UNIVERSITY
 OF Minnesota twin cities

Polynomial filtering for interior eigenvalue problems
 Yousef Saad
 Department of Computer Science and Engineering

University of Minnesota

SIAM CSE
 Boston - March 1, 2013

First:

> Joint work with: Haw-ren Fang
> Grady Schoefield and Jim Chelikowsky [UT Austin] [windowing into PARSEC]
> Work supported in part by NSF (to 2012) and now by DOE

Introduction

Q. How do you compute eigenvalues in the middle of the spectrum of a large Hermitian matrix?

A:
Method of choice: Shift and invert + some projection process (Lanczos, subspace iteration..)

Main

1) Select a shift (or sequence of shifts) σ;
2) Factor $A-\sigma I: \quad A-\sigma I=L D L^{T}$
3) Apply Lanczos algorithm to $(A-\sigma I)^{-1}$
$>$ Solves with $A-\sigma I$ carried out using factorization
> Limitation: factorization

Q:What if factoring \boldsymbol{A} is too expensive (e.g., Large 3-D similation)?

A: Obvious answer: Use iterative solvers ...
$>$ However: systems are highly indefinite \rightarrow Wont work too well.
$>$ Digression: Still lots of work to do in iterative solution methods for highly indefinite linear systems
$>$ Other common characteristic:

Need a very large number of eigenvalues and eigenvectors
> Applications: Excited states in quantum physics: TDDFT, GW, ...
> Or just plain Density Functional Theory (DFT)
$>$ Number of wanted eigenvectors is equal to number of occupied states - [== the number of valence electrons in DFT]
> An example: in real-space code (PARSEC), you can have a Hamiltonian of size a few Millions, and number of ev's in the tens of thousands.

Polynomial filtered Lanczos

> Possible solution: Use Lanczos with polynomial filtering.
> Idea not new (and not too popular in the past)

What is new?

1. Very large problems;
2. (tens of) Thousands of eigenvalues;
3. Parallelism.
$>$ Most important factor is 2.
> Main rationale of polynomial filtering : reduce the cost of orthogonalization
> Important application: compute the spectrum by pieces ['spectrum slicing' a term coined by B. Parlett]

Introduction: What is filtered Lanczos?

$>$ In short: we just replace $(A-\sigma I)^{-1}$ in S.I. Lanczos by $p_{k}(\boldsymbol{A})$ where $p_{k}(t)=$ polynomial of degree k
$>$ We want to compute eigenvalues near $\sigma=1$ of a matrix A with $\Lambda(A) \subseteq[0,4]$. $>$ Use the simple transform: $p_{2}(t)=1-\alpha(t-\sigma)^{2}$.
$>$ For $\alpha=.2, \sigma=1$ you get \longrightarrow $>$ Use Lanczos with $B=p_{2}(A)$.

$>$ Eigenvalues near σ become the dominant ones - so Lanczos will work - but...
$>$... they are now poorly separated \rightarrow slow convergence.

A low-pass filter

A mid-pass filter

Misconception: High degree polynomials are bad

Hypothetical scenario: large A, zillions of wanted e-values

$>$ Assume A has size $10 M$ (Not huge by todays standard)
> ... and you want to compute 50,000 eigenvalues/vectors (huge for numerical analysits, not for physicists) ...
$>\ldots$ in the lower part of the spectrum - or the middle.
> By (any) standard methods you will need to orthogonalize at least 50 K vectors of size 10 M -
$>$ Space is an issue: 4×10^{12} bytes $=4$ TB of mem *just for the basis*
$>$ Orthogonalization is also an issue: $5 \times 10^{16}=50$ PetaOPS.
$>$ Toward the end, at step k, each orthogonalization step costs about $\approx 4 k n \approx 200,000 n$ for k close to 50,000 .

The alternative: 'Spectrum slicing' or 'windowing'

Rationale. Eigenvectors on both ends of wanted spectrum need not be orthogonalized against each other :

> Idea: Get the spectrum by 'slices' or 'windows'
$>$ Can get a few hundreds or thousands of vectors at a time.

> Deceivingly simple looking idea.
> Issues:

- Deal with interfaces : duplicate/missing eigenvalues
- Window size [need estimate of eigenvalues]
- polynomial degree

Spectrum slicing in PARSEC

$>$ Being implemented in our code:
Pseudopotential Algorithm for Real-Space Electronic Calcultions (PARSEC)
$>$ See:
'A Spectrum Slicing Method for the Kohn-Sham Problem', G. Schofield, J. R. Chelikowsky and YS, Computer Physics Comm., vol 183, pp. 487-505.
$>$ Refer to this paper for details on windowing and 'initial proof of concept'

Computing the polynomials: Jackson-Chebyshev

Chebyshev-Jackson approximation of a function f :

$$
f(x) \approx \sum_{i=0}^{k} g_{i}^{k} \gamma_{i} \boldsymbol{T}_{i}(x)
$$

$\gamma_{i}=\frac{2-\delta_{i 0}}{\pi} \int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x) d x \quad \delta_{i 0}=$ Kronecker symbol

The g_{i}^{k} 's attenuate higher order terms in the sum.

Attenuation coefficient g_{i}^{k} for $k=50,100,150$

$$
\begin{aligned}
& \text { Let } \alpha_{k}=\frac{\pi}{k+2}, \text { then : } \\
& g_{i}^{k}=\frac{\left(1-\frac{i}{k+2}\right) \sin \left(\alpha_{k}\right) \cos \left(i \alpha_{k}\right)+\frac{1}{k+2} \cos \left(\alpha_{k}\right) \sin \left(i \alpha_{k}\right)}{\sin \left(\alpha_{k}\right)}
\end{aligned}
$$

See
'Electronic structure calculations in plane-wave codes without diagonalization.' Laurent O. Jay, Hanchul Kim, YS, and James R. Chelikowsky. Computer Physics Communications, 118:21-30, 1999.

The expansion coefficients γ_{i}

When $f(x)$ is a step function on $[a, b] \subseteq[-11]$:

$$
\gamma_{i}=\left\{\begin{aligned}
\frac{1}{\pi}(\arccos (a)-\arccos (b)) & : i=0 \\
\frac{2}{\pi}\left(\frac{\sin (i \arccos (a))-\sin (i \arccos (b))}{i}\right) & : i>0
\end{aligned}\right.
$$

- A few examples follow -

Computing the polynomials: Jackson-Chebyshev

$>$ Polynomials of degree 30 for $[a, b]=[.3, .6]$

Mid-pass polynom. filter [-1 . 3 . 6 1]; Degree $=80$

Mid-pass polynom. filter [-1 . 3 . 6 1]; Degree = 200

How to get the polynomial filter? Second approach

Idea:

- First select an "ideal filter"
- e.g., a piecewise polynomial function

$>$ For example $\phi=$ Hermite interpolating pol. in [0,a], and $\phi=1$ in [a, b]
> Referred to as the 'Base filter'
- Then approximate base filter by degree k polynomial in a least-squares sense.
- Can do this without numerical integration

Main advantage: Extremely flexible.
Method: Build a sequence of polynomials ϕ_{k} which approximate the ideal PP filter ϕ, in the L_{2} sense.
> Again 2 implementations
$>$ Define $\phi_{k} \equiv$ the least-squares polynomial approximation to ϕ :

$$
\phi_{k}(t)=\sum_{j=1}^{k}\left\langle\phi, \mathcal{P}_{j}\right\rangle \mathcal{P}_{j}(t)
$$

where $\left\{\mathcal{P}_{j}\right\}$ is a basis of polynomials that is orthonormal for some L_{2} inner-product.
> Method 1: Use Stieljes procedure to computing orthogonal polynomials

ALGORITHM : 1. Stieljes

```
1. \(\mathcal{P}_{0} \equiv 0\),
2. \(\left.\boldsymbol{\beta}_{1}=\left\|\mathcal{S}_{0}\right\|_{\langle \rangle}\right\rangle\),
3. \(\mathcal{P}_{1}(t)=\frac{1}{\beta_{1}} \mathcal{S}_{0}(t)\),
4. For \(j=2, \ldots, m\) Do
5. \(\alpha_{j}=\left\langle t \mathcal{P}_{j}, \mathcal{P}_{j}\right\rangle\),
6. \(\quad \mathcal{S}_{j}(t)=t \mathcal{P}_{j}(t)-\alpha_{j} \mathcal{P}_{j}(t)-\boldsymbol{\beta}_{j} \mathcal{P}_{j-1}(t)\),
7. \(\left.\quad \boldsymbol{\beta}_{j+1}=\left\|\mathcal{S}_{j}\right\|_{\langle }\right\rangle\),
8. \(\quad \mathcal{P}_{j+1}(t)=\frac{1}{\beta_{j+1}} \mathcal{S}_{j}(t)\).
9. EndDo
```


Computation of Stieljes coefficients

Problem: To compute the scalars α_{j} and β_{j+1}, of 3 -term recurrence (Stieljes) + the expansion coefficients γ_{j}. Need to avoid numerical integration.
Solution: define orthogonal polynomials over two (or more) disjoint intervals - see similar work YS'83:

YS, 'Iterative solution of indefinite symmetric systems by methods using orthogonal polynomials over two disjoint intervals', SIAM Journal on Numerical Analysis, 20 (1983), pp. 784-811.
E. Kokiopoulou and YS, ‘Polynomial Filtering in Latent Semantic Indexing for Information Retrieval', in Proc. ACM-SIGIR Conference on research and development in information retrieval, Sheffield, UK, (2004)
$>$ Let large interval be $[0, b]$ - should contain $\Lambda(B)$
$>$ Assume 2 subintervals. On subinterval $\left[a_{l-1}, a_{l}\right], l=1,2$ define the inner-product $\left\langle\psi_{1}, \psi_{2}\right\rangle_{a_{l-1}, a_{l}}$ by

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle_{a_{l-1}, a_{l}}=\int_{a_{l-1}}^{a_{l}} \frac{\psi_{1}(t) \psi_{2}(t)}{\sqrt{\left(t-a_{l-1}\right)\left(a_{l}-t\right)}} d t .
$$

> Then define the inner product on $[0, b]$ by

$$
\left\langle\psi_{1}, \psi_{2}\right\rangle=\int_{0}^{a} \frac{\psi_{1}(t) \psi_{2}(t)}{\sqrt{t(a-t)}} d t+\rho \int_{a}^{b} \frac{\psi_{1}(t) \psi_{2}(t)}{\sqrt{(t-a)(b-t)}} d t .
$$

$>$ To avoid numerical integration, use a basis of Chebyshev polynomials on interval [YS'83]

Mehod 2 : Filtered CG/CR - like polynomial iterations

Want: a CG-like (or CR-like) algorithms for which the inderlying residual polynomial or solution polynomial are Least-squares filter polynomials
$>$ Seek s to minimize $\|\phi(\lambda)-\lambda s(\lambda)\|_{w}$ with respect to a certain norm $\|\cdot\|_{w}$.
$>$ Equivalently, minimize $\|(1-\phi)-(1-\lambda s(\lambda))\|_{w}$ over all polynomials s of degree $\leq \boldsymbol{k}$.
> Focus on second view-point (residual polynomial)
$>$ goal is to make $r(\lambda) \equiv 1-\lambda s(\lambda)$ close to $1-\phi$.

Recall: Conjugate Residual Algorithm

ALGORITHM : 2. Conjugate Residual Algorithm

1. Compute $r_{0}:=b-A x_{0}, p_{0}:=r_{0}$
2. For $j=0,1, \ldots$, until convergence Do:
3. $\quad \alpha_{j}:=\left(r_{j}, A r_{j}\right) /\left(A p_{j}, A p_{j}\right)$
4. $\quad x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
5. $\quad r_{j+1}:=r_{j}-\alpha_{j} A p_{j}$
6. $\quad \boldsymbol{\beta}_{j}:=\left(\boldsymbol{r}_{j+1}, A \boldsymbol{r}_{j+1}\right) /\left(\boldsymbol{r}_{j}, A \boldsymbol{r}_{j}\right)$
7. $\boldsymbol{p}_{j+1}:=\boldsymbol{r}_{j+1}+\boldsymbol{\beta}_{j} \boldsymbol{p}_{j}$
8. Compute $\boldsymbol{A} p_{j+1}=A r_{j+1}+\beta_{j} A p_{j}$
9. EndDo
> Think in terms of polynomial iteration

ALGORITHM : 3. Filtered CR polynomial Iteration

2. For $j=0,1, \ldots$, until convergence Do:
3. $\quad \tilde{\alpha}_{j}:=<\rho_{j}, \lambda \rho_{j}>_{w} /<\lambda \pi_{j}, \lambda \pi_{j}>_{w}$
3.a. $\quad \alpha_{j}:=\tilde{\alpha}_{j}-<1-\phi, \lambda \pi_{j}>_{w} /<\lambda \pi_{j}, \lambda \pi_{j}>_{w}$
4. $\quad x_{j+1}:=x_{j}+\alpha_{j} p_{j}$
5. $\quad \tilde{r}_{j+1}:=\tilde{r}_{j}-\tilde{\alpha}_{j} A p_{j} \quad \rho_{j+1}=\rho_{j}-\tilde{\alpha}_{j} \lambda \pi_{j}$
6. $\quad \beta_{j}:=<\rho_{j+1}, \lambda \rho_{j+1}>_{w} /<\rho_{j}, \lambda \rho_{j}>_{w}$

7.	$p_{j+1}:=r_{j+1}+\boldsymbol{\beta}_{j} p_{j}$	$\pi_{j+1}:=\rho_{j+1}+\boldsymbol{\beta}_{j} \pi_{j}$
8.		

9. EndDo
> All polynomials expressed in Chebyshev basis - cost of algorithm is negligible [$O\left(k^{2}\right)$ for deg. \boldsymbol{k}.]

A few mid-pass filters of various degrees

Four examples of middle-pass filters $\psi(\boldsymbol{\lambda})$ and their polynomial approximations $\rho(\boldsymbol{\lambda})$.
$>$ Degrees 20 and 30

> Degrees 50 and 100

Base Filter to build a Mid-Pass filter polynomial

We partition $[0, b]$ into five sub-intervals,

$$
[0, b]=[0,1]\left[\tau_{1}, \tau_{2}\right] \cup\left[\tau_{2}, \tau_{3}\right] \cup\left[\tau_{3}, \tau_{4}\right] \cup\left[\tau_{4}, b\right]
$$

$>$ Set: $\psi(t)=0$ in $\left[0, \tau_{1}\right] \cup\left[\tau_{4}, b\right]$ and $\psi(t)=1$ in $\left[\tau_{2}, \tau_{3}\right]$
$>$ Use standard Hermite interpolation to get 'brigde' functions in $\left[\tau_{1}, \tau_{2}\right]$ and $\left[\tau_{3}, \tau_{4}\right]$

References

'A Filtered Lanczos Procedure for Extreme and Interior Eigenvalue Problems', H. R. Fang and YS, SISC 34(4) A2220-2246 (2012). For details on window-less implementation (one slice) + code
‘Computation of Large Invariant Subspaces Using Polynomial Filtered Lanczos Iterations with Applications in Density Functional Theory', C. Bekas and E. Kokiopoulou and YS, SIMAX 30(1), 397-418 (2008).
'Filtered Conjugate Residual-type Algorithms with Applications', YS; SIMAX 28 pp. 845-870 (2006)

Tests - Test matrices

$>$ Experiments performed in sequential mode: on two dualcore AMD Opteron(tm) Processors 2214 @ 2.2GHz and 16GB memory.

Test matrices:

* Five Hamiltonians from electronic structure calculations,
* An integer matrix named Andrews, and
* A discretized Laplacian (FD)

Matrix characteristics

matrix	n	$n n z$	$\frac{n n z}{n}$	full eigen-range $[a, b]$	Fermi n_{0}
GE87H76	112,985	$7,892,195$	69.85	$[-1.2140,32.764]$	212
Ge99H100	112,985	$8,451,395$	74.80	$[-1.2264,32.703]$	248
SI41Ge41H72	185,639	$15,011,265$	80.86	$[-1.2135,49.818]$	200
Si87H76	240,369	$10,661,631$	44.36	$[-1.1963,43.074]$	212
Ga41As41H72	268,096	$18,488,476$	68.96	$[-1.2501,1300.9]$	200
Andrews	60,000	760,154	12.67	$[0,36.485]$	N/A
Laplacian	$1,000,000$	$6,940,000$	6.94	$[0.00290,11.997]$	N/A

Experimental set-up

matrix	eigen-interval $[\xi, \eta]$	$\begin{array}{r} \text { \# eig } \\ \text { in }[\xi, \eta] \end{array}$	$\begin{array}{r} \text { \# eig } \\ \text { in }[a, \eta] \end{array}$	$\frac{\eta-\xi}{b-a}$	$\frac{\eta-a}{b-a}$
GE87H76	[-0.645, -0.0053]	212	318	0.0188	0.0356
Ge99H100	[-0.65, -0.0096]	250	372	0.0189	0.0359
SI41Ge41H72	[-0.64, -0.00282]	218	318	0.0125	0.0237
Si87H76	[-0.66, -0.33]	212	317	0.0075	0.0196
Ga41As41H72	[-0.64, 0.0]	201	301	0.0005	0.0010
Andrews	$[4,5]$	1,844	3,751	0.0274	0.1370
Laplacian	[1, 1.01]	276	>17,000	0.0008	0.0044

Results for Ge99H100 -set 1 of stats

method	degree	\# iter \# matvecs memory		
	$d=20$	1,020	20,400	1,117
filt. Lan.	$d=30$	710	21,300	806
(high-pass)	$d=50$	470	23,500	508
	$d=100$	340	34,000	440
	$d=10$	770	7,700	806
filt. Lan.	$d=20$	600	12,000	688
(low-pass)	$d=30$	530	15,900	590
	$d=50$	470	23,500	508

Results for Ge99H100-CPU times (sec.)

method	degree	$\rho(A) v$	reorth eigvec	total	
	$d=20$	1,283	77	23	1,417
filt. Lan.	$d=30$	1,343	55	14	1,440
(high-pass)	$d=50$	1,411	32	9	1,479
	$d=100$	1,866	26	7	1,930
	$d=10$	483	124	21	668
filt. Lan.	$d=20$	663	57	21	777
(low-pass)	$d=30$	1,017	49	15	1,123
	$d=50$	1,254	26	13	1,342
Part. \perp Lanczos	234	1,460	793	2,962	
ARPACK	298	$\dagger 17,503$	$\dagger 666$	18,468	

Results for Andrews - set 1 of stats

method	degree	\# iter	\# matvecs	memory
filt. Lan. (mid-pass)	$d=20$	9,440	188,800	4,829
	$d=30$	6,040	180,120	2,799
	$d=50$	3,800	190,000	1,947
	$d=100$	2,360	236,000	1,131
filt. Lan. (high-pass)	$d=10$	5,990	59,900	2,799
	$d=20$	4,780	95,600	2,334
	$d=30$	4,360	130,800	2,334
	$d=50$	4,690	234,500	2,334
Part. \perp Lanczos		22,345	22,345	10,312
ARPACK		30,716	30,716	6,129

Results for Andrews - CPU times (sec.)

method	degree	$\rho(A) v$	reorth	eigvec	total
filt. Lan. (mid-pass)	$d=20$	2,797	192	4,834	9,840
	$d=30$	2,429	115	2,151	5,279
	$d=50$	3,040	65	521	3,810
	$d=100$	3,757	93	220	4,147
filt. Lan. (high-pass)	$d=10$	1,152	2,911	2,391	7,050
	$d=20$	1,335	1,718	1,472	4,874
	$d=30$	1,806	1,218	1,274	4,576
	$d=50$	3,187	1,032	1,383	5,918
Part. \perp Lanczos		217	30,455	64,223	112,664
ARPACK		345	423,492	†18,094	441,934

Results for Laplacian - set 1 of stats

method	degree	\# iter \# matvecs		memory
mid-pass filter	600	1,400	840,000	10,913
	1,000	950	950,000	7,640
	710	$1,136,000$	6,358	

Results for Laplacian - CPU times

method	degree	$\rho(\boldsymbol{A}) \boldsymbol{v}$	reorth eigvec	total	
mid-pass filter	600	97,817	927	241	99,279
	1,000	119,242	773	162	120,384
	1,600	169,741	722	119	170,856

Conclusion

$>$ Quite appealing general approach when number of eigenvectors to be computed is large
$>$ and when Matvec is not too expensise
$>$ Will not work too well for generalized eigenvalue problem
> Code available here
www.cs.umn.edu/~saad/software/filtlan

