OF MINNESOTA TWIN CITIES

Applications of trace estimation techniques

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

PMAA-2016, Bordeaux (France) Jul. 7th, 2016

Introduction

> Many calculations require estimating the trace of a certain matrix function B = f(A).

> Related problem: compute diag(f(A)).

Most methods rely on stochastic methods for this [do not exploit any structure]

In this talk: A few specific applications and a few techniques

Generally speaking: many new related applications to be discovered

Begin with a few well-known examples

Introduction: A few examples

Problem 1: Compute Tr[inv[A]] the trace of the inverse.

 Arises in cross validation : ^{||}(I − A(θ))g||₂ Tr (I − A(θ)) with A(θ) ≡ I−D(D^TD+θLL^T)⁻¹D^T, D == blurring operator and L is the regularization operator

 In [Huntchinson '90] Tr[Inv[A]] is stochastically estimated
 Motivation for the work [Golub & Meurant, "Matrices, Moments, and Quadrature", 1993, Book with same title in 2009]

 Problem 2: Compute Tr [f (A)], *f* a certain function

Arises in many applications in Physics. Example:

Stochastic estimations of Tr (f(A)) extensively used by quantum chemists to estimate Density of States, see

[Ref: H. Röder, R. N. Silver, D. A. Drabold, J. J. Dong, Phys. Rev. B. 55, 15382 (1997)]

> Will be covered in detail later in this talk.

Problem 3: Compute diag[inv(A)] the diagonal of the inverse

- Harder than just getting the trace
- Arises in Dynamic Mean Field Theory [DMFT, motivation for our work on this topic].
- Related approach: Non Equilibrium Green's Function (NEGF) approach used to model nanoscale transistors.
- ► In uncertainty quantification, the diagonal of the inverse of a covariance matrix is needed [Bekas, Curioni, Fedulova '09]

Problem 4: Compute diag[f(A)]; f = a certain function.

Arises in any density matrix approach in quantum modeling
 for example Density Functional Theory.

> Here, f = Fermi-Dirac operator:

$$f(\epsilon) = rac{1}{1+\exp(rac{\epsilon-\mu}{k_BT})}$$

Note: when $T \rightarrow 0$ then $f \rightarrow$ a step function.

Note: if f is approximated by a rational function then diag[f(A)] \approx a linear combination of terms like diag[$(A - \sigma_i I)^{-1}$]

Linear-Scaling methods based on approximating f(H) and Diag(f(H)) – avoid 'diagonalization' of H

Rich litterature on 'linear scaling' or 'order n' methods

The review paper [Benzi, Boito, Razouk, "Decay properties of Specral Projectors with applications to electronic structure", SIAM review, 2013] provides theoretical foundations

Several references on approximating Diag(f(H)) for this purpose – See e.g., work by L. Lin, C. Yang, E. E [Code: SelInv]

Also: analysis of network graphs

diag(inv(A)) in Dynamic Mean Field Theory (DMFT)

- Quantum mechanical studies of highly correlated particles
- Equation to be solved (repeatedly) is Dyson's equation

$$G(\omega) = \left[(\omega+\mu)I - V - \Sigma(\omega) + T
ight]^{-1}$$

- ω (frequency) and μ (chemical potential) are real
- V = trap potential = real diagonal
- $\Sigma(\omega) ==$ local self-energy a complex diagonal
- *T* is the hopping matrix (sparse real).
- > Interested only in diagonal of $G(\omega)$ in addition, equation must be solved self-consistently and ...
- > ... must do this for many ω 's

DENSITY OF STATES & APPLICATIONS

Density of States

> Formally, the Density Of States (DOS) of a matrix A is

$$\phi(t) = rac{1}{n} \sum_{j=1}^n \delta(t-\lambda_j),$$

where: • δ is the Dirac δ-function or Dirac distribution
λ₁ ≤ λ₂ ≤ ··· ≤ λ_n are the eigenvalues of A

> Note: number of eigenvalues in an interval [a, b] is

$$\mu_{[a,b]} = \int_a^b \sum_j \delta(t-\lambda_j) \ dt \equiv \int_a^b n \phi(t) dt \ .$$

 $\blacktriangleright \phi(t) ==$ a probability distribution function == probability of finding eigenvalues of A in a given infinitesimal interval near t.

DOS is also referred to as the spectral density

ln Solid-State physics, λ_i 's represent single-particle energy levels.

- So the DOS represents # of levels per unit energy.
- Many uses in physics

Issue: How to deal with distributions

Highly 'discontinuous', not easy to handle numerically

Solution for practical and theoretical purposes: replace ϕ by a regularized ('blurred') version ϕ_{σ} :

$$\phi_\sigma(t) = rac{1}{n} \, \sum_{j=1}^n h_\sigma(t-\lambda_j),$$

where $h_{\sigma}(t) = \operatorname{any} \mathcal{C}^{\infty}$ function s.t.: • $\int_{-\infty}^{+\infty} h_{\sigma}(s) ds = 1$ • h_{σ} has a peak at zero > An example is the Gaussian: $h_{\sigma}(t) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{t^2}{2\sigma^2}}$.

PMAA'16

12

\blacktriangleright How to select σ ? Example for Si_2

Computing the DOS: The Kernel Polynomial Method

Used by Chemists to calculate the DOS – see Silver and Röder'94, Wang '94, Drabold-Sankey'93, + others

Basic idea: expand DOS into Chebyshev polynomials

Use trace estimator [discovered independently] to get traces needed in calculations

- > Assume change of variable done so eigenvalues lie in [-1, 1].
- Include the weight function in the expansion so expand:

$$\hat{\phi}(t)=\sqrt{1-t^2}\phi(t)=\sqrt{1-t^2} imesrac{1}{n}\sum_{j=1}^n\delta(t-\lambda_j).$$

Then, (full) expansion is: $\hat{\phi}(t) = \sum_{k=0}^{\infty} \mu_k T_k(t)$.

> Expansion coefficients μ_k are formally defined by:

$$egin{aligned} \mu_k &= rac{2-\delta_{k0}}{\pi} \int_{-1}^1 rac{1}{\sqrt{1-t^2}} T_k(t) \hat{\phi}(t) dt \ &= rac{2-\delta_{k0}}{\pi} \int_{-1}^1 rac{1}{\sqrt{1-t^2}} T_k(t) \sqrt{1-t^2} \phi(t) dt \ &= rac{2-\delta_{k0}}{n\pi} \sum_{j=1}^n T_k(\lambda_j). \end{aligned}$$

► Here $2 - \delta_{k0} == 1$ when k = 0 and == 2 otherwise.

- \blacktriangleright Note: $\sum T_k(\lambda_i) = Trace[T_k(A)]$
- Estimate this, e.g., via stochastic estimator
- Generate random vectors $v^{(1)}, v^{(2)}, \cdots, v^{(n_{ ext{vec}})}$
- Assume normal distribution with zero mean

> Each vector is normalized so that $\|v^{(l)}\| = 1, l = 1, \ldots, n_{ ext{vec}}$.

Estimate the trace of $T_k(A)$ with stochastisc estimator:

$$ext{Trace}(T_k(A)) pprox rac{1}{n_{ ext{vec}}} \sum_{l=1}^{n_{ ext{vec}}} \left(v^{(l)}
ight)^T T_k(A) v^{(l)}.$$

Will lead to the desired estimate:

$$\mu_k pprox rac{2-\delta_{k0}}{n\pi n_{ ext{vec}}} \sum_{l=1}^{n_{ ext{vec}}} \left(v^{(l)}
ight)^T T_k(A) v^{(l)}.$$

To compute scalars of the form $v^T T_k(A)v$, exploit 3-term recurrence of the Chebyshev polynomial:

$$T_{k+1}(A)v = 2AT_k(A)v - T_{k-1}(A)v$$

so if we let $v_k \equiv T_k(A)v$, we have

$$v_{k+1}=2Av_k-v_{k-1}$$

PMAA'16 _____ 16

Jackson smoothing can be used –

PMAA'16 _____ 17

An example with degree 80 polynomials

Left: Jackson damping; right: without Jackson damping.

MATLAB

Use of the Lanczos Algorithm

> Background: The Lanczos algorithm generates an orthonormal basis $V_m = [v_1, v_2, \cdots, v_m]$ for the Krylov subspace:

 $ext{span}\{v_1,Av_1,\cdots,A^{m-1}v_1\}$

Lanczos process builds orthogonal polynomials wrt to dot product:

$$\int p(t)q(t)dt \equiv (p(A)v_1,q(A)v_1)$$

> In theory v_i 's defined by 3-term recurrence are orthogonal.

- ► Let θ_i , $i = 1 \cdots, m$ be the eigenvalues of T_m [Ritz values]
- > y_i 's associated eigenvectors; Ritz vectors: $\{V_m y_i\}_{i=1:m}$
- Ritz values approximate eigenvalues
- > Could compute θ_i 's then get approximate DOS from these
- > Problem: θ_i not good enough approximations especially inside the spectrum.

Better idea: exploit relation of Lanczos with (discrete) orthogonal polynomials and related Gaussian quadrature:

$$\int p(t) dt pprox \sum_{i=1}^m a_i p(heta_i) \quad a_i = \left[e_1^T y_i
ight]^2$$

See, e.g., Golub & Meurant '93, and also Gautschi'81, Golub and Welsch '69.

 \blacktriangleright Formula exact when p is a polynomial of degree $\leq 2m+1$

► Consider now $\int p(t)dt = \langle p, 1 \rangle =$ (Stieljes) integral \equiv $(p(A)v, v) = \sum \beta_i^2 p(\lambda_i) \equiv \langle \phi_v, p \rangle$

 $\begin{array}{l} \blacktriangleright \ \, \text{Then} \; \langle \phi_v, p \rangle \approx \sum a_i p(\theta_i) = \sum a_i \left< \delta_{\theta_i}, p \right> \rightarrow \\ \\ \phi_v \approx \sum a_i \delta_{\theta_i} \end{array}$

> To mimick the effect of $\beta_i = 1, \forall i$, use several vectors v and average the result of the above formula over them..

Experiments

Goal: to compare errors for similar number of matrix-vector products

> Example: Kohn-Sham Hamiltonian associated with a benzene molecule generated from PARSEC. n = 8,219

- In all cases, we use 10 sampling vectors
- General observation: DGL, Lanczos, and KPM are best,
- Spectroscopic method does OK
- Haydock's method [another method based on the Lanczos algorithm] not as good

Method	$oldsymbol{L}^1$ error	L^2 error	L^∞ error
KPM w/ Jackson, deg=80	2.592e-02	5.032e-03	2.785e-03
KPM w/o Jackson, deg=80	2.634e-02	4.454e-03	2.002e-03
KPM Legendre, deg=80	2.504e-02	3.788e-03	1.174e-03
Spectroscopic, deg=40	5.589e-02	8.652e-03	2.871e-03
Spectroscopic, deg=100	4.624e-02	7.582e-03	2.447e-03
DGL, deg=80	1.998e-02	3.379e-03	1.149e-03
Lanczos, deg=80	2.755e-02	4.178e-03	1.599e-03
Haydock, deg=40	6.951e-01	1.302e-01	6.176e-02
Haydock, deg=100	2.581e-01	4.653e-02	1.420e-02

 L^1 , L^2 , and L^∞ error compared with the normalized "surrogate" DOS for benzene matrix

► Many more experiments in survey paper [L. Lin, YS, C. Yang, SIAM Review, 2015].

The problem: Given *A* (Hermitian) with eigenvalues $\lambda_1 \leq \lambda_2 \cdots \leq \lambda_n$ find an estimate of the number of eigenvalues of *A* in interval [a, b].

Main motivation: Eigensolvers based on splitting the spectrum in intervals and extracting eigenpairs from each interval independently.

- FEAST approach [Polizzi 2011]
- Sakurai-Sigiura method [2002]
- Schofield, Chelikowsky, YS'2011.

Standard method: Use Sylvester inertia theorem. However, this requires two LDL^T factorizations \rightarrow can be expensive!

Eigenvalue counts: Integrating the DOS

First alternative: integrate the Spectral Density in [a, b]. $\mu_{[a,b]} \approx n \left(\int_{a}^{b} \tilde{\phi}(t) dt \right) = n \sum_{k=0}^{m} \mu_{k} \left(\int_{a}^{b} \frac{T_{k}(t)}{\sqrt{1-t^{2}}} dt \right) = ..$

> It turns out: this is equivalent to a method which uses the spectral projector (u_i = eigenvector associated with λ_i) :

$$P = \sum_{\lambda_i \ \in \ [a \ b]} u_i u_i^T.$$

We know that the trace of *P* is the wanted number µ_[a,b]
 Goal: calculate an approximation to :

$$\mu_{[a,b]}={
m Tr}\,(P)$$
 .

Approximation theory viewpoint (E. Polizzi, E. Di Napoli, YS)

> P is not available ... but can be approximated: Interpret P as a step function of A, namely:

$$P = h(A)$$
 where $h(t) = egin{cases} 1 & ext{if } t \in [a \ b] \ 0 & ext{otherwise} \end{cases}$

> Approximate h(t) by a polynomial $\psi(t)$

> Then $\mu_{[a,b]} \approx \text{Tr}(\psi(A))$ approximated by a trace estimator:

$$\mu_{[a,b]} pprox rac{1}{n_v} \sum_{k=1}^{n_v} v_k^ op \psi(A) v_k$$

where the v_k 's are n_v random unit vectors.

> We use degree p Chebyshev polynomials: $h(t) \approx \psi_p(t) = \sum_{j=0}^p g_j^p \gamma_j T_j(t).$

Examples for interval [a, b] = [.3, .6]

> Jackson damping (g_j^p) added to avoid Gibbs oscillations

$$\text{Recall:} \quad \mu_{[a,b]} = \text{Tr}\left(P\right) \approx \frac{n}{n_v} \sum_{k=1}^{n_v} \left[\sum_{j=0}^p \gamma_j v_k^T T_j(A) v_k \right].$$

> To compute $w_j = T_j(A)v_k$, exploit 3-term recurrence of Chebyshev polynomials:

$$w_{j+1}=2Aw_j-w_{j-1}.$$

(A is transformed so its eigenvalues are in [-1 1])

An example: Matrix 'Na5' from PARSEC (U Flor. Coll.)

 \blacktriangleright n = 5832, nnz = 305630 nonzero entries.

> Obtain the eigenvalue count when $a = (\lambda_{100} + \lambda_{101})/2$ and $b = (\lambda_{200} + \lambda_{201})/2$ so $\mu_{[a,b]} = 100$.

Without Jackson Damping

With Jackson Damping

Application: Estimating the rank

Joint work with S. Ubaru

Very important problem in signal processing applications, machine learning, etc.

Often: a certain rank is selected ad-hoc. Dimension reduction is application with this "guessed" rank.

Can be viewed as a particular case of the eigenvalue count problem - but need a cutoff value.. Approximate rank, Numerical rank

Notion defined in various ways. A common one:

 $r_{\epsilon} = \min\{rank(B): B \in \mathbb{R}^{m imes n}, \|A - B\|_2 \leq \epsilon\},$

 $r_{\epsilon}=$ Number of sing. values $\geq\epsilon$

- Two distinct problems:
- 1. Get a good ϵ 2. Estimate number of sing. values $\geq \epsilon$
- > We will need a cut-off value ('threshold') ϵ .
- > Could use 'noise level' for ϵ , but not always available

Threshold selection

How to select a good threshold?

Exact DOS plots for three different types of matrices.

► To find: point immediatly following the initial sharp drop observed.

> Simple idea: use derivative of DOS function ϕ

For an $n \times n$ matrix with eigenvalues $\lambda_n \leq \lambda_{n-1} \leq \cdots \leq \lambda_1$:

$$\epsilon = \min\{t: \lambda_n \leq t \leq \lambda_1, \phi'(t) = 0\}.$$

► In practice replace by $\epsilon = \min\{t : \lambda_n \le t \le \lambda_1, |\phi'(t)| \ge tol\}$

Experiments

(B) Approximate rank estimation by The Lanczos method for the example netz4504.

Tests with Matérn covariance matrices for grids

Important in statistical applications

Approximate Rank Estimation of Matérn covariance matrices

Type of Grid (dimension)	Matrix	# λ_i 's	r_ϵ	
	Size	$\geq \epsilon$	KPM	Lanczos
1D regular Grid ($2048 imes 1$)	2048	16	16.75	15.80
1D no structure Grid (2048×1)	2048	20	20.10	20.46
2D regular Grid ($64 imes 64$)	4096	72	72.71	72.90
2D no structure Grid ($64 imes 64$)	4096	70	69.20	71.23
2D deformed Grid ($64 imes 64$)	4096	69	68.11	69.45

For all test $M(deg) = 50, n_v$ =30

Application: The LogDeterminant

Evaluate the Log-determinant of A:

$$\log \det(A) = \operatorname{Trace}(\log(A)) = \sum_{i=1}^n \log(\lambda_i).$$

A is SPD.

Estimating the log-determinant of a matrix equivalent to estimating the trace of the matrix function $f(A) = \log(A)$.

Can invoke Stochastic Lanczos Quadrature (SLQ) to estimate this trace. Numerical example: A graph Laplacian california of size 9664 imes 9664, $nz \approx 10^5$ from the Univ. of Florida collection.

Application: Log-likelihood.

Comes from parameter estimation for Gaussian processes

> Objective is to maximize the log-likelihood function with respect to a 'hyperparameter' vector $\boldsymbol{\xi}$

$$\log p(z \mid \xi) = -\frac{1}{2} \left[z^{\top} S(\xi)^{-1} z + \log \det S(\xi) + \operatorname{cst} \right]$$

where z = data vector and $S(\xi) == covariance$ matrix parameterized by ξ

> Can use the same Lanczos runs to estimate $z^{\top}S(\xi)^{-1}z$ and logDet term simultaneously. Application: calculating nuclear norm

$$\blacktriangleright \|X\|_* = \sum \sigma_i(X) = \sum \sqrt{\lambda_i(X^T X)}$$

Generalization: Schatten p-norms

$$\|X\|_{*,p} = \left[\sum \sigma_i(X)^p
ight]^{1/p}$$

J. Chen, S. Ubaru, YS, "Fast estimation of log-determinant and Schatten norms via stochastic Lanczos quadrature", (Submitted).

Conclusion

- Estimating traces is a key ingredient in many algorithms
- > Physics, machine learning, matrix algorithms, ..
- many new problems related to 'data analysis' and 'statistics', and in signal processing,
 - **Q:** Can we do better than standard random sampling?