UNIVERSITY

A brief tour of the spectral problems of data mining
Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

Householder XVII, Zeuthen - June 6th, 2008

Team members involved in this work - Support

Past:

- Efi Kokiopoulou [Now at the U. of Lausanne]

Current:

- Jie Chen [grad student]
- Sofia Sakellaridi [grad student]
- Haw-Ren Fang [Post-Doc]

Support:

- National Science Foundation

Introduction, background, and motivation

Common goal of data mining methods: to extract meaningful information or patterns from data. Very broad area - includes: data analysis, machine learning, pattern recognition, information retrieval, ...
> Main tools used: linear algebra; graph theory; approximation theory; optimization; ...
> In this talk: emphasis on dimension reduction techniques and the interrelations between techniques

The problem

$>$ Given $d \ll m$ find a mapping $\Phi: x \in \mathbb{R}^{m} \longrightarrow y \in \mathbb{R}^{d}$
> Mapping may be explicit (e.g., $\left.y=V^{T} x\right)$
> Or implicit (nonlinear)

Practically:

Given $\boldsymbol{X} \in \mathbb{R}^{m \times n}$, we want to find a low-dimensional representation $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$ of \boldsymbol{X}
> Two classes of methods: (1) projection techniques and (2) nonlinear implicit methods.

Example 1: The 'Swill-Roll' (2000 points in 3-D)

Original Data in 3-D

2-D ‘reductions':

Eigenmaps

ONPP

Example 2: Digit images (a sample of 20)

2-D 'reductions':

Projection-based Dimensionality Reduction

Given: a data set $X=\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, and d the dimension of the desired reduced space \boldsymbol{Y}.
Want: a linear transformation from X to \boldsymbol{Y}

$$
\begin{aligned}
& \boldsymbol{X} \in \mathbb{R}^{m \times n} \\
& V \in \mathbb{R}^{m \times d} \\
& \boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X} \\
& \rightarrow \quad \boldsymbol{Y} \in \mathbb{R}^{d \times n}
\end{aligned}
$$

$>m$-dimens. objects $\left(x_{i}\right)$ 'flattened' to d-dimens. space $\left(y_{i}\right)$
Constraint: The y_{i} 's must satisfy certain properties
> Optimization problem

Linear Dimensionality Reduction: PCA

> In PCA projected data must have maximum variance, i.e., we need to maximize over all orthogonal $m \times d$ matrices V :

$$
\sum_{i}\left\|\boldsymbol{y}_{i}-\frac{1}{n} \sum_{j} \boldsymbol{y}_{j}\right\|_{2}^{2}=\cdots=\operatorname{Tr}\left[\boldsymbol{V}^{\top} \overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{\top} \boldsymbol{V}\right]
$$

Where: $\bar{X}=X\left(I-\frac{1}{n} 11^{T}\right)==$ origin-recentered version of X
$>$ Solution $V=\{$ dominant eigenvectors $\}$ of the covariance matrix == Set of left singular vectors of \bar{X}
$>$ Solution V also minimizes 'reconstruction error' ..

$$
\sum_{i}\left\|x_{i}-V V^{T} x_{i}\right\|^{2}=\sum_{i}\left\|x_{i}-V y_{i}\right\|^{2}
$$

$>.$. and it also maximizes [Korel and Carmel 04] $\sum_{i, j}\left\|\boldsymbol{y}_{i}-\boldsymbol{y}_{j}\right\|^{2}$

Laplacean Eigenmaps (Belkin-Niyogi-02)

$>$ Not a linear (projection) method but a Nonlinear method
$>$ Starts with k-nearest-neighors graph
D Defines the graph Laplacean $L=D-$ W. Simplest:
$D=\operatorname{diag}(\operatorname{deg}(i)) ; \quad w_{i j}= \begin{cases}1 & \text { if } j \in N_{i} \\ 0 & \text { else }\end{cases}$
with $N_{i}=$ neighborhood of $i(\operatorname{excl} . i) ; \operatorname{deg}(i)=\left|N_{i}\right|$

A few properties of graph Laplacean matrices

$>$ Let $L=$ any matrix s.t. $L=D-W$, with $D=\operatorname{diag}\left(d_{i}\right)$ and

$$
w_{i j} \geq 0, \quad d_{i}=\sum_{j \neq i} w_{i j}
$$

Property 1: for any $x \in \mathbb{R}^{n}$:

$$
x^{\top} \boldsymbol{L} x=\frac{1}{2} \sum_{i, j} w_{i j}\left|x_{i}-x_{j}\right|^{2}
$$

Property 2: (generalization) for any $\boldsymbol{Y} \in \mathbb{R}^{d \times n}$:

$$
\operatorname{Tr}\left[Y L Y^{\top}\right]=\frac{1}{2} \sum_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}
$$

Property 3: For the particular $L=I-\frac{1}{n} \mathbf{1 1}^{\top}$

$$
\boldsymbol{X} \boldsymbol{L} \boldsymbol{X}^{\top}=\overline{\boldsymbol{X}} \overline{\boldsymbol{X}}^{\top}==n \times \text { Covariance matrix }
$$

[Proof: 1) L is a projector: $L^{\top} L=L^{2}=L$, and 2) $\boldsymbol{X} L=\overline{\boldsymbol{X}}$]
$>$ Consequence-1: PCA equivalent to maximizing $\sum_{i j}\left\|y_{i}-y_{j}\right\|^{2}$
$>$ Consequence-2: what about replacing trivial L with something else? [viewpoint in Koren-Carmel'04]

Property 4: (Graph partitioning) If x is a vector of signs (± 1) then

$$
x^{\top} \boldsymbol{L} x=4 \times(\text { 'number of edge cuts') }
$$

edge-cut $=$ pair (i, j) with $x_{i} \neq x_{j}$
> Consequence: Can be used for partitioning graphs, or 'clustering' [take $p=\operatorname{sign}\left(u_{2}\right)$, where $u_{2}=2$ nd smallest eigenvector..]

Return to Laplacean eigenmaps approach

Laplacean Eigenmaps *minimizes*

$$
\mathcal{F}_{E M}(\boldsymbol{Y})=\sum_{i, j=1}^{n} w_{i j}\left\|y_{i}-y_{j}\right\|^{2} \quad \text { subject to } \quad Y D Y^{\top}=I
$$

Notes:

1. Motivation: if $\left\|x_{i}-x_{j}\right\|$ is small (orig. data), we want $\left\|y_{i}-y_{j}\right\|$ to be also small (low-D data)
2. Note Min instead of Max as in PCA [counter-intuitive]
3. Above problem uses original data indirectly through its graph
$>$ Problem translates to:

$$
\left\{\begin{array}{c}
\min _{\boldsymbol{Y} \in \mathbb{R}^{d \times n}} \operatorname{Tr}\left[\boldsymbol{Y}(\boldsymbol{D}-\boldsymbol{W}) \boldsymbol{Y}^{\top}\right] . \\
\boldsymbol{Y} \boldsymbol{D} \boldsymbol{Y}^{\top}=\boldsymbol{I}
\end{array}\right.
$$

$>$ Solution (sort eigenvalues increasingly):

$$
(D-W) u_{i}=\lambda_{i} D u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

$>$ Note: an $n \times n$ sparse eigenvalue problem [In 'sample' space]
$>$ Note: can assume $D=I$. Amounts to rescaling data. Problem becomes

$$
(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top} ; \quad i=1, \cdots, d
$$

Intuition:
Graph Laplacean and 'unit' Laplacean are very different: one involves a sparse graph (More like a discr. differential operator). The other involves a dense graph. (More like a discr. integral operator).
They should be treated as the inverses of each other.
> Viewpoint confirmed by what we learn from Kernel approach

Locally Linear Embedding (Roweis-Saul-00)

> LLE is very similar to Eigenmaps. Main differences:

1) Graph Laplacean matrix is replaced by an 'affinity' graph
2) Objective function is changed: want to preserve graph
1. Graph: Each x_{i} is written as a convex combination of its k nearest neighbors:
$x_{i} \approx \Sigma w_{i j} x_{j}, \quad \sum_{j \in N_{i}} w_{i j}=1$
$>$ Optimal weights computed ('local calculation') by minimizing

$$
\left\|x_{i}-\Sigma w_{i j} x_{j}\right\| \quad \text { for } \quad i=1, \cdots, n
$$

2. Mapping:

The y_{i} 's should obey the same 'affinity' as x_{i} 's \rightsquigarrow
Minimize:

$$
\sum_{i}\left\|y_{i}-\sum_{j} w_{i j} y_{j}\right\|^{2} \quad \text { subject to: } \quad Y \mathbf{1}=0, \quad Y Y^{\top}=I
$$

Solution:

$$
\left(I-W^{\top}\right)(I-W) u_{i}=\lambda_{i} u_{i} ; \quad y_{i}=u_{i}^{\top}
$$

$>\left(I-W^{\top}\right)(I-W)$ replaces the graph Laplacean of eigenmaps

Locally Preserving Projections (He-Niyogi-03)

- LPP is a linear dimensionality reduction technique
> Recall the setting:
Want $\boldsymbol{V} \in \mathbb{R}^{m \times d} ; \boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$

$>$ Starts with the same neighborhood graph as Eigenmaps: $L \equiv$ $D-W=$ graph 'Laplacean'; with $D \equiv \operatorname{diag}\left(\left\{\Sigma_{i} w_{i j}\right\}\right)$.
$>$ Optimization problem is to solve

$$
\min _{Y \in \mathbb{R}^{d \times n}, Y D Y^{\top}=I} \Sigma_{i, j} w_{i j}\left\|y_{i}-y_{j}\right\|^{2}, \quad Y=V^{\top} X .
$$

$>$ Difference with eigenmaps: \boldsymbol{Y} is a projection of \boldsymbol{X} data
$>$ Solution (sort eigenvalues increasingly)

$$
\boldsymbol{X} L \boldsymbol{X}^{\top} \boldsymbol{v}_{i}=\lambda_{i} \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\top} \boldsymbol{v}_{i} \quad \boldsymbol{y}_{i,:}=\boldsymbol{v}_{i}^{\top} \boldsymbol{X}
$$

$>$ Note: essentially same method in [Koren-Carmel'04] called 'weighted PCA' [viewed from the angle of improving PCA]

ONPP (Kokiopoulou and YS '05)

> Orthogonal Neighborhood Preserving Projections
> Can be viewed as a linear version of LLE
> Uses the same graph as LLE. Objective: preserve the affinity graph (as in LEE) *but* by means of an orthogonal projection
$>$ Objective function

$$
\Phi(\boldsymbol{Y})=\Sigma_{i}\left\|y_{i}-\Sigma_{j} w_{i j} y_{j}\right\|^{2} \quad \text { Constraint: } \boldsymbol{Y}=V^{\top} \boldsymbol{X}, V^{\top} \boldsymbol{V}=\boldsymbol{I}
$$

$>$ Notice that

$$
\Phi(\boldsymbol{Y})=\left\|\boldsymbol{Y}-\boldsymbol{Y} W^{\top}\right\|_{F}^{2}=\cdots=\operatorname{Tr}\left[V^{\top} \boldsymbol{X}\left(\boldsymbol{I}-\boldsymbol{W}^{\top}\right)(I-W) \boldsymbol{X}^{\top} V\right]
$$

Resulting problem:

$$
\min _{\substack{\mathcal{\mathbb { R } ^ { m \times d _ { j } }} \\ V^{\top} V=I}} \operatorname{Tr}[V^{\top} \underbrace{X\left(I-W^{\top}\right)(I-W) X^{\top}}_{M} V]
$$

Solution: Columns of $V=$ eigenvectors of M associated with smallest d eigenvalues
$>$ Can be computed as d lowest left singular vectors of

$$
\boldsymbol{X}\left(I-W^{\top}\right)
$$

A unified view

Method	Object. (min)	Constraint
PCA/MDS	$\operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}\left(-\boldsymbol{I}+e e^{\top}\right) \boldsymbol{X}^{\top} \boldsymbol{V}\right]$	$\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}$
LLE	$\operatorname{Tr}\left[\boldsymbol{Y}\left(\boldsymbol{I}-W^{\top}\right)(\boldsymbol{I}-W) \boldsymbol{Y}^{\top}\right]$	$\boldsymbol{Y} \boldsymbol{Y}^{\top}=\boldsymbol{I}$
Eigenmaps	$\operatorname{Tr}\left[\boldsymbol{Y}(\boldsymbol{I}-W) \boldsymbol{V}^{\top}\right]$	$\boldsymbol{Y} \boldsymbol{Y}^{\top}=\boldsymbol{I}$
LPP	$\operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}(\boldsymbol{I}-W) \boldsymbol{X}^{\top} \boldsymbol{V}\right]$	$\boldsymbol{V}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{V}=\boldsymbol{I}$
ONPP	$\operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}\left(\boldsymbol{I}-W^{\top}\right)(\boldsymbol{I}-W) \boldsymbol{X}^{\top} \boldsymbol{V}\right]$	$\boldsymbol{V}^{\top} \boldsymbol{V}=\boldsymbol{I}$
LDA	$\operatorname{Tr}\left[\boldsymbol{V}^{\top} \boldsymbol{X}(\boldsymbol{I}-\boldsymbol{H}) \boldsymbol{X}^{\top} \boldsymbol{V}\right]$	$\boldsymbol{V}^{\top} \boldsymbol{X} \boldsymbol{X}^{\top} \boldsymbol{V}=\boldsymbol{I}$

$>$ Let $M=I-W=$ a Laplacean matrix $\left(-I+e e^{\top}\right.$ for PCA/MDS); or the LLE matrix $(\boldsymbol{I}-W)\left(I-W^{\top}\right)$, or geodesic distance matrix (ISOMAP).
> All techniques lead to one of two types of problems

$$
\operatorname{Tr}\left[\boldsymbol{Y} M Y^{\top}\right]
$$

$>$ First type is:

$$
\begin{aligned}
& \min ^{\prime} \in \mathbb{R}^{d \times n} \\
& \boldsymbol{Y}^{\top}=I
\end{aligned}
$$

> \boldsymbol{Y} obtained from solving an eigenvalue problem
$>$ LLE, Eigenmaps (normalized), ..

$>G$ is either the identity matrix or $\boldsymbol{X D} \boldsymbol{X}^{\top}$ or $\boldsymbol{X} \boldsymbol{X}^{\top}$.
$>$ Low-Dim. data: $\boldsymbol{Y}=\boldsymbol{V}^{\top} \boldsymbol{X}$
Important observation: 2nd is just a projected version of the 1st, i.e., approximate eigenvectors are sought in Span $\{\boldsymbol{X}\}$ [RayleighRitz procedure]
$>$ Problem is of dim. m (dim. of data) not n (\# of samples).
> This difference can be mitigated by resorting to Kernels..

TIME FOR A MATLAB DEMO

A brief tour of Kernels

> Kernels emply an implicit nonlinear map of original data into a higher dimensional feature space \mathbb{H}.

$$
\Phi \quad: \mathbb{R}^{m} \longrightarrow \mathbb{H}
$$

> Mapping Φ only known through its Kernel on data:

$$
<\phi\left(x_{i}\right), \phi\left(x_{j}\right)>\equiv K\left(x_{i}, x_{j}\right)
$$

> Can do PCA, eigenmaps, ..., on this data without using Φ

Kernel PCA (Ham et. al. 2004)

$>$ Classical PCA on the set $\{\Phi\}$

$$
\min \operatorname{Tr}\left[V^{\top} \bar{\Phi} \bar{\Phi}^{\top} \boldsymbol{V}\right] \text { subject to } V^{\top} \boldsymbol{V}=\boldsymbol{I}
$$

> Projected data $\boldsymbol{Y}=\boldsymbol{V}^{\top} \bar{\Phi}$
$>$ Problem to solve $\bar{\Phi} \bar{\Phi}^{\top} u_{i}=\lambda u_{i}$
$>$ Right singular vector approach. Multiply both sides by ϕ^{\top} :

$$
\underbrace{\left[\bar{\Phi}^{\top} \bar{\Phi}\right]}_{\bar{K}} \bar{\Phi}^{\top} u_{i}=\lambda_{i} \bar{\Phi}^{\top} u_{i}
$$

> Note

$$
\begin{aligned}
& \text { 1. } \bar{\Phi}^{\top} \bar{\Phi}=\left(\boldsymbol{I}-e e^{\top}\right) \boldsymbol{K}\left(\boldsymbol{I}-e \boldsymbol{e}^{\top}\right) \text { Denoted by } \overline{\boldsymbol{K}} \\
& \text { 2. } \left.\bar{\Phi}^{\top} \boldsymbol{u}_{i}=\boldsymbol{y}_{i}^{\top} \text { (recall } \boldsymbol{Y}=\boldsymbol{V}^{\top} \overline{\boldsymbol{\Phi}}\right)
\end{aligned}
$$

> Result: columns of $\boldsymbol{Y}^{\boldsymbol{\top}}$ are largest eigenvectors of $\overline{\boldsymbol{K}}$

$$
\overline{\boldsymbol{K}} \boldsymbol{y}_{i}^{\top}=\boldsymbol{\lambda}_{i} \boldsymbol{y}_{i}^{\top} \quad \text { or } \quad \boldsymbol{y}_{i} \overline{\boldsymbol{K}}=\boldsymbol{\lambda}_{i} \boldsymbol{y}_{\boldsymbol{i}}
$$

$>$ Compare with Eigenmaps: the columns of \boldsymbol{Y}^{\top} (n-vectors) are smallest eigenvectors of $L=I-W$
> Interpretation [see Ham, Mika, and Scölkopf, 2004]: Eigenmaps can be interpreted as Kernel PCA with Kernel $\boldsymbol{K}=\boldsymbol{L}^{\dagger}$.

Kernel LPP \& ONPP

> Proceed similarly to PCA.
> Assumption \& notation: $\Phi \equiv \Phi(\boldsymbol{X}), K \equiv \Phi^{\top} \Phi$ is invertible
LPP: Problem in feature space:

$$
\min \operatorname{Tr}\left[V^{\top} \Phi(X) L \Phi(X)^{\top} V\right] \quad \text { Subj. to } \quad \boldsymbol{V}^{\top} \Phi \boldsymbol{D} \Phi^{\top} \boldsymbol{V}=\boldsymbol{I}
$$

> Leads to the eigenvalue problem:

$$
\Phi L \Phi^{\top} u_{i}=\lambda_{i} \Phi D \Phi^{\top} u_{i}
$$

$>$ Left multiply by Φ^{\top}, then by $K^{-1},+$ recall that $\boldsymbol{y}_{i}^{\top}=\Phi^{\top} \boldsymbol{u}_{i}$:

$$
L y_{i}^{\top}=\lambda_{i} D y_{i}^{\top}
$$

$>$ Note: K disappeared from picture; What's the catch??.

Kernel-ONPP

$$
\min _{V \in \mathbb{R}^{L \times d} V^{\top} V=I} \quad \operatorname{Tr}\left[\boldsymbol{V}^{\top} \Phi(\boldsymbol{X}) M \Phi(\boldsymbol{X})^{\top} \boldsymbol{V}\right]
$$

$>$ Leads to the eigenvalue problem:

$$
\Phi M \Phi^{\top} u_{i}=\lambda_{i} u_{i}
$$

$>$ Multiply by Φ^{\top} and note as before $K=\Phi^{\top} \boldsymbol{\Phi}, \boldsymbol{y}_{i}^{\top}=\Phi^{\top} \boldsymbol{u}_{i}$:

$$
K M y_{i}^{\top}=\lambda_{i} \boldsymbol{y}_{i}^{\top} \quad \text { or } \quad \boldsymbol{M}_{\boldsymbol{y}}^{\top}=\boldsymbol{K}^{-1} \boldsymbol{y}_{i}^{\top}
$$

$>$ Solution is set of eigenvectors of Matrix M - but constraint: K^{-1}

- orthogonality

Conclusion

> So how is this related to intitial title of "efficient algorithms in data mining"?
> Answer: All these eigenvalue problems are not cheap to solve..
> .. and cost issue does not seem to bother practitioners too much for now..
$>$ Ingredients that will become mandatory:
1 Avoid the SVD
2 Fast algorithms that do not sacrifice quality.
3 In particullar: Multilevel approaches
4 Multilinear algebra [tensors]

Multilevel techniques in brief

> Divide and conquer paradigms as well as multilevel methods in the sense of 'domain decomposition'
> Main principle: very costly to do an SVD [or Lanczos] on the whole set. Why not find a smaller set on which to do the analysis without too much loss?
$>$ Tools used: graph coarsening, divide and conquer -
$>$ For information retrieval we use hypergraphs

Multilevel Dimension Reduction

Main Idea:

coarsen for a few levels. Use the resulting data set $\hat{\boldsymbol{X}}$ to find a projector \boldsymbol{P} from \mathbb{R}^{m} to \mathbb{R}^{d}. P can be used to project original data or new data

> Gain: Dimension reduction is done with a much smaller set. Hope: not much loss compared to using whole data

Application to Information Retrieval

> Recall common approach:

1. Scale data [e.g. TF-IDF scaling:
2. Perform a (partial) SVD on resulting matrix $X \approx U_{d} \Sigma_{d} V_{d}^{T}$
3. Process query by same scaling (e.g. TF-IDF)
4. Compute similarities in d-dimensional space: $s_{i}=\left\langle\hat{q}, \hat{x}_{i}\right\rangle /\|\hat{q}\|\left\|\hat{x}_{i}\right\|$ where $\left[\hat{x}_{1}, \hat{x}_{2}, \ldots, \hat{x}_{n}\right]=V_{d}^{T} \in \mathbb{R}^{d \times n} ; \quad \hat{q}=\Sigma_{d}^{-1} U_{d}^{T} \bar{q} \in \mathbb{R}^{d}$
> Multilevel approach: replace SVD (or any other dim. reduction) by dimension reduction on coarse set. Only difference: TF-IDF done on the coarse set not original set.

Tests

Three public data sets used for experiments: Medline, Cran and NPL (cs.cornell.edu)
$>$ Coarsening to a max. of 4 levels.

Data set	Medline	Cran	NPL
\# documents	1033	1398	11429
\# terms	7014	3763	7491
sparsity (\%)	0.74%	1.41%	0.27%
\# queries	30	225	93
avg. \# rel./query	23.2	8.2	22.4

Results with NPL

Statistics

Level	coarsen. time	\# doc.	optimal							
	optimal avg.	precision				\#1	N/A	11429	736	23.5%
:---:	:---:	:---:	:---:	:---:						
\#2	3.68	5717	592	23.8%						
\#3	2.19	2861	516	23.9%						
\#4	1.50	1434	533	23.3%						

Precision-Recall curves

CPU times for preprocessing (Dim. reduction part)

