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First:
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ä Work supported in part by NSF (to 2012) and now by DOE
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Introduction

Q:
How do you compute eigenvalues in the middle of
the spectrum of a large Hermitian matrix?

A:
Method of choice: Shift and invert + some projec-
tion process (Lanczos, subspace iteration..)

Main
steps:

1) Select a shift (or sequence of shifts) σ;
2) Factor A− σI: A− σI = LDLT

3) Apply Lanczos algorithm to (A− σI)−1

ä Solves with A− σI carried out using factorization

ä Limitation: factorization

3 SIAM-CSE – February 27, 2013



Q:
What if factoring A is too expensive (e.g., Large
3-D similation)?

A: Obvious answer: Use iterative solvers ...

ä However: systems are highly indefinite → Wont work too
well.

ä Digression: Still lots of work to do in iterative solution meth-
ods for highly indefinite linear systems

4 SIAM-CSE – February 27, 2013



ä Other common characteristic:

Need a very large number of eigenval-
ues and eigenvectors

ä Applications: Excited states in quantum physics: TDDFT,
GW, ...

ä Or just plain Density Functional Theory (DFT)

ä Number of wanted eigenvectors is equal to number of occu-
pied states – [ == the number of valence electrons in DFT]

ä An example: in real-space code (PARSEC), you can have a
Hamiltonian of size a few Millions, and number of ev’s in the
tens of thousands.
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Polynomial filtered Lanczos

ä Possible solution: Use Lanczos with polynomial filtering.

ä Idea not new (and not too popular in the past)

What is new?
1. Very large problems;

2. (tens of) Thousands of eigenvalues;

3. Parallelism.

ä Most important factor is 2.

ä Main rationale of polynomial filtering : reduce the cost of
orthogonalization

ä Important application: compute the spectrum by pieces
[‘spectrum slicing’ a term coined by B. Parlett]
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Introduction: What is filtered Lanczos?

ä In short: we just replace (A − σI)−1 in S.I. Lanczos by
pk(A) where pk(t) = polynomial of degree k

ä We want to compute eigenval-
ues near σ = 1 of a matrix A with
Λ(A) ⊆ [0, 4].
ä Use the simple transform:
p2(t) = 1− α(t− σ)2.
ä For α = .2, σ = 1 you get−→
ä Use Lanczos with B = p2(A).

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

ä Eigenvalues near σ become the dominant ones – so Lanc-
zos will work – but...

ä ... they are now poorly separated→ slow convergence.
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A low-pass filter
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A mid-pass filter
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Misconception: High degree polynomials are bad
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Hypothetical scenario: large A, zillions of wanted e-values

ä Assume A has size 10M (Not huge by todays standard)

ä ... and you want to compute 50,000 eigenvalues/vectors
(huge for numerical analysits, not for physicists) ...

ä ... in the lower part of the spectrum - or the middle.

ä By (any) standard methods you will need to orthogonalize
at least 50K vectors of size 10M –

ä Space is an issue: 4 × 1012 bytes = 4TB of mem *just for
the basis*

ä Orthogonalization is also an issue: 5×1016 = 50 PetaOPS.

ä Toward the end, at step k, each orthogonalization step costs
about≈ 4kn ≈ 200, 000n for k close to 50, 000.
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The alternative: ‘Spectrum slicing’ or ‘windowing’

Rationale. Eigenvectors on both ends of wanted spectrum
need not be orthogonalized against each other :

ä Idea: Get the spectrum by ‘slices’ or ’windows’

ä Can get a few hundreds or thousands of vectors at a time.
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Compute eigenpairs one slice at a time

ä Deceivingly simple looking idea.

ä Issues:

• Deal with interfaces : duplicate/missing eigenvalues

• Window size [need estimate of eigenvalues]

• polynomial degree
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Spectrum slicing in PARSEC

ä Being implemented in our code:

Pseudopotential Algorithm for Real-Space Electronic Calcul-
tions (PARSEC)

ä See :

‘A Spectrum Slicing Method for the Kohn-Sham Problem’, G.
Schofield, J. R. Chelikowsky and YS, Computer Physics Comm.,
vol 183, pp. 487-505.

ä Refer to this paper for details on windowing and ‘initial proof
of concept’
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Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson
approximation of a
function f :

f(x) ≈
k∑
i=0

gki γiTi(x)

γi =
2− δi0
π

∫ 1

−1

1
√

1− x2
f(x)dx δi0 = Kronecker symbol

The gki ’s attenuate higher order
terms in the sum.

Attenuation coefficient gki for
k=50,100,150 →  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  20  40  60  80  100 120 140 160

gk i

i (Degree)

k=50
k=100
k=150

15 SIAM-CSE – February 27, 2013



Let αk =
π

k + 2
, then :

gki =

(
1− i

k+2

)
sin(αk) cos(iαk) + 1

k+2
cos(αk) sin(iαk)

sin(αk)

See

‘Electronic structure calculations in plane-wave codes without
diagonalization.’ Laurent O. Jay, Hanchul Kim, YS, and James R.
Chelikowsky. Computer Physics Communications, 118:21–30,
1999.
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The expansion coefficients γi

When f(x) is a step function on [a, b] ⊆ [−1 1]:

γi =


1

π
(arccos(a)− arccos(b)) : i = 0

2

π

(
sin(i arccos(a))− sin(i arccos(b))

i

)
: i > 0

ä A few examples follow –
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Computing the polynomials: Jackson-Chebyshev

ä Polynomials of degree 30 for [a, b] = [.3, .6]
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How to get the polynomial filter? Second approach

Idea:

• First select an “ideal filter”
• e.g., a piecewise polyno-
mial function

ba

φ

ä For example φ = Hermite interpolating pol. in [0,a], and
φ = 1 in [a, b]

ä Referred to as the ‘Base filter’
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• Then approximate base
filter by degree k polynomial
in a least-squares sense.
• Can do this without nume-
rical integration

ba

φ

Main advantage: Extremely flexible.

Method: Build a sequence of polynomials φk which approxi-
mate the ideal PP filter φ, in the L2 sense.

ä Again 2 implementations
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ä Define φk ≡ the least-squares polynomial approximation to
φ:

φk(t) =
k∑
j=1

〈φ,Pj〉Pj(t),

where {Pj} is a basis of polynomials that is orthonormal for
some L2 inner-product.

ä Method 1: Use Stieljes procedure to computing orthogonal
polynomials



ALGORITHM : 1 Stieljes

1. P0 ≡ 0,
2. β1 = ‖S0‖〈 〉,
3. P1(t) = 1

β1
S0(t),

4. For j = 2, . . . ,m Do
5. αj = 〈t Pj,Pj〉,
6. Sj(t) = t Pj(t)− αjPj(t)− βjPj−1(t),
7. βj+1 = ‖Sj‖〈 〉,
8. Pj+1(t) = 1

βj+1
Sj(t).

9. EndDo

24 SIAM-CSE – February 27, 2013



Computation of Stieljes coefficients

Problem: To compute the scalars αj and βj+1, of 3-term
recurrence (Stieljes) + the expansion coefficients γj. Need to
avoid numerical integration.

Solution: define orthogonal polynomials over two (or more)
disjoint intervals – see similar work YS’83:

YS, ‘Iterative solution of indefinite symmetric systems by meth-
ods using orthogonal polynomials over two disjoint intervals’,
SIAM Journal on Numerical Analysis, 20 (1983), pp. 784–811.

E. KOKIOPOULOU AND YS, ‘Polynomial Filtering in Latent Se-
mantic Indexing for Information Retrieval ’, in Proc. ACM-SIGIR
Conference on research and development in information re-
trieval, Sheffield, UK, (2004)
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ä Let large interval be [0, b] – should contain Λ(B)

ä Assume 2 subintervals. On subinterval [al−1, al], l = 1, 2
define the inner-product 〈ψ1, ψ2〉al−1,al by

〈ψ1, ψ2〉al−1,al =

∫ al

al−1

ψ1(t)ψ2(t)√
(t− al−1)(al − t)

dt.

ä Then define the inner product on [0, b] by

〈ψ1, ψ2〉 =

∫ a

0

ψ1(t)ψ2(t)√
t(a− t)

dt+ ρ

∫ b

a

ψ1(t)ψ2(t)√
(t− a)(b− t)

dt.

ä To avoid numerical integration, use a basis of Chebyshev
polynomials on interval [YS’83]
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Mehod 2 : Filtered CG/CR - like polynomial iterations

Want: a CG-like (or CR-like) algorithms for which the
inderlying residual polynomial or solution polynomial are
Least-squares filter polynomials

ä Seek s to minimize ‖φ(λ) − λ s(λ)‖w with respect to a
certain norm ‖.‖w.

ä Equivalently, minimize ‖(1− φ)− (1− λ s(λ))‖w
over all polynomials s of degree≤ k.

ä Focus on second view-point (residual polynomial)

ä goal is to make r(λ) ≡ 1− λs(λ) close to 1− φ.
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Recall: Conjugate Residual Algorithm

ALGORITHM : 2 Conjugate Residual Algorithm

1. Compute r0 := b−Ax0, p0 := r0

2. For j = 0, 1, . . . , until convergence Do:
3. αj := (rj, Arj)/(Apj, Apj)
4. xj+1 := xj + αjpj
5. rj+1 := rj − αjApj
6. βj := (rj+1, Arj+1)/(rj, Arj)
7. pj+1 := rj+1 + βjpj
8. Compute Apj+1 = Arj+1 + βjApj
9. EndDo

ä Think in terms of polynomial iteration

28 SIAM-CSE – February 27, 2013



ALGORITHM : 3 Filtered CR polynomial Iteration

1. Compute r̃0 := b−Ax0, p0 := r̃0 π0 = ρ0 = 1

1.a. Compute λπ0

2. For j = 0, 1, . . . , until convergence Do:
3. α̃j :=< ρj, λρj >w / < λπj, λπj >w

3.a. αj := α̃j− < 1− φ, λπj >w / < λπj, λπj >w

4. xj+1 := xj + αjpj
5. r̃j+1 := r̃j − α̃jApj ρj+1 = ρj − α̃jλπj
6. βj :=< ρj+1, λρj+1 >w / < ρj, λρj >w

7. pj+1 := rj+1 + βjpj πj+1 := ρj+1 + βjπj
8. Compute λπj+1

9. EndDo

ä All polynomials expressed in Chebyshev basis - cost of
algorithm is negligible [ O(k2) for deg. k. ]
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A few mid-pass filters of various degrees

Four examples of middle-pass filters ψ(λ) and their polynomial
approximations ρ(λ).

ä Degrees 20 and 30
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ä Degrees 50 and 100
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Base Filter to build a Mid-Pass filter polynomial

We partition [0, b] into five sub-intervals,

[0, b] = [0, 1][τ1, τ2] ∪ [τ2, τ3] ∪ [τ3, τ4] ∪ [τ4, b]

τ τ τ τ

0
b

21 3 4

ä Set: ψ(t) = 0 in [0, τ1] ∪ [τ4, b] and ψ(t) = 1 in [τ2, τ3]

ä Use standard Hermite interpolation to get ‘brigde’ functions
in [τ1, τ2] and [τ3, τ4]
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Tests – Test matrices

ä Experiments performed in sequential mode: on two dual-
core AMD Opteron(tm) Processors 2214 @ 2.2GHz and 16GB
memory.

Test matrices:

* Five Hamiltonians from electronic structure calculations,

* An integer matrix named Andrews, and

* A discretized Laplacian (FD)
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Matrix characteristics

matrix n nnz nnz
n

full eigen-range Fermi

[a, b] n0

GE87H76 112,985 7,892,195 69.85 [−1.2140, 32.764] 212

Ge99H100 112,985 8,451,395 74.80 [−1.2264, 32.703] 248

SI41Ge41H72 185,639 15,011,265 80.86 [−1.2135, 49.818] 200

Si87H76 240,369 10,661,631 44.36 [−1.1963, 43.074] 212

Ga41As41H72 268,096 18,488,476 68.96 [−1.2501, 1300.9] 200

Andrews 60,000 760,154 12.67 [0, 36.485] N/A

Laplacian 1,000,000 6,940,000 6.94 [0.00290, 11.997] N/A
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Experimental set-up

eigen-interval # eig # eig

matrix [ξ, η] in [ξ, η] in [a, η] η−ξ
b−a

η−a
b−a

GE87H76 [−0.645,−0.0053] 212 318 0.0188 0.0356

Ge99H100 [−0.65,−0.0096] 250 372 0.0189 0.0359

SI41Ge41H72 [−0.64,−0.00282] 218 318 0.0125 0.0237

Si87H76 [−0.66,−0.33] 212 317 0.0075 0.0196

Ga41As41H72 [−0.64, 0.0] 201 301 0.0005 0.0010

Andrews [4, 5] 1,844 3,751 0.0274 0.1370

Laplacian [1, 1.01] 276 >17,000 0.0008 0.0044
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Results for Ge99H100 -set 1 of stats

method degree # iter # matvecs memory

d = 20 1,020 20,400 1,117

filt. Lan. d = 30 710 21,300 806

(high-pass) d = 50 470 23,500 508

d = 100 340 34,000 440

d = 10 770 7,700 806

filt. Lan. d = 20 600 12,000 688

(low-pass) d = 30 530 15,900 590

d = 50 470 23,500 508

Part. ⊥ Lanczos 5,140 5,140 4,883

ARPACK 6,233 6,233 1,073
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Results for Ge99H100 -CPU times (sec.)

method degree ρ(A)v reorth eigvec total

d = 20 1,283 77 23 1,417

filt. Lan. d = 30 1,343 55 14 1,440

(high-pass) d = 50 1,411 32 9 1,479

d = 100 1,866 26 7 1,930

d = 10 483 124 21 668

filt. Lan. d = 20 663 57 21 777

(low-pass) d = 30 1,017 49 15 1,123

d = 50 1,254 26 13 1,342

Part. ⊥ Lanczos 234 1,460 793 2,962

ARPACK 298 †17,503 †666 18,468

39 SIAM-CSE – February 27, 2013



Results for Andrews - set 1 of stats

method degree # iter # matvecs memory

d = 20 9,440 188,800 4,829

filt. Lan. d = 30 6,040 180,120 2,799

(mid-pass) d = 50 3,800 190,000 1,947

d = 100 2,360 236,000 1,131

d = 10 5,990 59,900 2,799

filt. Lan. d = 20 4,780 95,600 2,334

(high-pass) d = 30 4,360 130,800 2,334

d = 50 4,690 234,500 2,334

Part. ⊥ Lanczos 22,345 22,345 10,312

ARPACK 30,716 30,716 6,129
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Results for Andrews - CPU times (sec.)

method degree ρ(A)v reorth eigvec total

d = 20 2,797 192 4,834 9,840

filt. Lan. d = 30 2,429 115 2,151 5,279

(mid-pass) d = 50 3,040 65 521 3,810

d = 100 3,757 93 220 4,147

d = 10 1,152 2,911 2,391 7,050

filt. Lan. d = 20 1,335 1,718 1,472 4,874

(high-pass) d = 30 1,806 1,218 1,274 4,576

d = 50 3,187 1,032 1,383 5,918

Part. ⊥ Lanczos 217 30,455 64,223 112,664

ARPACK 345 †423,492 †18,094 441,934
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Results for Laplacian – set 1 of stats

method degree # iter # matvecs memory

mid-pass filter

600 1,400 840,000 10,913

1, 000 950 950,000 7,640

1, 600 710 1,136,000 6,358
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Results for Laplacian – CPU times

method degree ρ(A)v reorth eigvec total

mid-pass filter

600 97,817 927 241 99,279

1, 000 119,242 773 162 120,384

1, 600 169,741 722 119 170,856
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Conclusion

ä Quite appealing general approach when number of eigen-
vectors to be computed is large

ä and when Matvec is not too expensise

ä Will not work too well for generalized eigenvalue problem

ä Code available here
www.cs.umn.edu/~saad/software/filtlan
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