OF MINNESOTA TWIN CITIES

Polynomial filtering for interior eigenvalue problems

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

SIAM CSE Boston - March 1, 2013

First:

- Joint work with: Haw-ren Fang
- Grady Schoefield and Jim Chelikowsky [UT Austin] [windowing into PARSEC]
- Work supported in part by NSF (to 2012) and now by DOE

Introduction

How do you compute eigenvalues in the middle of the spectrum of a large Hermitian matrix?

Method of choice: Shift and invert + some projection process (Lanczos, subspace iteration..)

- 1) Select a shift (or sequence of shifts) σ ; 2) Factor $A - \sigma I$: $A - \sigma I = LDL^T$ 3) Apply Lanczos algorithm to $(A - \sigma I)^{-1}$
- > Solves with $A \sigma I$ carried out using factorization
- Limitation: factorization

\bigcirc What if factoring A is too expensive (e.g., Large 3-D similation)?

A: Obvious answer: Use iterative solvers ...

> However: systems are highly indefinite \rightarrow Wont work too well.

Digression: Still lots of work to do in iterative solution methods for highly indefinite linear systems > Other common characteristic:

Need a very large number of eigenvalues and eigenvectors

Applications: Excited states in quantum physics: TDDFT, GW, ...

Or just plain Density Functional Theory (DFT)

Number of wanted eigenvectors is equal to number of occupied states – [== the number of valence electrons in DFT]

An example: in real-space code (PARSEC), you can have a Hamiltonian of size a few Millions, and number of ev's in the tens of thousands.

Polynomial filtered Lanczos

- Possible solution: Use Lanczos with polynomial filtering.
- Idea not new (and not too popular in the past)

1. Very large problems;

What is new?

2. (tens of) Thousands of eigenvalues;

3. Parallelism.

- Most important factor is 2.
- Main rationale of polynomial filtering : reduce the cost of orthogonalization
- Important application: compute the spectrum by pieces ['spectrum slicing' a term coined by B. Parlett]

Introduction: What is filtered Lanczos?

> In short: we just replace $(A - \sigma I)^{-1}$ in S.I. Lanczos by $p_k(A)$ where $p_k(t)$ = polynomial of degree k

Eigenvalues near σ become the dominant ones – so Lanczos will work – but...

> ... they are now poorly separated \rightarrow slow convergence.

A low-pass filter

SIAM-CSE - February 27, 2013

A mid-pass filter

SIAM-CSE - February 27, 2013

Misconception: High degree polynomials are bad

Hypothetical scenario: large A, zillions of wanted e-values

- > Assume A has size 10M (Not huge by todays standard)
- Image and you want to compute 50,000 eigenvalues/vectors (huge for numerical analysits, not for physicists) ...
- > ... in the lower part of the spectrum or the middle.
- ➤ By (any) standard methods you will need to orthogonalize at least 50K vectors of size 10M -

> Space is an issue: 4×10^{12} bytes = 4TB of mem *just for the basis*

> Orthogonalization is also an issue: $5 \times 10^{16} = 50$ PetaOPS.

Toward the end, at step k, each orthogonalization step costs about $\approx 4kn \approx 200,000n$ for k close to 50,000.

The alternative: 'Spectrum slicing' or 'windowing'

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other :

Idea: Get the spectrum by 'slices' or 'windows'

Can get a few hundreds or thousands of vectors at a time.

Deceivingly simple looking idea.

Issues:

- Deal with interfaces : duplicate/missing eigenvalues
- Window size [need estimate of eigenvalues]
- polynomial degree

Spectrum slicing in PARSEC

Being implemented in our code:

Pseudopotential Algorithm for Real-Space Electronic Calcultions (PARSEC)

See :

'A Spectrum Slicing Method for the Kohn-Sham Problem', G. Schofield, J. R. Chelikowsky and YS, Computer Physics Comm., vol 183, pp. 487-505.

Refer to this paper for details on windowing and 'initial proof of concept'

Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson approximation of a function *f*:

$$f(x) pprox \sum_{i=0}^k g_i^k \gamma_i T_i(x)$$

$$\gamma_i = rac{2-\delta_{i0}}{\pi} \int_{-1}^1 rac{1}{\sqrt{1-x^2}} f(x) dx \;\;\; \delta_{i0} = \;$$
 Kronecker symbol

The g_i^k 's attenuate higher order terms in the sum.

SIAM-CSE – February 27, 2013

15

Let
$$\alpha_k = \frac{\pi}{k+2}$$
, then :
 $g_i^k = \frac{\left(1 - \frac{i}{k+2}\right)\sin(\alpha_k)\cos(i\alpha_k) + \frac{1}{k+2}\cos(\alpha_k)\sin(i\alpha_k)}{\sin(\alpha_k)}$

See

'Electronic structure calculations in plane-wave codes without diagonalization.' Laurent O. Jay, Hanchul Kim, YS, and James R. Chelikowsky. *Computer Physics Communications*, 118:21–30, 1999.

The expansion coefficients γ_i

When f(x) is a step function on $[a, b] \subseteq [-1 \ 1]$:

A few examples follow –

17

Computing the polynomials: Jackson-Chebyshev

SIAM-CSE - February 27, 2013

SIAM-CSE - February 27, 2013

How to get the polynomial filter? Second approach

For example ϕ = Hermite interpolating pol. in [0,a], and $\phi = 1$ in [a, b]

Referred to as the 'Base filter'

Then approximate base filter by degree k polynomial in a least-squares sense.
Can do this without numerical integration

Main advantage: Extremely flexible.

Method: Build a sequence of polynomials ϕ_k which approximate the ideal PP filter ϕ , in the L_2 sense.

Again 2 implementations

• Define $\phi_k \equiv$ the least-squares polynomial approximation to ϕ :

$$\phi_k(t) = \sum_{j=1}^k \langle \phi, \mathcal{P}_j
angle \mathcal{P}_j(t),$$

where $\{\mathcal{P}_j\}$ is a basis of polynomials that is orthonormal for some L_2 inner-product.

Method 1: Use Stieljes procedure to computing orthogonal polynomials

ALGORITHM : 1 Stieljes

1.
$$\mathcal{P}_{0} \equiv 0,$$

2. $\beta_{1} = \|\mathcal{S}_{0}\|_{\langle \ \rangle},$
3. $\mathcal{P}_{1}(t) = \frac{1}{\beta_{1}}\mathcal{S}_{0}(t),$
4. For $j = 2, ..., m$ Do
5. $\alpha_{j} = \langle t \mathcal{P}_{j}, \mathcal{P}_{j} \rangle,$
6. $\mathcal{S}_{j}(t) = t \mathcal{P}_{j}(t) - \alpha_{j}\mathcal{P}_{j}(t) - \beta_{j}\mathcal{P}_{j-1}(t),$
7. $\beta_{j+1} = \|\mathcal{S}_{j}\|_{\langle \ \rangle},$
8. $\mathcal{P}_{j+1}(t) = \frac{1}{\beta_{j+1}}\mathcal{S}_{j}(t).$
9. EndDo

Computation of Stieljes coefficients

Problem: To compute the scalars α_j and β_{j+1} , of 3-term recurrence (Stieljes) + the expansion coefficients γ_j . Need to avoid numerical integration.

Solution: define orthogonal polynomials over two (or more) disjoint intervals – see similar work YS'83:

YS, 'Iterative solution of indefinite symmetric systems by methods using orthogonal polynomials over two disjoint intervals', SIAM Journal on Numerical Analysis, 20 (1983), pp. 784–811.

E. KOKIOPOULOU AND YS, 'Polynomial Filtering in Latent Semantic Indexing for Information Retrieval', in Proc. ACM-SIGIR Conference on research and development in information retrieval, Sheffield, UK, (2004) ► Let large interval be [0, b] – should contain $\Lambda(B)$

> Assume 2 subintervals. On subinterval $[a_{l-1},a_l]$, l=1,2 define the inner-product $\langle \psi_1,\psi_2\rangle_{a_{l-1},a_l}$ by

$$\langle \psi_1, \psi_2
angle_{a_{l-1}, a_l} = \int_{a_{l-1}}^{a_l} rac{\psi_1(t) \psi_2(t)}{\sqrt{(t-a_{l-1})(a_l-t)}} \, dt.$$

> Then define the inner product on [0, b] by

$$\langle\psi_1,\psi_2
angle=\int_0^arac{\psi_1(t)\psi_2(t)}{\sqrt{t(a-t)}}\,dt+
ho\int_a^brac{\psi_1(t)\psi_2(t)}{\sqrt{(t-a)(b-t)}}\,dt.$$

To avoid numerical integration, use a basis of Chebyshev polynomials on interval [YS'83]

Mehod 2 : Filtered CG/CR - like polynomial iterations

Want: a CG-like (or CR-like) algorithms for which the inderlying residual polynomial or solution polynomial are Least-squares filter polynomials

Seek s to minimize $\|\phi(\lambda) - \lambda s(\lambda)\|_w$ with respect to a certain norm $\|.\|_w$.

► Equivalently, minimize $\|(1 - \phi) - (1 - \lambda s(\lambda))\|_w$ over all polynomials *s* of degree $\leq k$.

Focus on second view-point (residual polynomial)

> goal is to make $r(\lambda) \equiv 1 - \lambda s(\lambda)$ close to $1 - \phi$.

Recall: Conjugate Residual Algorithm

ALGORITHM : 2 Conjugate Residual Algorithm

1. Compute
$$r_0 := b - Ax_0$$
, $p_0 := r_0$
2. For $j = 0, 1, ...,$ until convergence Do:
3. $\alpha_j := (r_j, Ar_j)/(Ap_j, Ap_j)$
4. $x_{j+1} := x_j + \alpha_j p_j$
5. $r_{j+1} := r_j - \alpha_j Ap_j$
6. $\beta_j := (r_{j+1}, Ar_{j+1})/(r_j, Ar_j)$
7. $p_{j+1} := r_{j+1} + \beta_j p_j$
8. Compute $Ap_{j+1} = Ar_{j+1} + \beta_j Ap_j$
9. EndDo

Think in terms of polynomial iteration

ALGORITHM : 3 Filtered CR polynomial Iteration

1. Compute
$$\tilde{r}_{0} := b - Ax_{0}, p_{0} := \tilde{r}_{0}$$
 $\boxed{\pi_{0} = \rho_{0} = 1}$
1.a.
2. For $j = 0, 1, ..., until convergence Do:$
3. $\tilde{\alpha}_{j} := \langle \rho_{j}, \lambda \rho_{j} \rangle_{w} / \langle \lambda \pi_{j}, \lambda \pi_{j} \rangle_{w}$
3.a. $\alpha_{j} := \tilde{\alpha}_{j} - \langle 1 - \phi, \lambda \pi_{j} \rangle_{w} / \langle \lambda \pi_{j}, \lambda \pi_{j} \rangle_{w}$
4. $x_{j+1} := x_{j} + \alpha_{j}p_{j}$
5. $\tilde{r}_{j+1} := \tilde{r}_{j} - \tilde{\alpha}_{j}Ap_{j}$ $\boxed{\rho_{j+1} = \rho_{j} - \tilde{\alpha}_{j}\lambda \pi_{j}}$
6. $\beta_{j} := \langle \rho_{j+1}, \lambda \rho_{j+1} \rangle_{w} / \langle \rho_{j}, \lambda \rho_{j} \rangle_{w}$
7. $p_{j+1} := r_{j+1} + \beta_{j}p_{j}$ $\boxed{\pi_{j+1} := \rho_{j+1} + \beta_{j}\pi_{j}}$
8. $(Compute \lambda \pi_{j+1})$
9. EndDo

> All polynomials expressed in Chebyshev basis - cost of algorithm is negligible [$O(k^2)$ for deg. k.]

A few mid-pass filters of various degrees

Four examples of middle-pass filters $\psi(\lambda)$ and their polynomial approximations $\rho(\lambda)$.

Degrees 20 and 30

Degrees 50 and 100

Base Filter to build a Mid-Pass filter polynomial

We partition [0, b] into five sub-intervals,

 $[0,b] = [0,1][au_1, au_2] \cup [au_2, au_3] \cup [au_3, au_4] \cup [au_4,b]$

Set: ψ(t) = 0 in [0, τ₁] ∪ [τ₄, b] and ψ(t) = 1 in [τ₂, τ₃]
Use standard Hermite interpolation to get 'brigde' functions in [τ₁, τ₂] and [τ₃, τ₄]

SIAM-CSE – February 27, 2013

References

'A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems', H. R. Fang and YS, SISC 34(4) A2220-2246 (2012). For details on window-less implementation (one slice) + code

'Computation of Large Invariant Subspaces Using Polynomial Filtered Lanczos Iterations with Applications in Density Functional Theory', C. Bekas and E. Kokiopoulou and YS, SIMAX 30(1), 397-418 (2008).

'Filtered Conjugate Residual-type Algorithms with Applications', YS; SIMAX 28 pp. 845-870 (2006)

Experiments performed in sequential mode: on two dualcore AMD Opteron(tm) Processors 2214 @ 2.2GHz and 16GB memory.

Test matrices:

- * Five Hamiltonians from electronic structure calculations,
- * An integer matrix named Andrews, and
- * A discretized Laplacian (FD)

Matrix characteristics

matrix			nnz	full eigen-range	Fermi
Παιτκ	11	11112	\overline{n}	$[oldsymbol{a},oldsymbol{b}]$	n_0
GE87H76	112,985	7,892,195	69.85	[-1.2140, 32.764]	212
Ge99H100	112,985	8,451,395	74.80	[-1.2264, 32.703]	248
SI41Ge41H72	185,639	15,011,265	80.86	[-1.2135, 49.818]	200
Si87H76	240,369	10,661,631	44.36	[-1.1963, 43.074]	212
Ga41As41H72	268,096	18,488,476	68.96	[-1.2501, 1300.9]	200
Andrews	60,000	760,154	12.67	[0, 36.485]	N/A
Laplacian	1,000,000	6,940,000	6.94	$\left[0.00290, 11.997 ight]$	N/A

Experimental set-up

	eigen-interval	# eig	# eig		
matrix	$[m{\xi},m{\eta}]$	in $[\xi,\eta]$	in $[a,\eta]$	$rac{\eta-\xi}{b-a}$	$rac{\eta - a}{b - a}$
GE87H76	[-0.645, -0.0053]	212	318	0.0188	0.0356
Ge99H100	[-0.65, -0.0096]	250	372	0.0189	0.0359
SI41Ge41H72	[-0.64, -0.00282]	218	318	0.0125	0.0237
Si87H76	[-0.66, -0.33]	212	317	0.0075	0.0196
Ga41As41H72	[-0.64, 0.0]	201	301	0.0005	0.0010
Andrews	[4, 5]	1,844	3,751	0.0274	0.1370
Laplacian	[1, 1.01]	276	>17,000	0.0008	0.0044

Results for Ge99H100 -set 1 of stats

method	degree	# iter	# matvecs	memory
	d=20	1,020	20,400	1,117
filt. Lan.	d = 30	710	21,300	806
(high-pass)	d = 50	470	23,500	508
	d = 100	340	34,000	440
	d = 10	770	7,700	806
filt. Lan.	d=20	600	12,000	688
(low-pass)	d = 30	530	15,900	590
	d = 50	470	23,500	508
Part. ⊥ Lanczos		5,140	5,140	4,883
ARPACK		6,233	6,233	1,073

Results for Ge99H100 -CPU times (sec.)

method	degree	ho(A)v	reorth	eigvec	total
	d=20	1,283	77	23	1,417
filt. Lan.	d = 30	1,343	55	14	1,440
(high-pass)	d = 50	1,411	32	9	1,479
	d = 100	1,866	26	7	1,930
	d = 10	483	124	21	668
filt. Lan.	d=20	663	57	21	777
(low-pass)	d = 30	1,017	49	15	1,123
	d = 50	1,254	26	13	1,342
Part. ⊥ L	anczos	234	1,460	793	2,962
ARPA	CK	298	†17,503	[†] 666	18,468

Results for Andrews - set 1 of stats

method	degree	# iter	# matvecs	memory
	d=20	9,440	188,800	4,829
filt. Lan.	d = 30	6,040	180,120	2,799
(mid-pass)	d = 50	3,800	190,000	1,947
	d = 100	2,360	236,000	1,131
	d = 10	5,990	59,900	2,799
filt. Lan.	d=20	4,780	95,600	2,334
(high-pass)	d = 30	4,360	130,800	2,334
	d = 50	4,690	234,500	2,334
Part. ⊥ Lanczos		22,345	22,345	10,312
ARPACK		30,716	30,716	6,129

Results for Andrews - CPU times (sec.)

method	degree	ho(A)v	reorth	eigvec	total
	d=20	2,797	192	4,834	9,840
filt. Lan.	d = 30	2,429	115	2,151	5,279
(mid-pass)	d = 50	3,040	65	521	3,810
	d = 100	3,757	93	220	4,147
	d = 10	1,152	2,911	2,391	7,050
filt. Lan.	d=20	1,335	1,718	1,472	4,874
(high-pass)	d = 30	1,806	1,218	1,274	4,576
	d = 50	3,187	1,032	1,383	5,918
Part. \perp L	anczos	217	30,455	64,223	112,664
ARPA	СК	345	†423,492	†18,094	441,934

Results for Laplacian – set 1 of stats

method	degree	# iter	# matvecs	memory
	600	1,400	840,000	10,913
mid-pass filter	1,000	950	950,000	7,640
	1,600	710	1,136,000	6,358

Results for Laplacian – CPU times

method	degree	$\rho(A)v$	reorth	eigvec	total
	600	97,817	927	241	99,279
mid-pass filter	1,000	119,242	773	162	120,384
	1,600	169,741	722	119	170,856

Conclusion

Quite appealing general approach when number of eigenvectors to be computed is large

- and when Matvec is not too expensise
- Will not work too well for generalized eigenvalue problem
- Code available here

www.cs.umn.edu/~saad/software/filtlan