UNIVERSITY
 OF Minnesota twin cities

Applications of trace estimation techniques Yousef Saad Department of Computer Science and Engineering

University of Minnesota

$$
\begin{gathered}
\text { PMAA-2016, Bordeaux (France) } \\
\text { Jul. } 7 t h, 2016
\end{gathered}
$$

Introduction

$>$ Many calculations require estimating the trace of a certain matrix function $B=f(A)$.
$>$ Related problem: compute $\operatorname{diag}(f(A))$.
> Most methods rely on stochastic methods for this [do not exploit any structure]
> In this talk: A few specific applications and a few techniques
> Generally speaking: many new related applications to be discovered
$>$ Begin with a few well-known examples

Introduction: A few examples

Problem 1: Compute $\operatorname{Tr}[i n v[A]]$ the trace of the inverse.
$>$ Arises in cross validation :
$\frac{\|(I-A(\theta)) g\|_{2}}{\operatorname{Tr}(I-A(\theta))} \quad$ with $\quad A(\theta) \equiv I-D\left(D^{T} D+\theta L L^{T}\right)^{-1} D^{T}$,
$D==$ blurring operator and L is the regularization operator
$>$ In [Huntchinson '90] $\operatorname{Tr[Inv[A]]~is~stochastically~estimated~}$
> Motivation for the work [Golub \& Meurant, "Matrices, Moments, and Quadrature", 1993, Book with same title in 2009]

Problem 2: Compute $\operatorname{Tr}[f(A)], f$ a certain function

 Arises in many applications in Physics. Example:$>$ Stochastic estimations of $\operatorname{Tr}(f(A))$ extensively used by quantum chemists to estimate Density of States, see
[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382 (1997)]
> Will be covered in detail later in this talk.

Problem 3: Compute diag[inv(A)] the diagonal of the inverse

$>$ Harder than just getting the trace
$>$ Arises in Dynamic Mean Field Theory [DMFT, motivation for our work on this topic].
> Related approach: Non Equilibrium Green's Function (NEGF) approach used to model nanoscale transistors.
$>$ In uncertainty quantification, the diagonal of the inverse of a covariance matrix is needed [Bekas, Curioni, Fedulova '09]

Problem 4: Compute diag[$\mathrm{f}(\mathrm{A})] ; \boldsymbol{f}=$ a certain function.

$>$ Arises in any density matrix approach in quantum modeling - for example Density Functional Theory.
$>$ Here, $f=$ Fermi-Dirac operator:

$$
f(\epsilon)=\frac{1}{1+\exp \left(\frac{\epsilon-\mu}{k_{B} T}\right)}
$$

Note: when $\boldsymbol{T} \rightarrow 0$ then $f \rightarrow$ a step function.

Note: if f is approximated by a rational function then $\operatorname{diag}[f(\mathrm{~A})]$ \approx a linear combination of terms like $\operatorname{diag}\left[\left(A-\sigma_{i} I\right)^{-1}\right]$
$>$ Linear-Scaling methods based on approximating $\boldsymbol{f}(\boldsymbol{H})$ and $\operatorname{Diag}(\boldsymbol{f}(\boldsymbol{H}))$ - avoid 'diagonalization' of \boldsymbol{H}
> Rich litterature on 'linear scaling' or 'order n' methods
> The review paper [Benzi, Boito, Razouk, "Decay properties of Specral Projectors with applications to electronic structure", SIAM review, 2013] provides theoretical foundations
$>$ Several references on approximating $\operatorname{Diag}(f(\boldsymbol{H}))$ for this purpose - See e.g., work by L. Lin, C. Yang, E. E [Code: Sellnv]
> Also: analysis of network graphs

$\operatorname{diag}(\operatorname{inv}(A))$ in Dynamic Mean Field Theory (DMFT)

> Quantum mechanical studies of highly correlated particles
$>$ Equation to be solved (repeatedly) is Dyson's equation

$$
G(\omega)=[(\omega+\mu) I-V-\Sigma(\omega)+T]^{-1}
$$

- $\boldsymbol{\omega}$ (frequency) and $\boldsymbol{\mu}$ (chemical potential) are real
- $\boldsymbol{V}=$ trap potential $=$ real diagonal
- $\Sigma(\omega)==$ local self-energy - a complex diagonal
- \boldsymbol{T} is the hopping matrix (sparse real).
$>$ Interested only in diagonal of $G(\omega)$ - in addition, equation must be solved self-consistently and ...
$>$... must do this for many ω 's

DENSITY OF STATES \& APPLICATIONS

Density of States

$>$ Formally, the Density Of States (DOS) of a matrix \boldsymbol{A} is

$$
\phi(t)=\frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

where: $\bullet \delta$ is the Dirac δ-function or Dirac distribution

- $\lambda_{1} \leq \lambda_{2} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of A
$>$ Note: number of eigenvalues in an interval $[a, b]$ is

$$
\mu_{[a, b]}=\int_{a}^{b} \sum_{j} \delta\left(t-\lambda_{j}\right) d t \equiv \int_{a}^{b} n \phi(t) d t
$$

$>\phi(t)==$ a probability distribution function == probability of finding eigenvalues of \boldsymbol{A} in a given infinitesimal interval near t.
$>$ DOS is also referred to as the spectral density
$>$ In Solid-State physics, λ_{i} 's represent single-particle energy levels.
> So the DOS represents \# of levels per unit energy.
> Many uses in physics

Issue: How to deal with distributions

> Highly 'discontinuous', not easy to handle numerically
$>$ Solution for practical and theoretical purposes: replace ϕ by a regularized ('blurred') version ϕ_{σ} :

$$
\phi_{\sigma}(t)=\frac{1}{n} \sum_{j=1}^{n} h_{\sigma}\left(t-\lambda_{j}\right)
$$

where $h_{\sigma}(t)=$ any \mathcal{C}^{∞} function s.t.:

- $\int_{-\infty}^{+\infty} h_{\sigma}(s) d s=1$
- h_{σ} has a peak at zero
$>$ An example is the Gaussian:

$$
h_{\sigma}(t)=\frac{1}{\left(2 \pi \sigma^{2}\right)^{1 / 2}} e^{-\frac{t^{2}}{2 \sigma^{2}}}
$$

$>$ How to select σ ? Example for $S i_{2}$

$>$ Higher $\sigma \rightarrow$ smoother curve
$>$ But loss of detail ..
$>$ Compromise: $\sigma=\frac{h}{2 \sqrt{2 \log (\kappa)}}$,
$>h=$ resolution, $\kappa=$ parameter >1

Computing the DOS: The Kernel Polynomial Method

> Used by Chemists to calculate the DOS - see Silver and Röder'94, Wang '94, Drabold-Sankey'93, + others
> Basic idea: expand DOS into Chebyshev polynomials
$>$ Use trace estimator [discovered independently] to get traces needed in calculations
$>$ Assume change of variable done so eigenvalues lie in $[-1,1]$.
> Include the weight function in the expansion so expand:

$$
\hat{\phi}(t)=\sqrt{1-t^{2}} \phi(t)=\sqrt{1-t^{2}} \times \frac{1}{n} \sum_{j=1}^{n} \delta\left(t-\lambda_{j}\right)
$$

Then, (full) expansion is: $\hat{\phi}(t)=\sum_{k=0}^{\infty} \mu_{k} T_{k}(t)$.
$>$ Expansion coefficients μ_{k} are formally defined by:

$$
\begin{aligned}
\mu_{k} & =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \hat{\phi}(t) d t \\
& =\frac{2-\delta_{k 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-t^{2}}} T_{k}(t) \sqrt{1-t^{2}} \phi(t) d t \\
& =\frac{2-\delta_{k 0}}{n \pi} \sum_{j=1}^{n} T_{k}\left(\lambda_{j}\right)
\end{aligned}
$$

$>$ Here $2-\delta_{k 0}==1$ when $k=0$ and $==2$ otherwise.
$>$ Note: $\sum T_{k}\left(\lambda_{i}\right)=\operatorname{Trace}\left[T_{k}(A)\right]$
$>$ Estimate this, e.g., via stochastic estimator
$>$ Generate random vectors $v^{(1)}, v^{(2)}, \cdots, v^{\left(n_{\text {vec }}\right)}$
> Assume normal distribution with zero mean
$>$ Each vector is normalized so that $\left\|v^{(l)}\right\|=1, l=1, \ldots, n_{\text {vec }}$.
$>$ Estimate the trace of $T_{k}(A)$ with stochastisc estimator:

$$
\operatorname{Trace}\left(T_{k}(A)\right) \approx \frac{1}{n_{\mathrm{vec}}} \sum_{l=1}^{n_{\mathrm{vec}}}\left(v^{(l)}\right)^{T} T_{k}(A) \boldsymbol{v}^{(l)}
$$

> Will lead to the desired estimate:

$$
\mu_{k} \approx \frac{2-\delta_{k 0}}{n \pi n_{\mathrm{vec}}} \sum_{l=1}^{n_{\mathrm{vec}}}\left(v^{(l)}\right)^{T} T_{k}(A) v^{(l)}
$$

$>$ To compute scalars of the form $\boldsymbol{v}^{\boldsymbol{T}} \boldsymbol{T}_{k}(\boldsymbol{A}) \boldsymbol{v}$, exploit 3-term recurrence of the Chebyshev polynomial:

$$
T_{k+1}(A) v=2 A T_{k}(A) v-T_{k-1}(A) v
$$

so if we let $v_{k} \equiv \boldsymbol{T}_{k}(A) v$, we have

$$
v_{k+1}=2 A v_{k}-v_{k-1}
$$

$>$ Jackson smoothing can be used -

An example with degree 80 polynomials

Left: Jackson damping; right: without Jackson damping.

MATLAB

Use of the Lanczos Algorithm

$>$ Background: The Lanczos algorithm generates an orthonormal basis $V_{m}=\left[v_{1}, v_{2}, \cdots, v_{m}\right]$ for the Krylov subspace:

$$
\operatorname{span}\left\{v_{1}, A v_{1}, \cdots, A^{m-1} v_{1}\right\}
$$

$>$... such that:
$V_{m}^{H} A V_{m}=T_{m}$ - with

$$
\boldsymbol{T}_{m}=\left(\begin{array}{ccccccc}
\boldsymbol{\alpha}_{1} & \boldsymbol{\beta}_{2} & & & & & \\
\boldsymbol{\beta}_{2} & \boldsymbol{\alpha}_{2} & \boldsymbol{\beta}_{3} & & & \\
& \boldsymbol{\beta}_{3} & \boldsymbol{\alpha}_{3} & \boldsymbol{\beta}_{4} & & \\
& & \cdot & \cdot & \cdot & \\
& & & \cdot & \cdot & \cdot \\
& & & & \boldsymbol{\beta}_{m} & \alpha_{m}
\end{array}\right)
$$

> Lanczos process builds orthogonal polynomials wrt to dot product:

$$
\int p(t) q(t) d t \equiv\left(p(A) v_{1}, q(A) v_{1}\right)
$$

$>$ In theory v_{i} 's defined by 3-term recurrence are orthogonal.
$>$ Let $\theta_{i}, i=1 \cdots, m$ be the eigenvalues of T_{m} [Ritz values]
$>\boldsymbol{y}_{i}$'s associated eigenvectors; Ritz vectors: $\left\{\boldsymbol{V}_{m} \boldsymbol{y}_{i}\right\}_{i=1: m}$
> Ritz values approximate eigenvalues
$>$ Could compute $\boldsymbol{\theta}_{i}$'s then get approximate DOS from these
$>$ Problem: $\boldsymbol{\theta}_{i}$ not good enough approximations - especially inside the spectrum.
> Better idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

$$
\int p(t) d t \approx \sum_{i=1}^{m} a_{i} p\left(\theta_{i}\right) \quad a_{i}=\left[e_{1}^{T} y_{i}\right]^{2}
$$

$>$ See, e.g., Golub \& Meurant '93, and also Gautschi'81, Golub and Welsch '69.
$>$ Formula exact when p is a polynomial of degree $\leq 2 m+1$
$>$ Consider now $\int p(t) d t=<p, 1>=($ Stieljes $)$ integral \equiv

$$
(p(A) v, v)=\sum \beta_{i}^{2} p\left(\lambda_{i}\right) \equiv<\phi_{v}, p>
$$

$>$ Then $\left\langle\phi_{v}, p\right\rangle \approx \sum a_{i} p\left(\theta_{i}\right)=\sum a_{i}\left\langle\delta_{\theta_{i}}, p\right\rangle \rightarrow$

$$
\phi_{v} \approx \sum a_{i} \delta_{\theta_{i}}
$$

$>$ To mimick the effect of $\beta_{i}=1, \forall i$, use several vectors v and average the result of the above formula over them..

Experiments

$>$ Goal: to compare errors for similar number of matrix-vector products
> Example: Kohn-Sham Hamiltonian associated with a benzene molecule generated from PARSEC. $n=8,219$
> In all cases, we use 10 sampling vectors
> General observation: DGL, Lanczos, and KPM are best,
> Spectroscopic method does OK
> Haydock's method [another method based on the Lanczos algorithm] not as good

Method	\boldsymbol{L}^{1} error	\boldsymbol{L}^{2} error	\boldsymbol{L}^{∞} error
KPM w/ Jackson, deg=80	$2.592 \mathrm{e}-02$	$5.032 \mathrm{e}-03$	$2.785 \mathrm{e}-03$
KPM w/o Jackson, deg=80	$2.634 \mathrm{e}-02$	$4.454 \mathrm{e}-03$	$2.002 \mathrm{e}-03$
KPM Legendre, deg=80	$2.504 \mathrm{e}-02$	$3.788 \mathrm{e}-03$	$1.174 \mathrm{e}-03$
Spectroscopic, deg=40	$5.589 \mathrm{e}-02$	$8.652 \mathrm{e}-03$	$2.871 \mathrm{e}-03$
Spectroscopic, deg=100	$4.624 \mathrm{e}-02$	$7.582 \mathrm{e}-03$	$2.447 \mathrm{e}-03$
DGL, deg=80	$1.998 \mathrm{e}-02$	$3.379 \mathrm{e}-03$	$1.149 \mathrm{e}-03$
Lanczos, deg=80	$2.755 \mathrm{e}-02$	$4.178 \mathrm{e}-03$	$1.599 \mathrm{e}-03$
Haydock, deg=40	$6.951 \mathrm{e}-01$	$1.302 \mathrm{e}-01$	$6.176 \mathrm{e}-02$
Haydock, deg=100	$2.581 \mathrm{e}-01$	$4.653 \mathrm{e}-02$	$1.420 \mathrm{e}-02$

L^{1}, L^{2}, and L^{∞} error compared with the normalized "surrogate" DOS for benzene matrix
> Many more experiments in survey paper [L. Lin, YS, C. Yang, SIAM Review, 2015].

Application: Eigenvalue counts

The problem: Given \boldsymbol{A} (Hermitian) with eigenvalues $\boldsymbol{\lambda}_{1} \leq$ $\boldsymbol{\lambda}_{2} \cdots \leq \boldsymbol{\lambda}_{n}$ find an estimate of the number of eigenvalues of \boldsymbol{A} in interval $[\boldsymbol{a}, \quad b]$.

Main motivation: Eigensolvers based on splitting the spectrum in intervals and extracting eigenpairs from each interval independently.

- FEAST approach [Polizzi 2011]
- Sakurai-Sigiura method [2002]
- Schofield, Chelikowsky, YS'2011.

Standard method: Use Sylvester inertia theorem. However, this requires two $L D L^{T}$ factorizations \rightarrow can be expensive!

Eigenvalue counts: Integrating the DOS

$>$ First alternative: integrate the Spectral Density in $[a, b]$.

$$
\mu_{[a, b]} \approx n\left(\int_{a}^{b} \tilde{\phi}(t) d t\right)=n \sum_{k=0}^{m} \mu_{k}\left(\int_{a}^{b} \frac{T_{k}(t)}{\sqrt{1-t^{2}}} d t\right)=\ldots
$$

$>$ It turns out: this is equivalent to a method which uses the spectral projector ($\boldsymbol{u}_{i}=$ eigenvector associated with $\boldsymbol{\lambda}_{i}$) :

$$
\boldsymbol{P}=\sum_{\lambda_{i} \in[a b]} u_{i} u_{i}^{T}
$$

$>$ We know that the trace of \boldsymbol{P} is the wanted number $\boldsymbol{\mu}_{[a, b]}$
> Goal: calculate an approximation to :

$$
\boldsymbol{\mu}_{[a, b]}=\operatorname{Tr}(\boldsymbol{P})
$$

Approximation theory viewpoint (E. Polizzi, E. Di Napoli, YS)

$>\boldsymbol{P}$ is not available ... but can be approximated: Interpret \boldsymbol{P} as a step function of \boldsymbol{A}, namely:

$$
P=h(A) \quad \text { where } \quad h(t)= \begin{cases}1 & \text { if } t \in[a b] \\ 0 & \text { otherwise }\end{cases}
$$

$>$ Approximate $h(t)$ by a polynomial $\psi(t)$
$>$ Then $\mu_{[a, b]} \approx \operatorname{Tr}(\psi(A))$ approximated by a trace estimator:

$$
\mu_{[a, b]} \approx \frac{1}{n_{v}} \sum_{k=1}^{n_{v}} \boldsymbol{v}_{k}^{\top} \psi(A) \boldsymbol{v}_{k}
$$

where the v_{k} 's are n_{v} random unit vectors.
$>$ We use degree p Chebyshev polynomials:

$$
h(t) \approx \psi_{p}(t)=\sum_{j=0}^{p} g_{j}^{p} \gamma_{j} \boldsymbol{T}_{j}(t) .
$$

Examples for interval $[a, b]=[.3, .6]$

$>$ Jackson damping $\left(g_{j}^{p}\right)$ added to avoid Gibbs oscillations

Degree 30

Degree 80

To compute $w_{j}=\boldsymbol{T}_{j}(\boldsymbol{A}) \boldsymbol{v}_{k}$, exploit 3-term recurrence of Chebyshev polynomials:

$$
w_{j+1}=2 A w_{j}-w_{j-1}
$$

(\boldsymbol{A} is transformed so its eigenvalues are in $\left[\begin{array}{ll}-1 & 1\end{array}\right]$)

An example: Matrix 'Na5' from PARSEC (U Flor. Coll.)

$>n=5832, n n z=305630$ nonzero entries.
$>$ Obtain the eigenvalue count when $a=\left(\lambda_{100}+\lambda_{101}\right) / 2$ and $b=\left(\lambda_{200}+\lambda_{201}\right) / 2$ so $\mu_{[a, b]}=100$.

Without Jackson Damping

With Jackson Damping

Application: Estimating the rank

- Joint work with S. Ubaru
$>$ Very important problem in signal processing applications, machine learning, etc.
$>$ Often: a certain rank is selected ad-hoc. Dimension reduction is application with this "guessed" rank.
> Can be viewed as a particular case of the eigenvalue count problem - but need a cutoff value..

Approximate rank, Numerical rank

$>$ Notion defined in various ways. A common one:

$$
r_{\epsilon}=\min \left\{\operatorname{rank}(B): B \in \mathbb{R}^{m \times n},\|A-B\|_{2} \leq \epsilon\right\}
$$

$r_{\epsilon}=$ Number of sing. values $\geq \epsilon$
> Two distinct problems:

1. Get a good $\epsilon \quad$ 2. Estimate number of sing. values $\geq \epsilon$
$>$ We will need a cut-off value ('threshold') $\boldsymbol{\epsilon}$.
$>$ Could use 'noise level' for ϵ, but not always available

Threshold selection

$>$ How to select a good threshold?
$>$ Answer: Obtain it from the DOS function

(A)

(B)

(C)

Exact DOS plots for three different types of matrices.
$>$ To find: point immediatly following the initial sharp drop observed.
$>$ Simple idea: use derivative of DOS function ϕ
$>$ For an $\boldsymbol{n} \times \boldsymbol{n}$ matrix with eigenvalues $\boldsymbol{\lambda}_{n} \leq \boldsymbol{\lambda}_{n-1} \leq \cdots \leq$ λ_{1} :

$$
\epsilon=\min \left\{t: \lambda_{n} \leq t \leq \lambda_{1}, \phi^{\prime}(t)=0\right\}
$$

> In practice replace by

$$
\epsilon=\min \left\{t: \lambda_{n} \leq t \leq \lambda_{1},\left|\phi^{\prime}(t)\right| \geq \text { tol }\right\}
$$

Experiments

(A)

(B)
(A) The DOS found by KPM.
(B) Approximate rank estimation by The Lanczos method for the example netz4504.

Tests with Matérn covariance matrices for grids

> Important in statistical applications
Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension)	Matrix	$\# \lambda_{i} ' \mathrm{~S}$	r_{ϵ}	
	Size	$\geq \epsilon$	KPM	Lanczos
1D regular Grid (2048×1)	2048	16	16.75	15.80
1D no structure Grid (2048×1)	2048	20	20.10	20.46
2D regular Grid (64×64)	4096	72	72.71	72.90
2D no structure Grid (64×64)	4096	70	69.20	71.23
2D deformed Grid (64×64)	4096	69	68.11	69.45

$>$ For all test $M(\operatorname{deg})=50, n_{v}=30$

Application: The LogDeterminant

Evaluate the Log-determinant of A :

$$
\log \operatorname{det}(A)=\operatorname{Trace}(\log (A))=\sum_{i=1}^{n} \log \left(\lambda_{i}\right)
$$

A is SPD.

$>$ Estimating the log-determinant of a matrix equivalent to estimating the trace of the matrix function $f(A)=\log (A)$.
> Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace.

Numerical example: A graph Laplacian california of size $9664 \times 9664, n z \approx 10^{5}$ from the Univ. of Florida collection.

Rel. error vs degree

- 3 methods: Taylor Series, Chebyshev expansion, SLQ
- \# starting vectors $n \boldsymbol{v}=100$ in all three cases.

Runtime comparisons

Application: Log-likelihood.

Comes from parameter estimation for Gaussian processes
$>$ Objective is to maximize the log-likelihood function with respect to a 'hyperparameter' vector $\boldsymbol{\xi}$

$$
\log p(z \mid \xi)=-\frac{1}{2}\left[z^{\top} S(\xi)^{-1} z+\log \operatorname{det} S(\xi)+\mathrm{cst}\right]
$$

where $z=$ data vector and $S(\xi)==$ covariance matrix parameterized by $\boldsymbol{\xi}$
$>$ Can use the same Lanczos runs to estimate $z^{\top} S(\xi)^{-1} z$ and logDet term simultaneously.

Application: calculating nuclear norm

$>\|X\|_{*}=\sum \sigma_{i}(X)=\sum \sqrt{\lambda_{i}\left(X^{T} X\right)}$
$>$ Generalization: Schatten p-norms

$$
\|\boldsymbol{X}\|_{*, p}=\left[\sum \sigma_{i}(X)^{p}\right]^{1 / p}
$$

$>$ See:
J. Chen, S. Ubaru, YS, "Fast estimation of log-determinant and Schatten norms via stochastic Lanczos quadrature", (Submitted).

Conclusion

- Estimating traces is a key ingredient in many algorithms
> Physics, machine learning, matrix algorithms, ..
> .. many new problems related to 'data analysis' and 'statistics', and in signal processing,

Q: Can we do better than standard random sampling?

