem in feature space:

min Tr $[V^{\top}\Phi(X)L\Phi(X)^{\top}V]$ Subj. to $V^{\top}\Phi D\Phi^{\top}V = I$

Leads to the eigenvalue problem:

$$\Phi L \Phi^ op u_i = \lambda_i \Phi D \Phi^ op u_i$$

▶ Left multiply by $\Phi^{ op}$, then by K^{-1} , + recall that $y_i^{ op} = \Phi^{ op} u_i$:

$$Ly_i^ op = \lambda_i Dy_i^ op$$

► Note: *K* disappeared from picture; What's the catch??.

$$\min_{V \in \mathbb{R}^{L imes d} V^ op V = I} \quad \mathsf{Tr} \left[V^ op \Phi(X) M \Phi(X)^ op V
ight]$$

Leads to the eigenvalue problem:

$$\Phi M \Phi^ op u_i = \lambda_i u_i$$

> Multiply by Φ^{\top} and note as before $K = \Phi^{\top} \Phi$, $y_i^{\top} = \Phi^{\top} u_i$:

$$KMy_i^ op = \lambda_i y_i^ op$$
 or $My_i^ op = K^{-1}y_i^ op$

Solution is set of eigenvectors of Matrix M – but constraint: K^{-1} - orthogonality

Conclusion

So how is this related to intitial title of "efficient algorithms in data mining"?

Answer: All these eigenvalue problems are not cheap to solve..

In and cost issue does not seem to bother practitioners too much for now..

- Ingredients that will become mandatory:
 - 1 Avoid the SVD
 - *2* Fast algorithms that do not sacrifice quality.
 - 3 In particullar: Multilevel approaches
 - 4 Multilinear algebra [tensors]

Multilevel techniques in brief

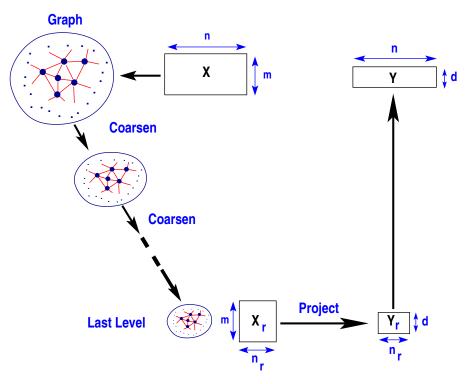
Divide and conquer paradigms as well as multilevel methods in the sense of 'domain decomposition'

Main principle: very costly to do an SVD [or Lanczos] on the whole set. Why not find a smaller set on which to do the analysis – without too much loss?

- Tools used: graph coarsening, divide and conquer –
- For information retrieval we use hypergraphs

Multilevel Dimension Reduction

Main Idea:coarsen for afew levels.Use the result-ing data set \hat{X} to find aprojector P from \mathbb{R}^m to \mathbb{R}^d .P can be used to projectoriginal data or new data



Gain: Dimension reduction is done with a much smaller set. Hope: not much loss compared to using whole data

Application to Information Retrieval

- Recall common approach:
- 1. Scale data [e.g. TF-IDF scaling:
- 2. Perform a (partial) SVD on resulting matrix $X \approx U_d \Sigma_d V_d^T$
- 3. Process query by same scaling (e.g. TF-IDF)
- 4. Compute similarities in *d*-dimensional space: $s_i = \langle \hat{q}, \hat{x}_i \rangle / \|\hat{q}\| \|\hat{x}_i\|$ where $[\hat{x}_1, \hat{x}_2, \dots, \hat{x}_n] = V_d^T \in \mathbb{R}^{d \times n}$; $\hat{q} = \Sigma_d^{-1} U_d^T \bar{q} \in \mathbb{R}^d$

Multilevel approach: replace SVD (or any other dim. reduction) by dimension reduction on coarse set. Only difference: TF-IDF done on the coarse set not original set.

Tests

Three public data sets used for experiments: Medline, Cran and NPL (cs.cornell.edu)

Coarsening to a max. of 4 levels.

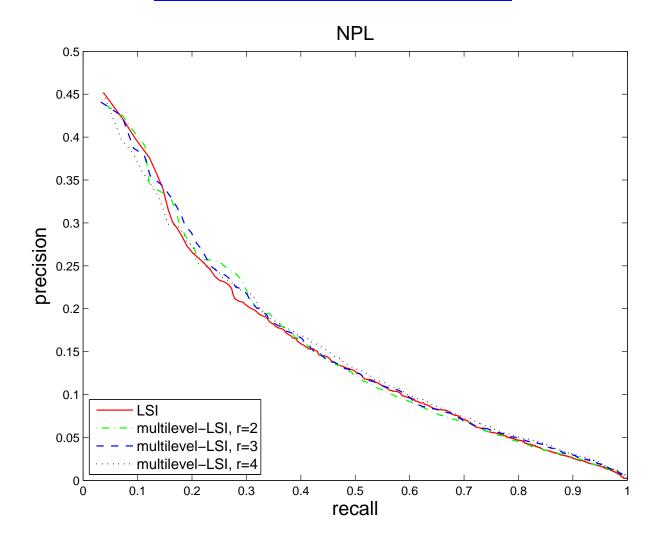
Data set	Medline	Cran	NPL
# documents	1033	1398	11429
# terms	7014	3763	7491
sparsity (%)	0.74%	1.41%	0.27%
# queries	30	225	93
avg. # rel./query	23.2	8.2	22.4

Results with NPL

Statistics

Level	coarsen.	#	optimal	optimal avg.
	time	doc.	# dim.	precision
#1	N/A	11429	736	23.5%
#2	3.68	5717	592	23.8%
#3	2.19	2861	516	23.9%
#4	1.50	1434	533	23.3%

Precision-Recall curves



CPU times for preprocessing (Dim. reduction part)

