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Introduction: Linear System Solvers

» Much of recent work on solvers has focussed on:
(1) Parallel implementation — scalable performance

(2) Improving Robustness, developing more general precondition-
ers
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A few observations

» Problems are getting harder for Sparse Direct methods

(more 3-D models, much bigger problems,..)

» Problems are also getting difficult for iterative methods Cause:

more complex models - away from Poisson

» Researchers in iterative methods are borrowing techniques from

direct methods: — preconditioners

» The inverse is also happening: Direct methods are being adapted

for use as preconditioners
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An overview of recent progress on ILU

» More rigorous dropping strategies [Bollhofer 2002]

» Vaidya preconditioners — for problems in structures [very suc-

cessful in industry]
» Support theory for preconditioners

» Use of different forms of LU factorizations [ILUC, N. Li, YS,
Chow]

» Most significant: Nonsymmetric permutations
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CROUT VERSIONS OF ILUT




Crout-based ILUT (ILUTC)

Background: ILU codes use so-called ikj- version of Gaussian elim-

ination [equiv. to left looking column LU]
ALGORITHM : 1. GE - IKJ Variant

© N O & A O DM =

For: = 2,...,n Do:
Fork =1,...,2 — 1 Do:
Ak *= A/ apk
Fory =k+1,...,n Do:
A;j = Q5 — Qjf * AL
EndDo
EndDo
EndDo

Pb: entries in L must be

accessed from left to right
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Crout-based ILUT

Terminology: Crout versions of LU compute the k-th row of U and
the k-th column of L at the k-th step.

Computational pattern

Red = part computed at step &
Blue = part accessed .‘

1. Less expensive than ILUT (avoids sorting)

Main advantages: _
2. Allows better techniques for dropping
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Crout LU (dense case)

» Go back to delayed update algorithm (IKJ alg.) and observe: we

could do both a column and a row version

» Left: U computed by rows. Right: L computed by columns
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Note: The entries 1 : k£ — 1 in the k-th row in left figure need not be

computed. Available from already computed columns of L.

» Similar observation for L (right).
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Crout ILUT

Preconditioning time vs. Lfil for RAEFSKY3

T
=»= |LUC
=~ r-LLUT
== c-ILUT

» Key to effective imple- ===

mentation == clever data
structure from:

(1) Jones-Platzman ’95

(2) Eisenstat — Schultz -

Preconditioning Time (sec.)

Sherman ’81

| | | | | |
0 10 20 30 40 50 60 70
Lfil

» Implemented with Bollhofer’s idea of inverse-based dropping —
see [N. Li, YS, E. Chow, 2003].

» (Code available in current version of ITSOL.

Univ. Lyon-1, 03/25/08



NONSYMMETRIC REORDERINGS




Enhancing robustness: One-sided permutations

» Very useful techniques for matrices with extremely poor struc-

ture. Not as helpful in other cases.

Previous work:

e Benzi, Haws, Tuma '99 [compare various permutation algorithms

in context of ILU]

e Duff, Koster, ‘99 [propose various permutation algorithms. Also

discuss preconditioners]

e Duff ‘81 [Propose max. transversal algorithms. Basis of many
other methods. Also Hopcroft & Karp 73, Duff '88]
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Transversals - bipartite matching: Find (maximal) set of ordered

pairs (¢,5) s.t. a;; # 0 and 2 and 5 each appear only once (one

diagonal element per row/column). Basis of many algorithms.

. . . Q
Original matrix
O v O
Bipartite representation After reordering Maximum transversal
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Criterion: | Find a (column) permutation = such that

n
H |CL7;’7‘-(7;)| = INnax
=1

Olchowsky and Neumaier '96 translate this into

log |:||a:,j”oo:| if azJ # 0

la;]

n
min Z Ci,x(4) with Cij —
R +o0 else

» Dual problem is solved -
» Algorithms utilize depth-first-search to find max transversals.

» Many variants. Best known code: Duff & Koster’s MC64
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NONSYMMETRIC REORDERINGS: MULTILEVEL FRAMEWORK




Background: Independent sets, ILUM, ARMS

Independent set orderings permute a matrix into the form
B F
(= o)
where B is a diagonal matrix.

» Unknowns associated with the B block form an independent set
(IS).

» IS is maximal if it cannot be augmented by other nodes

» Finding a maximal independent set is inexpensive
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Main observation: Reduced system obtained by eliminating the

unknowns associated with the IS, is still sparse since its coefficient
matrix is the Schur complement
S=C—-EB'F
» ldea: apply IS set reduction recursively.
» When reduced system small enough solve by any method
» ILUM: ILU factorization based on this strategy. YS ’92-94.

e See work by [Botta-Wubbs 96, 97, YS’94, 96, Leuze ’89,..]
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Group Independent Sets / Aggregates

Main goal:| generalize independent sets to improve robustness
Main idea:| use “cliques”, or “aggregates”. No coupling between
the aggregates.

N
@ . . No Coupling
@ B

» Label nodes of independent sets first
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Algebraic Recursive Multilevel Solver (ARMS)

» Typical shape of reordered . F

. B—
matrix:

PAPT = BF
E C ':{____C

B F L 0 U L 'F
» Block factorize: —
E C FEU ' T 0 S

» S =C — EB'F = Schur complement + dropping to reduce fill

» Next step: treat the Schur complement recursively
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Algebraic Recursive Multilevel Solver (ARMS)

Level [ Factorization:

B, F L, 0 I 0 U L;'F
E ) \Eu™ 1)\o A, /)\o I

» L-solve ~ restriction; U-solve ~ prolongation.

» Perform above block factorization recursively on A4, ,
» Blocks in B, treated as sparse. Can be large or small.
» Algorithm is fully recursive

» Stability criterion in block independent sets algorithm
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Group Independent Set reordering

Separator

First Block

Simple strategy: Level taversal until there are enough points to

form a block. Reverse ordering. Start new block from non-visited
node. Continue until all points are visited. Add criterion for
rejecting “not sufficiently diagonally dominant rows.”

Univ. Lyon-1, 03/25/08



Original matrix




Block size of 6
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Block size of 20
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Two-sided permutations with diag. dominance

Idea: I ARMS + exploit nonsymmetric permutations

» No particular structure or assumptions for B block

» Permute rows * and * columns of A. Use two permutations P

(rows) and @ (columns) to transform A into
B F
PAQT =
E C

P, Q is a pair of permutations (rows, columns) selected so that the
B block has the ‘most diagonally dominant’ rows (after nhonsym

perm) and few nonzero elements (to reduce fill-in).
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Multilevel framework

» At the I-th level reorder matrix as shown above and then carry

out the block factorization ‘approximately’

B, F L 0 U, L_lﬂ
PlAlelF — ~ 1 X l ’
E; C EU T 0 A
where
Bl ~ LlUl
A = C — (BUT)(LT'ER) .

> As before the matrices E,U; ', L; ' F; or their approximations
Gi~EU "', W=xL'F

need not be saved.
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Interpretation in terms of complete pivoting

Rationale: | Critical to have an accurate and well-conditioned B
block [Bollhofer, Bollhofer-YS’04]

» Case when B is of dimension 1 — a form of complete pivoting

ILU. Procedure ~ block complete pivoting ILU

Matching sets: | define B block. M is a set of n,, pairs (p;, q;)

where ny; < nwithl < p;,q; <nfori=1,...,ny and

Di 7# pj, fori # j qi; # qj, fori # j

» When n,; = n — (full) permutation pair (P,Q). A partial
matching set can be easily completed into a full pair (P, Q) by a

greedy approach.
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Matching - preselection

Algorithm to find permutation consists of 3 phases.

(1) | Preselection: |to filter out poor rows (dd. criterion) and sort

the selected rows.

(2) | Matching: | scan candidate entries in order given by prese-

lection and accept them into the M set, or reject them.

(3) | Complete the matching set: | into a complete pair of permu-

tations (greedy algorithm)

» Let j(i) = argmax;|a;;|.

» Use the ratio +; = 194560 | as a measure of diag. domin. of row :

||ai,:||1
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Matching: Greedy algorithm

» Simple algorithm: scan pairs (i, j;) in the given order.

» If 7, and j; not already assigned, assignh them to M.

0 ! © = ]
LN @ IE @ | om |
@ = s @ m)e
om @ 1 n © |
************ B | B® s . ® @ |s
****************** IR I OIN: @ | m m]|s
- m D .. © | @@y
********* « 0 s o ia s
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Matrix after preselection Matrix after Matching perm.
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MATLAB DEMO




‘REAL’ TESTS




Numerical illustration

Matrix order nonzeros | Application (Origin)
barrier2-9 115,625 3,897,557 Device simul. (Schenk)
matrix 9 103,430 2,121,550 Device simul. (Schenk)
mat-n 3* 125,329 2,678,750 Device simul. (Schenk)
ohne2 181,343 11,063,545 | Device simul. (Schenk)
para-4 153,226 5,326,228 Device simul. (Schenk)
cir2a 482,969 3,912,413 | circuit simul.

scircuit 170998 958936 | circuit simul. (Hamm)
circuit 4 80209 307604  Circuit simul. (Bomhof)
wang3.rua, 26064 177168 Device simul. (Wang)
wang4.rua| 26068 177196 Device simul. (Wang)
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Parameters I
Drop tolerance Fillax

nlev,,.. tolpp LU-B GW S LU-S LU-B GW S LU-S
40 0.1 | 0.01 0.01 0.01 1.e-05 3 3 3 20
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Fill| Set-up GMRES(60) GMRES(100)
Matrix  Factor Time | Its. Time Its. Time
barr2-9 0.62 4.01e+00 113 3.29e+01 93 3.02e+01
mat-n 3 0.89 7.53e+00 40 1.02e+01| 40|1.00e+01
matrix 9| 1.77 5.53e+00 160 4.94e+01 82| 2.70e+01
ohne2 0.62 4.34e+01| 99 6.35e+01 80|5.43e+01
para-4 0.62|5.70e+00| 49 |1.94e+01 49|1.93e+01
wang3 2.33 | 8.90e-01 45 2.09e+00 45 1.95e+00
wang4 1.86| 5.10e-01 31|1.25e+00 31 |1.20e+00
scircuit 0.90 1.86e+00 Fail 7.08e+01 | Fail | 8.80e+01
circuit 4| 0.75]/1.60e+00 199 |1.69e+01 96 |1.07e+01
circ2a 0.76 2.19e+02| 18|1.08e+01 18| 1.03e+01

Results for the 10 systems - ARMS-ddPQ + GMRES(60) & GMRES(100)

Univ. Lyon-1, 03/25/08



Fill Set-up GMRES(60) GMRES(100)
Factor Time| Its. Time | Its. Time
Same param’s| 0.89| 1.81/400 9.13e+01|297 8.79e+01
Droptol = .001 1.00 1.89 98 2.23e+01| 82 2.27e+01

Solution of the system scircuit — no scaling + two different sets

of parameters.
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Application to the Helmholtz equation

» Collaboration with Riyad Kechroud, Azzeddine Soulaimani (ETS,
Montreal), and Shiv Gowda: [Math. Comput. Simul., vol. 65., pp
303-321 (2004)]

> Problem is set in the open domain 2. of R

(

Au-+k?*v= f in Q
U = —Ujpe ON T
ou __ OUine
{ or an —  on on I
iy oo 1T (G —iku) = 0 Sommerfeld condition

where: u the wave diffracted by I', f = source function = zero

outside domain
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» Issue: non-reflective boundary conditions when making the

domain finite.
» Artificial boundary I',,; added — Need non-absorbing BCs.

» For high frequencies, linear systems become very ‘indefinite’ —

[eigenvalues on both sides of the imaginary axis]

» Not very good for iterative methods
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Application to the Helmholtz equation

Problem 1:
Au+ kv = 0in Q.

ou .
Fr + 1ku

» Domain: Q© = (0,1) x (0,1)

g in Fart

» Function g selected so that exact solution is u(x, y) = exp|ik cos(0)x+
k sin(0)y].

» Structured meshes used for the discretization

Univ. Lyon-1, 03/25/08



Problem 2. Soft obstacle == disk of radius r, = 0.5m. Incident
plane wave with a wavelength \; propagates along the x-axis. 2nd
order Bayliss-Turkel boundary conditions used on I',,;, located at
a distance 2r, from the obstacle. Discretization uses isoparametric

elements with 4 nodes. Analytic solution is known.

dah
v

art

N
(VARVARVY/
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Impact of the dropping strategy in ILUT

Pb 1. Convergence of ILUT-GMRES for different values of 1 fl

log(Residual Norm)

|
=

ILUO

" ILUT (Ifil=100)

ILUT (Ifil=50)

—
ILUT (Ifil=20)

0 100

200

300
|terations

400 500
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Using a preconditioner from a lower wavenumber

» Good strategy for high frequencies. Test with Problem 2 —

Convergence History

10
10"
k = 10*pi (1.977)
10°
k = 8*pi (1.207)
_1 I
~10
£
g [
Z 107k
g k = 0*pi (0.902
5= i = 0%pi (0.902)
3107k
x
8) [
=10k
10°F _
E k = 2*pi (0.908) k = 4*pi (0.924)
_6 I
10 F
10‘7 I ! ! ! ! ! ! ! ! !
0 50 100 150 200 250 300 350 400 450 500

Iterations
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Solution found — (Thanks: R. Kechroud)

Frame 001 | 04 Deo 2002 | MODELE 25 Frams 003 | 04 Dsa 2002 | MODELE 28
Solution Numérique (Partie Réelle) 1 Solution Numeérique (Partie Imaginaire)
o 2L
15 150
= [ - |
1~ L
as|- : o5k
[, GRS r{ P R L
a -1 0 1 W
X
Résolution du maillage A/h=20
[Frame 00z [ 24 Do« 2002 [ MODELE 28 [Frame 004 [24 Deo 2002 | MODELE 28
_ _ _ ' == ; = i PR
Solution Analytique (Partie Réelle) in i Sl ARl e Bieh)
; 0s
25— —~ 08 i
r M o7
C I o8 [
C I 05 I
r I 0 2
2 I o3 I
C I o2 r
C H o1 F
L = o L
C o1 s
15— 02 F
C 03 F
> T I oz =
C 05 3
C 08 1
JIE -7 F
C 08 3
C 08 3
L - T
0s - 0.& _—
o [ 1 I 1 |{ 1 | cI | | o = 1 _|1 1 1
X

Figure 8 : Lignes de confour (solution analytique)
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Use of complex shifts

» Several papers promoted the use of complex shifts [or very

similar approaches] for Helmholtz
[1] X. Antoine — Private comm.

[2] Y.A. Erlangga, C.W. Oosterlee and C. Vuik, SIAM J. Sci. Com-
put.,27, pp. 1471-1492, 2006

[3] M. B. van Gijzen, Y. A. Erlangga, and C. Vuik, SIAM J. Sci.
Comput., Vol. 29, pp. 1942-1958, 2007

[4] M. Magolu Monga Made, R. Beauwens, and G. Warzée, Comm.
in Numer. Meth. in Engin., 16(11) (2000), pp- 801-817.
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» lllustration with an experiment: finite difference discretization

of —A on a 25 x 20 grid.
» Add a negative shift of —1 to resulting matrix.
» Do an ILU factorization of A and plot eigs of L=1AU 1.

» Used LUINC from matlab - no-pivoting and threshold = 0.1.
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» Terrible spectrum:

15

10

-10

-15

-12
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» Now plot eigs of L-'AU ! where L,U are inc. LU factors of
B =A-+0.25%1

> Much Dbetter! +
Observed by many
[PDE viewpoint] o |
Idea: I _ . . _
Add complex shifts 1
in ILUT. Goal: to

reinforce diagonal

0.5

_05 -

dominance

-1 I I I I I I
-0.5 0 0.5 1 15 2 2.5 3
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Question: T . T I++*+I |
What if we do an exact fac- | v H*##
torization [droptol =0] 2 | i
> A(LTAUY) = A[(A+ | |
ail) 1Al 0:;

> A = {Aj:\fz'a} ok

» Located on a circle —_0.2_*

with a cluster at one. 2l ’ g

> Figure shows situation | " + #ﬁ*

on the same example N T S

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
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Recent comparisons

[with : Daniel Osei-Kuffuor]

» Setting: Problem 2. Mesh size fixed to 1/h = 160. Problem size

=n = 28, 980, Number of nonzeroes nnz = 260, 280
» For each preconditioner [ fil =5 X nnz/n

» Wavenumber varied [until convergence fails]
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ILUT

with droptol = 0.02

k % No. iters | Setup Time (s) | Iter. Time (s) | Fill Factor
2w 160, 191 0.1 6.03 1.35
47 | 80 214 0.1 6.86 1.37
8w | 40 317 0.11 9.67 1.42
167 | 20 % 3k % 3k % 3k % 3k

Univ. Lyon-1, 03/25/08




ILUT - with complex shifts — with droptol = 0.02

k % No. iters | Setup Time (s) | Iter. Time (s) | Fill Factor
2w 160, 191 0.1 5.34 1.35
47 | 80 211 0.1 5.90 1.36
8w | 40 280 0.11 7.89 1.41
167 20 273 0.11 7.90 1.60
327 10 163 0.18 5.41 2.5
64| 5 107 0.33 4.25 3.84

Univ. Lyon-1, 03/25/08




ARMS-ddPQ

k % No. iters | Setup Time (s) | Iter. Time (s) | Fill Factor
2w 160, 180 0.68 9.20 2.07
47 | 80 224 0.71 11.5 2.09
8w | 40 261 0.54 11.8 2.17
167 20 127 0.58 5.71 2.39
327 10 187 0.69 8.61 3.15
64m| 5 231 0.39 8.89 3.50
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Distributed Sparse Systems: Simple illustration

» Naive partitioning of
equations -
» Does not work well in

practice (performance)
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> Best idea is to use the adjacency graph of A:

| °o o ~a
Vertices = {1,2,---,n}; o0
Edges: ¢ — jiffa;; #0 - O
O ®
(4)—=

Graph partitioning problem: |

e Want a partition of the vertices of the graph so that
(1) partitions have ~ the same sizes

(2) interfaces are small in size
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General Partitioning of a sparse linear system

) @ @ ® ®

S, = {1,2,6,7,11,12}: This

1 1 means equations and unknowns
 (© W 1 ) .
I S S 1, 2, 3, 6, 7, 11, 12 are assigned
@ OO & to Domain 1.
e - Sy ={3,4,5,8,9,10, 13}

o000 g, — {16,17,18,21, 22,23}

Sy = {14,15,19, 20, 24, 25}

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

» Partitioners : Metis, Chaco, Scotch, ..

» More recent: Zoltan, H-Metis, PaToH
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» Standard dual objective: “minimize” communication + “bal-

ance” partition sizes

» Recent trend: use of hypergraphs [PaToh, Hmetis,...]
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A distributed sparse system

N \ External interface
N \ / nodes
A\ M

Graph representation

Matrix representation

» In each domain [Local interface variables ordered last]:

\NE Ci) \y \ 2 jen; Eijy; ) gi
A; Yeut

» u; : Internal variables; vy, : Interface variables



Global viewpoint \ Order all interior variables first

()

Up
U1
Y2

{ Bl Fl \
B2 F2
Bp Fp
Eq Ci Eq -+ Eyy
E, Eyy Cy - E2p
\ Ep By Epy - Cp}
Interior Interface
<« — —
variables variables

b,

(11

f2

Ip
g1
g2

o)
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Parallel implementation

» Preliminary work — with Zhongze Li

Ideally would use hypergraph partitioning [in the plans]
We used only a local version of ddPQ

» Schur complement version not yet available

» In words: Construct the local matrix, extend it with overlapping

data and use ddPQ ordering on it.

» Can be used with Standard Schwarz procedures — or with re-

strictive version [RAS]
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Restricted Additive Schwarz Preconditioner(RAS)

Domain 1 local matrix

Domain 1

................................

* Domain

2 Domain 1 local matrix

Extended
Domain 1

......................................
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» RAS + ddPQ uses arms-ddPQ on extended matrix - for each

domain.

» ddPQ Improves robustness enormously in spite of simple (local)

implementation.

» Test with problem from MHD problem.
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Example: a system from a MHD simulation

» Source of problem: Coupling of Maxwell equations with Navier-
Stokes.

» Matrices come from solution of Maxwell’s equation:

0B V X (u x B) . VXx(VxB)+Vq=0
ot - Re,, 4=

V-.B

|
=

» See [Ben-Salah, Soulaimani, Habashi, Fortin, IJNMF 1999]
» Cylindrical domain, tetrahedra used.

» Not an easy problem for iterative methods.



RAS+ILUT RAS+ddPQ
np its tset tit np|its | %, tit
1 107 236.58 | 320.74 || 1 60 |204.06 187.05
2 118 136.28 | 232.78 || 2104 108.45 162.34
4 354 72.66 | 326.03 | 4109 60.24 | 86.25
8| 2640 40.06 1303.16 8|119 41.56 | 52.11
16| 3994 21.87 [1029.88 | 16418 | 22.84 | 97.88
32> 10,000 - = 32537| 12.34 | 65.77

» Simple Schwarz (RAS) : very poor performance

» severe deterioration of performance with higher np
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Conclusion

» ARMS+DDpq works well as a “general-purpose” solver.
» Far from being a 100% robust iterative solver ...

» Recent work on generalizing nhonsymmetric permutations to

symmetric matrices [Duff-Pralet, 2006].

» As a general rule: ILU-based preconditioners are not meant to
replace taylored preconditioners — but they can be used as general

purpose tools as parts of other techniges.
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Direct sparse lterative Methods
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What is missing from this picture?
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» 1. Intermediate methods which lie in between general purpose
and specialized — exploit some information from origin of the prob-

lem.

» 2. Considerations related to parallelism. Development of ‘ro-

bust’ solvers remains limited to serial algorithms in general.

» Problem: parallel implementations of iterative methods are less

effective than their serial counterparts.
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Software: |

» ARMS-C [C-code] - available from ITSOL package..

http://www.cs.umn.edu/~saad/software

» More comprehensive package: ILUPACK - developed mainly by
Matthias Bollhoefer and his team

http://www.tu-berlin.de/ilupack/.
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