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Introduction

ä Many calculations require estimating the trace of a certain
matrix function B = f(A).

ä Related problem: compute diag(f(A)).

ä Most methods rely on stochastic methods for this [do not
exploit any structure]

ä In this talk: A few specific applications and a few techniques

ä Generally speaking: many new related applications to be
discovered

ä Begin with a few well-known examples
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Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

ä Arises in cross validation :
‖(I −A(θ))g‖2

Tr (I −A(θ))
with A(θ) ≡ I−D(DTD+θLLT)−1DT ,

D == blurring operator and L is the regularization operator

ä In [Huntchinson ’90] Tr[Inv[A]] is stochastically estimated

ä Motivation for the work [Golub & Meurant, “Matrices, Mo-
ments, and Quadrature”, 1993, Book with same title in 2009]
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Problem 2: Compute Tr [ f (A)], f a certain function

Arises in many applications in Physics. Example:

ä Stochastic estimations of Tr ( f(A)) extensively used by quan-
tum chemists to estimate Density of States, see

[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys.
Rev. B. 55, 15382 (1997)]

ä Will be covered in detail later in this talk.
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Problem 3: Compute diag[inv(A)] the diagonal of the inverse

ä Harder than just getting the trace

ä Arises in Dynamic Mean Field Theory [DMFT, motivation for
our work on this topic].

ä Related approach: Non Equilibrium Green’s Function (NEGF)
approach used to model nanoscale transistors.

ä In uncertainty quantification, the diagonal of the inverse of a
covariance matrix is needed [Bekas, Curioni, Fedulova ’09]
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Problem 4: Compute diag[ f (A)] ; f = a certain function.

ä Arises in any density matrix approach in quantum modeling
- for example Density Functional Theory.

ä Here, f = Fermi-Dirac operator:

f(ε) =
1

1 + exp(ε−µ
kBT

)

Note: when T → 0
then f → a step func-
tion.

Note: if f is approximated by a rational function then diag[f(A)]
≈ a linear combination of terms like diag[(A− σiI)−1]

ä Linear-Scaling methods based on approximating f(H) and
Diag(f(H)) – avoid ‘diagonalization’ of H
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ä Rich litterature on ‘linear scaling’ or ’order n’ methods

ä The review paper [Benzi, Boito, Razouk, “Decay properties
of Specral Projectors with applications to electronic structure”,
SIAM review, 2013] provides theoretical foundations

ä Several references on approximating Diag(f(H)) for this
purpose – See e.g., work by L. Lin, C. Yang, E. E [Code: SelInv]

ä Also: analysis of network graphs
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diag(inv(A)) in Dynamic Mean Field Theory (DMFT)

ä Quantum mechanical studies of highly correlated particles

ä Equation to be solved (repeatedly) is Dyson’s equation

G(ω) = [(ω + µ)I − V − Σ(ω) + T ]−1

• ω (frequency) and µ (chemical potential) are real

• V = trap potential = real diagonal

• Σ(ω) == local self-energy - a complex diagonal

• T is the hopping matrix (sparse real).

ä Interested only in diagonal of G(ω) – in addition, equation
must be solved self-consistently and ...

ä ... must do this for many ω’s
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DENSITY OF STATES & APPLICATIONS



Density of States

ä Formally, the Density Of States (DOS) of a matrix A is

φ(t) =
1

n

n∑
j=1

δ(t− λj),

where: • δ is the Dirac δ-function or Dirac distribution
• λ1 ≤ λ2 ≤ · · · ≤ λn are the eigenvalues of A

ä Note: number of eigenvalues in an interval [a, b] is

µ[a,b] =

∫ b

a

∑
j

δ(t− λj) dt ≡
∫ b

a
nφ(t)dt .
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ä φ(t) == a probability distribution function == probability of
finding eigenvalues of A in a given infinitesimal interval near t.

ä DOS is also referred to as the spectral density

ä In Solid-State physics, λi’s represent single-particle energy
levels.

ä So the DOS represents # of levels per unit energy.

ä Many uses in physics
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Issue: How to deal with distributions

ä Highly ‘discontinuous’, not easy to handle numerically

ä Solution for practical and theoretical purposes: replace φ by
a regularized (‘blurred’) version φσ:

φσ(t) =
1

n

n∑
j=1

hσ(t− λj),

where hσ(t) = any C∞ function s.t.:
•
∫ +∞
−∞ hσ(s)ds = 1

• hσ has a peak at zero
ä An example is the Gaussian:

hσ(t) =
1

(2πσ2)1/2
e−

t2

2σ2.
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ä How to select σ? Example for Si2
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Computing the DOS: The Kernel Polynomial Method

ä Used by Chemists to calculate the DOS – see Silver and
Röder’94 , Wang ’94, Drabold-Sankey’93, + others

ä Basic idea: expand DOS into Chebyshev polynomials

ä Use trace estimator [discovered independently] to get traces
needed in calculations

ä Assume change of variable done so eigenvalues lie in [−1, 1].

ä Include the weight function in the expansion so expand:

φ̂(t) =
√

1− t2φ(t) =
√

1− t2 ×
1

n

n∑
j=1

δ(t− λj).

Then, (full) expansion is: φ̂(t) =
∑∞
k=0µkTk(t).
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ä Expansion coefficients µk are formally defined by:

µk =
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)φ̂(t)dt

=
2− δk0

π

∫ 1

−1

1
√

1− t2
Tk(t)

√
1− t2φ(t)dt

=
2− δk0

nπ

n∑
j=1

Tk(λj).

ä Here 2− δk0 == 1 when k = 0 and == 2 otherwise.

ä Note:
∑
Tk(λi) = Trace[Tk(A)]

ä Estimate this, e.g., via stochastic estimator

ä Generate random vectors v(1), v(2), · · · , v(nvec)

ä Assume normal distribution with zero mean
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ä Each vector is normalized so that ‖v(l)‖ = 1, l = 1, . . . , nvec.

ä Estimate the trace of Tk(A) with stochastisc estimator:

Trace(Tk(A)) ≈
1

nvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä Will lead to the desired estimate:

µk ≈
2− δk0

nπnvec

nvec∑
l=1

(
v(l)
)T
Tk(A)v(l).

ä To compute scalars of the form vTTk(A)v, exploit 3-term
recurrence of the Chebyshev polynomial:

Tk+1(A)v = 2ATk(A)v − Tk−1(A)v

so if we let vk ≡ Tk(A)v, we have

vk+1 = 2Avk − vk−1
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ä Jackson smoothing can be used –
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An example with degree 80 polynomials
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Use of the Lanczos Algorithm

ä Background: The Lanczos algorithm generates an orthonor-
mal basis Vm = [v1, v2, · · · , vm] for the Krylov subspace:

span{v1, Av1, · · · , Am−1v1}

ä ... such that:
V H
m AVm = Tm - with Tm =



α1 β2

β2 α2 β3

β3 α3 β4

. . .
. . .
βm αm
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ä Lanczos process builds orthogonal polynomials wrt to dot
product: ∫

p(t)q(t)dt ≡ (p(A)v1, q(A)v1)

ä In theory vi’s defined by 3-term recurrence are orthogonal.

ä Let θi, i = 1 · · · ,m be the eigenvalues of Tm [Ritz values]

ä yi’s associated eigenvectors; Ritz vectors: {Vmyi}i=1:m

ä Ritz values approximate eigenvalues

ä Could compute θi’s then get approximate DOS from these

ä Problem: θi not good enough approximations – especially
inside the spectrum.
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ä Better idea: exploit relation of Lanczos with (discrete) or-
thogonal polynomials and related Gaussian quadrature:∫

p(t)dt ≈
m∑
i=1

aip(θi) ai =
[
eT1 yi

]2
ä See, e.g., Golub & Meurant ’93, and also Gautschi’81, Golub
and Welsch ’69.

ä Formula exact when p is a polynomial of degree≤ 2m+ 1
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ä Consider now
∫
p(t)dt =< p, 1 >= (Stieljes) integral≡

(p(A)v, v) =
∑
β2
ip(λi) ≡< φv, p >

ä Then 〈φv, p〉 ≈
∑
aip(θi) =

∑
ai 〈δθi, p〉 →

φv ≈
∑

aiδθi

ä To mimick the effect of βi = 1, ∀i, use several vectors v
and average the result of the above formula over them..
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Experiments

ä Goal: to compare errors for similar number of matrix-vector
products

ä Example: Kohn-Sham Hamiltonian associated with a ben-
zene molecule generated from PARSEC. n = 8, 219

ä In all cases, we use 10 sampling vectors

ä General observation: DGL, Lanczos, and KPM are best,

ä Spectroscopic method does OK

ä Haydock’s method [another method based on the Lanczos
algorithm] not as good
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Method L1 error L2 error L∞ error
KPM w/ Jackson, deg=80 2.592e-02 5.032e-03 2.785e-03
KPM w/o Jackson, deg=80 2.634e-02 4.454e-03 2.002e-03
KPM Legendre, deg=80 2.504e-02 3.788e-03 1.174e-03
Spectroscopic, deg=40 5.589e-02 8.652e-03 2.871e-03
Spectroscopic, deg=100 4.624e-02 7.582e-03 2.447e-03
DGL, deg=80 1.998e-02 3.379e-03 1.149e-03
Lanczos, deg=80 2.755e-02 4.178e-03 1.599e-03
Haydock, deg=40 6.951e-01 1.302e-01 6.176e-02
Haydock, deg=100 2.581e-01 4.653e-02 1.420e-02

L1, L2, and L∞ error compared with the normalized “surro-
gate” DOS for benzene matrix

ä Many more experiments in survey paper [L. Lin, YS, C.
Yang, SIAM Review, 2015].
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Application: Eigenvalue counts

The problem: Given A (Hermitian) with eigenvalues λ1 ≤
λ2 · · · ≤ λn find an estimate of the number of eigenvalues of
A in interval [a, b].

Main motivation: Eigensolvers based on splitting the spec-
trum in intervals and extracting eigenpairs from each interval
independently.
• FEAST approach [Polizzi 2011]
• Sakurai-Sigiura method [2002]
• Schofield, Chelikowsky, YS’2011.

Standard method: Use Sylvester inertia theorem. However,
this requires two LDLT factorizations→ can be expensive!
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Eigenvalue counts: Integrating the DOS

ä First alternative: integrate the Spectral Density in [a, b].

µ[a,b] ≈ n
(∫ b

a
φ̃(t)dt

)
= n

m∑
k=0

µk

(∫ b

a

Tk(t)√
1− t2

dt

)
= ...

ä It turns out: this is equivalent to a method which uses the
spectral projector (ui = eigenvector associated with λi) :

P =
∑

λi ∈ [a b]

uiu
T
i .

ä We know that the trace of P is the wanted number µ[a,b]

ä Goal: calculate an approximation to :

µ[a,b] = Tr (P ) .
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Approximation theory viewpoint (E. Polizzi, E. Di Napoli, YS)

ä P is not available ... but can be approximated: Interpret P
as a step function of A, namely:

P = h(A) where h(t) =

{
1 if t ∈ [a b]
0 otherwise

ä Approximate h(t) by a polynomial ψ(t)

ä Then µ[a,b] ≈ Tr (ψ(A)) approximated by a trace estimator:

µ[a,b] ≈
1

nv

nv∑
k=1

v>k ψ(A)vk where the vk’s are nv
random unit vectors.

ä We use degree p Cheby-
shev polynomials: h(t) ≈ ψp(t) =

p∑
j=0

gpjγjTj(t).
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Examples for interval [a, b] = [.3, .6]

ä Jackson damping (gpj ) added to avoid Gibbs oscillations
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Recall: µ[a,b] = Tr (P ) ≈
n

nv

nv∑
k=1

 p∑
j=0

γjv
T
kTj(A)vk

 .
ä To compute wj = Tj(A)vk, exploit 3-term recurrence of
Chebyshev polynomials:

wj+1 = 2Awj − wj−1.

(A is transformed so its eigenvalues are in [−1 1])
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An example: Matrix ‘Na5’ from PARSEC (U Flor. Coll.)

ä n = 5832, nnz = 305630 nonzero entries.

ä Obtain the eigenvalue count when a = (λ100 + λ101)/2
and b = (λ200 + λ201)/2 so µ[a,b] = 100.

Without Jackson Damping
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Application: Estimating the rank

• Joint work with S. Ubaru

ä Very important problem in signal processing applications,
machine learning, etc.

ä Often: a certain rank is selected ad-hoc. Dimension reduc-
tion is application with this “guessed” rank.

ä Can be viewed as a particular case of the eigenvalue count
problem - but need a cutoff value..
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Approximate rank, Numerical rank

ä Notion defined in various ways. A common one:

rε = min{rank(B) : B ∈ Rm×n, ‖A−B‖2 ≤ ε},

rε = Number of sing. values ≥ ε

ä Two distinct problems:

1. Get a good ε 2. Estimate number of sing. values≥ ε

ä We will need a cut-off value (’threshold’) ε.

ä Could use ‘noise level’ for ε, but not always available
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Threshold selection

ä How to select a good threshold?

ä Answer: Obtain it from the DOS function
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ä To find: point immediatly following the initial sharp drop
observed.

ä Simple idea: use derivative of DOS function φ

ä For an n×n matrix with eigenvalues λn ≤ λn−1 ≤ · · · ≤
λ1:

ε = min{t : λn ≤ t ≤ λ1, φ
′(t) = 0}.

ä In practice replace by

ε = min{t : λn ≤ t ≤ λ1, |φ′(t)| ≥ tol}
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Experiments
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Tests with Matérn covariance matrices for grids

ä Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension) Matrix # λi’s rε
Size ≥ ε KPM Lanczos

1D regular Grid (2048× 1) 2048 16 16.75 15.80
1D no structure Grid (2048× 1) 2048 20 20.10 20.46
2D regular Grid (64× 64) 4096 72 72.71 72.90
2D no structure Grid (64× 64) 4096 70 69.20 71.23
2D deformed Grid (64× 64) 4096 69 68.11 69.45

ä For all test M(deg) = 50, nv=30
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Application: The LogDeterminant

Evaluate the Log-determinant of A:

log det(A) = Trace(log(A)) =
∑n
i=1 log(λi).

A is SPD.

ä Estimating the log-determinant of a matrix equivalent to
estimating the trace of the matrix function f(A) = log(A).

ä Can invoke Stochastic Lanczos Quadrature (SLQ) to esti-
mate this trace.
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Numerical example: A graph Laplacian california of size
9664× 9664, nz ≈ 105 from the Univ. of Florida collection.

Rel. error vs degree

• 3 methods: Taylor Series,
Chebyshev expansion, SLQ

• # starting vectors nv = 100
in all three cases.
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Runtime comparisons
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Application: Log-likelihood.

Comes from parameter estimation for Gaussian processes

ä Objective is to maximize the log-likelihood function with
respect to a ‘hyperparameter’ vector ξ

log p(z | ξ) = −1
2

[
z>S(ξ)−1z + log detS(ξ) + cst

]
where z = data vector and S(ξ) == covariance matrix parame-
terized by ξ

ä Can use the same Lanczos runs to estimate z>S(ξ)−1z
and logDet term simultaneously.
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Application: calculating nuclear norm

ä ‖X‖∗ =
∑
σi(X) =

∑√
λi(XTX)

ä Generalization: Schatten p-norms

‖X‖∗,p = [
∑
σi(X)p]1/p

ä See:

J. Chen, S. Ubaru, YS, “Fast estimation of log-determinant and
Schatten norms via stochastic Lanczos quadrature”, (Submit-
ted).
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Conclusion

ä Estimating traces is a key ingredient in many algorithms

ä Physics, machine learning, matrix algorithms, ..

ä .. many new problems related to ‘data analysis’ and ’statis-
tics’, and in signal processing,

Q: Can we do better than standard random sampling?
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