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Introduction

How do you compute eigenvalues in the middle of
the spectrum of a large Hermitian matrix?

Method of choice: Shift and invert + some projec-
tion process (Lanczos, subspace iteration..)

Main 1) Select a shift (or sequence of shifts) o;
step3'| 2) Factor A —oI: A— ol = LDL"

3) Apply Lanczos algorithmto (A — oI)~!

> |

» Solves with A — oI carried out using factorization

» Limitation: factorization




m What if factoring A is too expensive (e.g., Large
3-D similation)?
Obvious answer: Use iterative solvers ...

» However: systems are highly indefinite — Wont work too
well.

» Digression: Still lots of work to do in iterative solution meth-
ods for highly indefinite linear systems




» Other common characteristic:

Need a very large number of eigenval-
ues and eigenvectors

» Applications: Excited states in quantum physics: TDDFT,
GW, ...

» Or just plain Density Functional Theory (DFT)

» Number of wanted eigenvectors is equal to number of occu-
pied states — [ == the number of valence electrons in DFT]

» An example: in real-space code (PARSEC), you can have a
Hamiltonian of size a few Millions, and number of ev’s in the
tens of thousands.




Polynomial filtered Lanczos

» Possible solution: Use Lanczos with polynomial filtering.

» |dea not new (and not too popular in the past)

1. Very large problems;

What is new? | 2. (tens of) Thousands of eigenvalues;

3. Parallelism.
» Most important factor is 2.

» Main rationale of polynomial filtering : reduce the cost of
orthogonalization

» |mportant application: compute the spectrum by pieces
[‘'spectrum slicing’ a term coined by B. Parlett]




Introduction: What is filtered Lanczos?

» In short: we just replace (A — o)~ ! in S.I. Lanczos by
pr(A) where py(t) = polynomial of degree k

» We want to compute eigenval- .
ues near o = 1 of a matrix A with 7
A(A) g [Oa 4]' il
» Use the simple transform: |

pa(t) = 1 - a(t — o) » |
» Fora = .2,0 = 1youget — . f

> Use Lanczos with B = py(A).

» Eigenvalues near o become the dominant ones — so Lanc-
zos will work — but...

» ... they are now poorly separated — slow convergence.
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A low-pass filter

[a,b]=[0,3], [&.n]=[0,1], d=10

blase filtelr P(A) L
polynomial filter p(A) ------- -

f(\)
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A mid-pass filter

[a,b]=[0,3], [§,n]=[0.5,1], d=20

f(\)

blase filtelr P(A) L
polynomial filter p(A) ------- -
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Misconception: High degree polynomials are bad

d=1000
T T T T T T
1+ base filter y(A) ——— -~
polynomial filter p(A) -------
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Hypothetical scenario: large A, zillions of wanted e-values

» Assume A has size 10 M (Not huge by todays standard)

» ... and you want to compute 50,000 eigenvalues/vectors
(huge for numerical analysits, not for physicists) ...

» ... In the lower part of the spectrum - or the middle.

» By (any) standard methods you will need to orthogonalize
at least 50K vectors of size 10M —

» Space is an issue: 4 x 10'? bytes = 4TB of mem *just for
the basis™

» Orthogonalization is also an issue: 5 x 10'% = 50 PetaOPS.

» Toward the end, at step k, each orthogonalization step costs
about = 4kn ~ 200, 000n for k close to 50, 000.
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The alternative: ‘Spectrum slicing’ or ‘windowing’

Rationale. Eigenvectors on both ends of wanted spectrum

need not be orthogonalized against each other :
A

A A

» |dea: Get the spectrum by ‘slices’ or 'windows’

» (Can get a few hundreds or thousands of vectors at a time.
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Compute eigenpairs one slice at a time

YV i

) UMA \ ) JK \ _

» Decelvingly simple looking idea.

» |ssues:
e Deal with interfaces : duplicate/missing eigenvalues
e Window size [need estimate of eigenvalues]
e polynomial degree




Spectrum slicing in PARSEC

» Being implemented in our code:

Pseudopotential Algorithm for Real-Space Electronic Calcul-
tions (PARSEC)

» See:

‘A Spectrum Slicing Method for the Kohn-Sham Problem’, G.
Schofield, J. R. Chelikowsky and YS, Computer Physics Comm.,
vol 183, pp. 487-505.

» Refer to this paper for details on windowing and ‘initial proof
of concept’
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Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson k
approximation of a f(x) = ng%Tz’(m)
function f: =0
2 — d;0 [ 1
vi = / f(x)dx d;0 = Kronecker symbol
0y “1vV1 — x2
0.; o .kﬁlgg —
The g¥’s attenuate higher order ~ 2°[| 777
terms in the sum. |
Attenuation coefficient g¥ for o]
k=50,100,150 —

0 20 40 60 80 100120140160
i (Degree)




7T
Let ap, = ——, then:
k + 2

L ( k—|—2) Sln(ak) COS(ZOAk) + k—|—2 COS(ak) Sm(zak)

sin(ay)

See

‘Electronic structure calculations in plane-wave codes without
diagonalization.” Laurent O. Jay, Hanchul Kim, YS, and James R.

Chelikowsky. Computer Physics Communications, 118:21-30,
1999.




The expansion coefficients ~; |

When f(x) is a step function on [a, b] C [—1 1]:

Yi

(

. T

2

1
— (arccos(a) — arccos(b)) : 2 =0
T

(

sin(z arccos(a)) — sin(4 arccos(b))) >0

1

» A few examples follow —

17
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Computing the polynomials: Jackson-Chebyshev

» Polynomials of degree 30 for [a, b] = [.3, .6]
Mid—pass polynom. filter [-1 .3 .6 1]; Degree = 30

—IStandlard Clheb.
—Jackson—Cheb.
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19

Mid- pass polynom fllter[ 1 3 .6 1]; Degree 80

1.2

—Standard Cheb

—Jackson—Cheb.
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20

1.2
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How to get the polynomial filter? Second approach

Idea: | ¢

e First select an “ideal filter”
e e.g., a piecewise polyno-
mial function

a b

» For example ¢ = Hermite interpolating pol. in [0,a], and
¢ = 1in[a, b]

» Referred to as the ‘Base filter’
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e Then approximate base
filter by degree k polynomial
In a least-squares sense.

e Can do this without nume-
rical integration

Main advantage: Extremely flexible.

Method: Build a sequence of polynomials ¢, which approxi-
mate the ideal PP filter ¢, in the L4 sense.

» Again 2 implementations
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» Define ¢, = the least-squares polynomial approximation to

o:
dr(t) = Z<¢’ P;)Pj(t),

where {P,} is a basis of polynomials that is orthonormal for
some L, inner-product.

» Method 1: Use Stieljes procedure to computing orthogonal
polynomials



ALGORITHM : 1. Stieljes

Po = 0,
B1 = [|Soll( s
Pi(t) = 5:So(t);
Forg =2,...,m Do
a;j = (t Pj, Pj),
Sj(t) =t P;(t) — ojP;(t) — B Pj-1(t),
Bi+1 = lIS;5ll¢
Pj+1(t) = 5-8;(t).
EndDo

© XN AN DN =
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Computation of Stieljes coefficients

Problem: To compute the scalars o; and G, of 3-term
recurrence (Stieljes) + the expansion coefficients ~;. Need to
avoid numerical integration.

Solution: define orthogonal polynomials over two (or more)
disjoint intervals — see similar work YS'83:

YS, ‘lterative solution of indefinite symmetric systems by meth-
ods using orthogonal polynomials over two disjoint intervals’,
SIAM Journal on Numerical Analysis, 20 (1983), pp. 784-811.

E. KOKIOPOULOU AND YS, ‘Polynomial Filtering in Latent Se-
mantic Indexing for Information Retrieval’, in Proc. ACM-SIGIR

Conference on research and development in information re-
trieval, Sheffield, UK, (2004)
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» Let large interval be [0, b] — should contain A(B)

» Assume 2 subintervals. On subinterval [a;_1,a4],1 = 1,2
define the inner-product (Y1, ¥2)q, ,.a, DY

[ P1(t)1h2(t)
<¢19 ¢2>al_1,al — o \/(t — 1)(al — t) dt.

» Then define the inner product on [0, b] by

<¢19 ¢2> — /Oa ’l,bl(t)’l,bz(t) dt—|—p/ \/ ¢1(t)¢z(t)

Vit(a —t) (t —a)(b—1t)

» To avoid numerical integration, use a basis of Chebyshev
polynomials on interval [YS'83]
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Mehod 2 : Filtered CG/CR - like polynomial iterations

Want: a CG-like (or CR-like) algorithms for which the
inderlying residual polynomial or solution polynomial are
Least-squares filter polynomials

» Seek s to minimize ||[¢(A) — X s(\) || with respect to a
certain norm ||.||w-

» Equivalently, minimize ||(1 — ¢) — (1 — A s(A))||w
over all polynomials s of degree < k.

» Focus on second view-point (residual polynomial)

» goalisto make r(A) =1 — As(\) closeto 1 — ¢.
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Recall: Conjugate Residual Algorithm

ALGORITHM : 2. Conjugate Residual Algorithm

1. COmpUte ro := b — Axy, Po :— T

2. Fory = 0,1,..., until convergence Do:
3. oj:=(rj, Ar;)/(Apj, Ap;)

4. Ljy1 = Ly + &;P;

5. rjt+1 = 7T5; — ajApj

6. Bj = (741, Arjp1) / (15, Arj)

/. Pj+1 = Tjt1 + Bp;

8 Compute Apj+1 = Arji1 + B;Ap;
9. EndDo

» Think in terms of polynomial iteration
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ALGORITHM : 3. Filtered CR polynomial Iteration

~

1. Compute 7o := b — Axg, py := Ty
1.a.

o = po = 1

Compute A

2. Fory =0,1,..., until convergence Do:

3. a; =< pja)‘pj >y [ < AT0jy AT S

3.a. = Qj— — QAT > [ < AT, AT >

4 Lj+1 = Ly ‘I' *;jPj

5. Tjt1:=T; — O;Ap; Pit1 = Pj — QAT
6. /BJ =< Pj+1, >‘p,7-|—1 > w / < Pj; )\Pj > w

7. Piy1:=Ti+ Bip; Tj+1 := Pj+1+ Om;
8 Compute A ;41

9. EndDo

» All polynomials expressed in Chebyshev basis - cost of
algorithm is negligible [ O (k?) for deg. k. ]

29
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A few mid-pass filters of various degrees

Four examples of middle-pass filters ¢ () and their polynomial
approximations p(\).

» Degrees 20 and 30

d=20 d=30

T T T T T L U T T T T T T L U T

1k base filter y(A) ——— | 1k base filter y(A) ——— |
polynomial filter p(A) ------- polynomial filter p(A) -------
08 | Y . 08 | Y i
0.6 . 0.6 \ .
g 04 /] \x— g 04 | \\ .
o N = *---- - if\ ----------------------------------------
0.2 . 0.2 ) .
0r 0k

0.2 . 0.2 .

O 4 | | | | | | | | _04 | | | | | | | |
15 -1 05 0 05 1 15 2 25 3 -15 -1 05 0 05 1 15 2 25 3

A A
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» Degrees 50 and 100

f(\)

31

d

=50

T T I | : | |

1F base filter p(A\) ——
polynomial filter p(A) -------
y ffffffff

0.8

0.6

04 I

0.2
o AN

-0.2 l | | | | | |
15 -1 05 0 05 1 15 2 25

f(A)

0.8

0.6

0.4

0.2

d=100

| basle fiIteIr qJ()\)I 0
polynomial filter p(A) -------
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Base Filter to build a Mid-Pass filter polynomial

We partition [0, b] into five sub-intervals,
[O, b] = [O, 1][7’1,7’2] U [Tz, T3] U [’T3, ’T4] U [’7'4, b]

A

-
>

’CI.' T, T, tl4 b
» Set: ¢ (t) = 0in [0, 7] U [14,b] and ¥(t) = 1 in [12, T3]

» Use standard Hermite interpolation to get ‘brigde’ functions
in [T1, T2] and [73, 74




References

‘A Filtered Lanczos Procedure for Extreme and Interior Eigen-
value Problems’, H. R. Fang and YS, SISC 34(4) A2220-2246
(2012). For details on window-less implementation (one slice)
+ code

‘Computation of Large Invariant Subspaces Using Polynomial
Filtered Lanczos lterations with Applications in Density Func-
tional Theory’, C. Bekas and E. Kokiopoulou and YS,

SIMAX 30(1), 397-418 (2008).

‘Filtered Conjugate Residual-type Algorithms with Applications’,
YS; SIMAX 28 pp. 845-870 (2006)




Tests — Test matrices

» Experiments performed in sequential mode: on two dual-
core AMD Opteron(tm) Processors 2214 @ 2.2GHz and 16GB
memory.

Test matrices: |

* Five Hamiltonians from electronic structure calculations,

* An integer matrix named Andrews, and

* A discretized Laplacian (FD)




500 ':.:5"
1000
1500 _'.'_'-'? :
2000 RS ‘
2500
3000
3500

4000}

4500}

- R . i I PR ~f.'~"1." I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
nz = 8451395 x 10" nz = 11584

LT L, -

5000 UL et S
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Matrix characteristics

_ full eigen-range  Fermi

matrix n nnz - a, bl n
GE87H76 112,985 7,892,195 69.85 [—1.2140,32.764] 212
Ge99H100 112,985 8,451,395 74.80 [—1.2264,32.703] 248
Sl41Ge41H72 | 185,639 15,011,265 80.86 [—1.2135,49.818] 200
Si87H76 240,369 10,661,631 44.36 [—1.1963,43.074] 212
Gad41As41H72| 268,096 18,488,476 68.96 [—1.2501,1300.9] 200
Andrews 60,000 760,154 12.67 [0,36.485] N/A
Laplacian 1,000,000 6,940,000 6.94 [0.00290,11.997] N/A

36
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Experimental set-up

eigen-interval # eig # eig
matrix €, ] ngmn infa,mn =
GE87H76 [—0.645, —0.0053] 212 318/0.0188 0.0356
Ge99H100 [—0.65, —0.0096] 250 37210.0189 0.0359
S141Ge41H72 | [—0.64, —0.00282] 218 318/0.0125 0.0237
Si87H76 [—0.66, —0.33] 212 317/0.0075 0.0196
Gad41As41H72 [—0.64, 0.0] 201 301 0.0005 0.0010
Andrews [4, 5] 1,844 3,751 /0.0274 0.1370
Laplacian [1,1.01] 276 >17,000 0.0008 0.0044
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Results for Ge99H100 -set 1 of stats

method | degree | # iter # matvecs memory
d = 20 1,020 20,400 1,117

filt. Lan. | d =30 | 710 21,300 806
(high-pass)| d = 50 470 23,500 508
d =100 340 34,000 440

d=10 | 770 7,700 806

filt. Lan. | d =20 | 600 12,000 688
(low-pass)  d =30 | 530 15,900 590
d=50 470 23,500 508

Part. L Lanczos |5,140 5,140 4,883
ARPACK 6,233 6,233 1,073
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Results for Ge99H100 -CPU times (sec.)

method | degree |p(A)v reorth eigvec  total
d= 20| 1,283 77 23 1,417

filt. Lan. | d = 30 | 1,343 55 14 1,440
(high-pass)| d = 50 | 1,411 32 9 1,479
d =100 1,866 26 7 1,930

d=10 483 124 21 668

filt. Lan. | d = 20 663 Y4 21 777
(low-pass) | d =30 | 1,017 49 15 1,123
d=50 | 1,254 26 13 1,342

Part. L Lanczos 234 1,460 793 2,962
ARPACK 298 717,503 7666 18,468
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Results for Andrews - set 1 of stats

method | degree | # iter # matvecs memory
d=20 9,440 188,800 4,829

filt. Lan. | d =30 | 6,040 180,120 2,799
(mid-pass) | d =50 3,800 190,000 1,947
d =100 2,360 236,000 1,131

d =10 | 5,990 59,900 2,799

filt. Lan. | d =20 | 4,780 95,600 2,334
(high-pass)| d =30 | 4,360 130,800 2,334
d=50 | 4690 234,500 2,334

Part. L Lanczos 22,345 22,345 10,312
ARPACK 30,716 30,716 6,129
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Results for Andrews - CPU times (sec.)

method | degree | p(A)v reorth eigvec total
d=20| 2,797 192 4,834 9,840

filt. Lan. | d =30 | 2,429 115 2,151 5,279
(mid-pass) | d = 50 | 3,040 65 521 3,810
d =100 3,757 93 220 4,147

d=10 | 1,152 2,911 2,391 7,050

filt. Lan. | d =20 @ 1,335 1,718 1,472 4,874
(high-pass) | d = 30 | 1,806 1,218 1,274 4,576
d =50 | 3,187 1,032 1,383 5,918

Part. L Lanczos 217 30,455 64,223 112,664
ARPACK 345 423,492 118,094 441,934
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Results for Laplacian — set 1 of stats

method

degree

# iter # matvecs

memory

mid-pass filter

600
1,000
1,600

1,400 840,000
950 950,000
/10 1,136,000

10,913
7,640
6,358
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Results for Laplacian — CPU times

method degree| p(A)v reorth eigvec total

600 97,817 927 241 99,279
mid-pass filter 1,000 | 119,242 773 162 | 120,384
1,600 169,741 722 119/170,856
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Conclusion

» Quite appealing general approach when number of eigen-
vectors to be computed is large

» and when Matvec is not too expensise

» Wil not work too well for generalized eigenvalue problem

» (Code available here

WWW.CcsS.umn.edu/~saad/software/filtlan
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