UNIVERSITY
 of Minnesota twincitives

Multilevel low-rank approximation preconditioners

Yousef Saad
Department of Computer Science and Engineering

University of Minnesota

SIAM CSE
 Boston - March 1, 2013

First:

> Joint work with Ruipeng Li
> Work supported by NSF

Introduction

> Preconditioned Krylov subspace methods offer a good alternative to direct solution methods
$>$ Especially for 3D problems
> Compromise between performance and robustness
.... But there are challenges:

- Highly indefinite systems [Helmholtz, Maxwell, ...]
- Highly ill-conditioned systems [structures,..]
- Problems with extremely irregular nonzero pattern
- Recent: impact of new architectures [many core, GPUs]

Introduction (cont.)

Main issue in using GPUs for sparse computations:

- Huge performance degradation due to 'irregular sparsity'
> Matrices:

Matrix -name	N	NNZ
FEM/Cantilever	62,451	$4,007,383$
Boeing/pwtk	217,918	$11,634,424$

> Performance of Mat-Vecs on NVIDIA Tesla C1060

Single Precision	Double Precision					
Matrix	CSR	JAD	DIA	CSR	JAD	DIA
FEM/Cantilever	9.4	10.8	25.7	7.5	5.0	13.4
Boeing/pwtk	8.9	16.6	29.5	7.2	10.4	14.5

Sparse Forward/Backward Sweeps

> Next major ingredient of precond. Krylov subs. methods

$$
\begin{aligned}
& \text { for } \mathrm{i}=1 \text { :n } \\
& \quad \text { for } \mathrm{j}=\mathrm{ia}(\mathrm{i}): \mathrm{ia}(\mathrm{i}+1) \\
& \quad x(\mathrm{i})=x(\mathrm{i})-\mathrm{a}(\mathrm{j})^{\star} x(\mathrm{ja}(\mathrm{j})) \\
& \quad \text { end }
\end{aligned}
$$

ILU preconditioning operations require L/U solves: $\boldsymbol{x} \leftarrow U^{-1} L^{-1} \boldsymbol{x}$
$>$ Sequential outer loop.
end
> Parallelism can be achieved with level scheduling:

- Group unknowns into levels
- Unknowns $\boldsymbol{x}(\boldsymbol{i})$ of same level can be computed simultaneously
- $1 \leq n l e v \leq n$

ILU: Sparse Forward/Backward Sweeps

- Very poor performance [relative to CPU]

Matrix	N	$\begin{aligned} & \text { CPU } \\ & \text { Mflops } \end{aligned}$	GPU-Lev	
			\#lev	Mflops
Boeing/bcsstk36	23,052	627	4,457	43
FEM/Cantilever	62,451	653	2,397	168
COP/CASEYK	696,665	394	273	142
COP/CASEKU	208,340	373	272	115

GPU Sparse Triangular Solve with Level Scheduling
> Very poor performance when \#levs is large
> A few things can be done to reduce the \# levels but perf. will remain poor

So...

Either GPUs must go...

or ILUs must go...

Or perhaps: Alternative preconditioners?

> What would be a good alternative?

Wish-list:

- A preconditioner requiring few 'irregular' computations
- Something that trades volume of computations for speed
- If possible something that is robust for indefinite case
> Good candidate:
- Multilevel Low-Rank (MLR) approximate inverse preconditioners

Related work:

- Work on HSS matrices [e.g., Jianlin Xia, Shivkumar Chandrasekaran, Ming Gu, and Xiaoye S. Li, Fast algorithms for hierarchically semiseparable matrices, Numerical Linear Algebra with Applications, 17 (2010), pp. 953-976.]
- Work on H-matrices [Hackbusch, ...]
- Work on ‘balanced incomplete factorizations’ (R. Bru et al.)
- Work on "sweeping preconditioners" by Engquist and Ying.
- Work on computing the diagonal of a matrix inverse [Jok Tang and YS (2010) ..]

Low-rank Multilevel Approximations

$>$ Starting point: symmetric matrix derived from a 5-point discretization of a 2-D Pb on $\boldsymbol{n}_{\boldsymbol{x}} \times \boldsymbol{n}_{\boldsymbol{y}}$ grid

$$
\left.\begin{array}{l}
A=\left(\begin{array}{cccc|ccc}
\boldsymbol{A}_{1} & \boldsymbol{D}_{2} & & & & \\
\boldsymbol{D}_{2} & \boldsymbol{A}_{2} & \boldsymbol{D}_{3} & & & \\
& \ddots & \ddots & \ddots & & & \\
& & \boldsymbol{D}_{\alpha} & \boldsymbol{A}_{\alpha} & \boldsymbol{D}_{\alpha+1} & & \\
\hline & & & \boldsymbol{D}_{\alpha+1} & \boldsymbol{A}_{\alpha+1} & \ddots & \\
& & & & \ddots & \cdots & \cdots \\
& & & & & \boldsymbol{D}_{n_{y}} & \boldsymbol{A}_{n_{y}}
\end{array}\right) \\
A=\left(\begin{array}{lll}
\boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\
\boldsymbol{A}_{21} & \boldsymbol{A}_{22}
\end{array}\right) \equiv\left(\begin{array}{lll}
\boldsymbol{A}_{11} & \\
& \boldsymbol{A}_{22}
\end{array}\right)+\left(\right.
\end{array}\right)
$$

Corresponding splitting on FD mesh:

$>A_{11} \in \mathbb{R}^{m \times m}, A_{22} \in \mathbb{R}^{(n-m) \times(n-m)}$
$>$ In the simplest case second matrix is:

$$
\begin{aligned}
& \left(\begin{array}{ll}
\boldsymbol{A}_{11} & \boldsymbol{A}_{12} \\
\boldsymbol{A}_{21} & \boldsymbol{A}_{22}
\end{array}\right)=\left(\begin{array}{ll}
\boldsymbol{A}_{11} & \\
& \boldsymbol{A}_{22}
\end{array}\right)+\begin{array}{|}
{ }^{-1} \\
& \\
& \\
&
\end{array} \\
& >\text { Write 2nd } \\
& \text { matrix as: } \\
& \mathbf{E}^{\boldsymbol{\top}}=\begin{array}{l|l|}
\hline \mathbf{I} & \mathbf{I} \\
\hline
\end{array}
\end{aligned}
$$

> Above splitting can be rewritten as

$$
\boldsymbol{A}=\underbrace{\left(\boldsymbol{A}+\boldsymbol{E} \boldsymbol{E}^{T}\right)}_{B}-\boldsymbol{E} \boldsymbol{E}^{T}
$$

$$
\begin{gathered}
A=B-E E^{T} \\
B:=\left(\begin{array}{ll}
B_{1} & \\
& \boldsymbol{B}_{2}
\end{array}\right) \in \mathbb{R}^{n \times n}, \quad E:=\binom{\boldsymbol{E}_{1}}{\boldsymbol{E}_{2}} \in \mathbb{R}^{n \times n_{x}}
\end{gathered}
$$

Note: $B_{1}:=A_{11}+E_{1} E_{1}^{T}, \quad B_{2}:=A_{22}+E_{2} E_{2}^{T}$.
> Shermann-Morrison formula:

$$
A^{-1}=B^{-1}+B^{-1} E(\overbrace{I-E^{T} B^{-1} E}^{X})^{-1} E^{T} B^{-1}
$$

$$
\begin{aligned}
A^{-1} & \equiv B^{-1}+B^{-1} \boldsymbol{E} \boldsymbol{X}^{-1} \boldsymbol{E}^{T} B^{-1} \\
\boldsymbol{X} & =\boldsymbol{I}-\boldsymbol{E}^{T} \boldsymbol{B}^{-1} \boldsymbol{E}
\end{aligned}
$$

$>$ Note: $\boldsymbol{E} \in \mathbb{R}^{n \times n_{x}}, \boldsymbol{X} \in \mathbb{R}^{n_{x} \times n_{x}}$
$>n_{x}=$ number of points in separator $\left[O\left(n^{1 / 2}\right)\right.$ for 2-D mesh, $O\left(n^{2 / 3}\right)$ for 3-D mesh]

- Use in a recursive framework
- Similar idea was used for computing the diagonal of the inverse [J. Tang YS '10]

Multilevel Low-Rank (MLR) algorithm

> Method: Use lowrank approx. for $\boldsymbol{B}^{-1} \boldsymbol{E}$

$$
\boldsymbol{B}^{-1} \boldsymbol{E} \approx \boldsymbol{U}_{k} \boldsymbol{V}_{k}^{T}
$$

$$
\begin{aligned}
& \boldsymbol{U}_{k} \in \mathbb{R}^{n \times k}, \\
& \boldsymbol{V}_{k} \in \mathbb{R}^{\boldsymbol{n}_{x} \times k}
\end{aligned}
$$

$>$ Replace $\boldsymbol{B}^{-1} \boldsymbol{E}$ by $\boldsymbol{U}_{k} \boldsymbol{V}_{k}^{T}$ in $\boldsymbol{X}=\boldsymbol{I}-\left(\boldsymbol{E}^{T} \boldsymbol{B}^{-1}\right) \boldsymbol{E}$: $\boldsymbol{X} \approx G_{k}=\boldsymbol{I}-V_{k} \boldsymbol{U}_{k}^{T} \boldsymbol{E}, \quad\left(\in \mathbb{R}^{n_{x} \times n_{x}}\right) \quad$ Leads to \ldots
> Preconditioner:

$$
\begin{gathered}
M^{-1}=B^{-1}+U_{k}\left[V_{k}^{T} G_{k}^{-1} V_{k}\right] U_{k}^{T} \\
\text { Use recursivity }
\end{gathered}
$$

Note: From $\boldsymbol{A}^{-1}=\boldsymbol{B}^{-1}\left[\boldsymbol{I}+\boldsymbol{E} \boldsymbol{X}^{-1} \boldsymbol{E}^{\boldsymbol{T}} \boldsymbol{B}^{-1}\right]$ could define:

$$
M_{1}^{-1}=B^{-1}\left[I+E G_{k}^{-1} V_{k} U_{k}^{T}\right]
$$

[rationale: approximation made on 'one side only']
$>$ It turns out M_{1} and M are equal!
$>$ We have:

$$
M^{-1}=B^{-1}+U_{k} \boldsymbol{H}_{k} U_{k}^{T}, \quad \text { with } \quad \boldsymbol{H}_{k}=V_{k}^{T} G_{k}^{-1} V_{k}
$$

$>$ No need to store $\boldsymbol{V}_{\boldsymbol{k}}$: Only keep $\boldsymbol{U}_{\boldsymbol{k}}$ and $\boldsymbol{H}_{\boldsymbol{k}}(\boldsymbol{k} \times \boldsymbol{k})$.
$>$ We can show :
... and :

$$
\boldsymbol{H}_{k}=\left(I-U_{k}^{T} E V_{k}\right)^{-1}
$$

\boldsymbol{H}_{k} is symmetric

Recursive multilevel framework

- $\boldsymbol{A}_{i}=B_{i}+E_{i} E_{i}^{T}, B_{i} \equiv\left(\begin{array}{lll}B_{i_{1}} & \\ & & \\ & B_{i_{2}}\end{array}\right)$.
- Next level, set $\boldsymbol{A}_{i_{1}} \equiv \boldsymbol{B}_{i_{1}}$ and $\boldsymbol{A}_{i_{2}} \equiv \boldsymbol{B}_{i_{2}}$
- Repeat on $\boldsymbol{A}_{i_{1}}, \boldsymbol{A}_{i_{2}}$
- Last level, factor \boldsymbol{A}_{i} (IC, ILU)
- Binary tree structure:

Generalization: Domain Decomposition framework

Domain partitioned into 2 domains with an edge separator

> Matrix can be permuted to:

$$
P A P^{T}=\left(\begin{array}{cc|c}
\hat{B}_{1} & \hat{F}_{1} & \\
\hat{\boldsymbol{F}}_{1}^{T} & C_{1} & \\
\hline & & -\boldsymbol{X} \\
\hline & \hat{B}_{2} & \hat{F}_{2} \\
& -X^{T} & \hat{\boldsymbol{F}}_{2}^{T}
\end{array} C_{2},\right.
$$

> Interface nodes in each domain are listed last.
$>$ Each matrix \hat{B}_{i} is of size $n_{i} \times n_{i}$ (interior var.) and the matrix C_{i} is of size $m_{i} \times m_{i}$ (interface var.)

$$
\text { Let: } \quad E_{\alpha}=\left(\begin{array}{c}
0 \\
\alpha I \\
0 \\
\frac{X^{T}}{\alpha}
\end{array}\right) \quad \text { then we have: }
$$

$$
\begin{gathered}
\boldsymbol{P A} \boldsymbol{A} \boldsymbol{P}^{T}=\left(\begin{array}{ll}
\boldsymbol{B}_{1} & \\
& \boldsymbol{B}_{2}
\end{array}\right)-\boldsymbol{E} \boldsymbol{E}^{T} \quad \text { with } \quad \boldsymbol{B}_{i}=\left(\begin{array}{cc}
\hat{\boldsymbol{B}}_{i} & \hat{\boldsymbol{F}}_{1} \\
\hat{\boldsymbol{F}}_{i}^{T} & C_{i}+D_{i}
\end{array}\right) \\
\text { and }\left\{\begin{array}{l}
D_{1}=\alpha^{2} \boldsymbol{I} \\
D_{2}=\frac{1}{\alpha^{2}} \boldsymbol{X}^{T} \boldsymbol{X}
\end{array}\right.
\end{gathered}
$$

$>\alpha$ used for balancing
$>$ Better results when using diagonals instead of αI

Theory: 2-level analysis for model problem

$>$ Interested in eigenvalues γ_{j} of

$$
A^{-1}-B^{-1}=B^{-1} \boldsymbol{E} \boldsymbol{X}^{-1} \boldsymbol{E}^{T} B^{-1}
$$

when $\boldsymbol{A}=$ Pure Laplacean .. They are:

$$
\begin{aligned}
\gamma_{j} & =\frac{\boldsymbol{\beta}_{j}}{1-\alpha_{j}}, \quad j=1, \cdots, n_{x} \quad \text { with: } \\
\boldsymbol{\beta}_{j} & =\sum_{k=1}^{n_{y} / 2} \frac{\sin ^{2} \frac{n_{y} k \pi}{n_{y}+1}}{4\left(\sin ^{2} \frac{k \pi}{n_{y}+1}+\sin ^{2} \frac{j \pi}{2\left(n_{x}+1\right)}\right)^{2}}, \\
\alpha_{j} & =\sum_{k=1}^{n_{y} / 2} \frac{\sin ^{2} \frac{n_{y} k \pi}{n_{y}+1}}{\sin ^{2} \frac{k \pi}{n_{y}+1}+\sin ^{2} \frac{j \pi}{2\left(n_{x}+1\right)}}
\end{aligned}
$$

$>$ Decay of the γ_{j} s when $\boldsymbol{n} \boldsymbol{x}=\boldsymbol{n} \boldsymbol{y}=\mathbf{3 2}$.

Note $\sqrt{\boldsymbol{\beta}_{j}}$ are the singular values of $\boldsymbol{B}^{-1} \boldsymbol{E}$.
In this particular case 3 eigenvectors will capture 92% of the inverse whereas 5 eigenvectors will capture 97% of the inverse.

EXPERIMENTS

Experimental setting

- Hardware: Intel Xeon X5675 processor (12 MB Cache, 3.06 GHz, 6-core)
- C/C++; Intel Math Kernel Library (MKL,version 10.2)
- Stopping criteria:
- \| $\boldsymbol{r}_{i}\left\|\leq 10^{-8}\right\| r_{0} \|$
- Maximum number of iterations: 500

2-D/3-D model problems (theory)

$$
\begin{aligned}
-\Delta u-c u & =-\left(x^{2}+y^{2}+c\right) e^{x y} \text { in }(0,1)^{2} \\
& + \text { Dirichlet BC }
\end{aligned}
$$

- FD discret.:
$n_{x}=n_{y}=256$
- Eigenvalues of $B_{i}^{-1} E_{i} X_{i}^{-1} E_{i}^{T} B_{i}^{-}$
- $i=0,1,3$
- Rapid decay.

3-D elliptic PDE

$$
\begin{aligned}
-\Delta u-c u & =-6-c\left(x^{2}+y^{2}+z^{2}\right) \text { in }(0,1)^{3} \\
& + \text { Dirichlet BC }
\end{aligned}
$$

- FD discret.:
$n_{x}=n_{y}=32$, $n z=64$
- Eigenvalues of $\boldsymbol{B}_{i}^{-1} \boldsymbol{E}_{i} \boldsymbol{X}_{i}^{-1} \boldsymbol{E}_{i}^{T} \boldsymbol{B}_{i}^{-}$
- $i=0,1,3$
- Rapid decay.

Tests: SPD cases

- SPD cases, pure Laplacean ($c=0$ in previous equations)
- MLR + PCG compared to IC + PCG
- 2-D problems: \#lev=5, rank=2
- 3-D problems: $\# l e v=5,7,10$, rank $=2$

Grid	N	ICT-CG					MLR-CG			
		fill	p-t	its	i-t	fill	p-t	its	i-t	
256^{2}	$65 K$	3.1	0.08	69	0.19	3.2	0.45	84	0.12	
512^{2}	$262 K$	3.2	0.32	133	1.61	3.5	1.57	132	1.06	
1024^{2}	$1,048 K$	3.4	1.40	238	15.11	3.5	4.66	215	9.77	
$32^{2} .64$	$65 K$	2.9	0.14	33	0.10	3.0	0.46	43	0.08	
64^{3}	$262 K$	3.0	0.66	47	0.71	3.1	3.03	69	0.63	
128^{3}	$2,097 K$	3.0	6.59	89	13.47	3.2	24.61	108	10.27	

> Set-up times for MLR preconditioners are higher
> Bear in mind the ultimate target architecture [SIMD...]

Symmetric indefinite cases

- $c>0$ in $-\Delta u-c u$; i.e., $-\Delta$ shifted by $-s I$.
- 2D case: $s=0.01$, 3D case: $s=0.05$
- MLR + GMRES(40) compared to ILDLT + GMRES(40)
- 2-D problems: $\# \mathrm{lev}=4$, rank $=5,7,7$
-3-D problems: \#lev=5, rank=5,7,7
- ILDLT failed for most cases
- Difficulties in MLR: \#lev cannot be large, [no convergence]
- inefficient factorization at the last level (memory, CPU time)

Grid	ILDLT-GMRES				MLR-GMRES			
	fill			i-t	fill			
$256{ }^{2}$	6.5	0.16	F		6.0	0.39		0.30
512^{2}	8.4	1.25	F		8.2	2.24		6.03
$1024{ }^{2}$	10.3	10.09	F		9.0	15.05	F	
$32^{2} \times 64$	5.6	0.25	610	0.38	5.4	0.98	62	0.22
64^{3}	7.0	1.33	F		6.6	6.43	224	5.43
128^{3}	8.8	15.35	F		6.5	28.08	F	

General symmetric matrices - Test matrices

MATRIX	N	NNZ	SPD	DESCRIPTION
Andrews/Andrews	60,000	760,154	yes computer graphics pb.	
Williams/cant	62,451	$4,007,383$	yes FEM cantilever	
UTEP/Dubcova2	65,025	$1,030,225$	yes 2-D/3-D PDE pb.	
Rothberg/cfd1	70,656	$1,825,580$	yes CFD pb.	
Schmid/thermal1	82,654	574,458	yes thermal pb.	
Rothberg/cfd2	123,440	$3,085,406$	yes CFD pb.	
Schmid/thermal2	$1,228,045$	$8,580,313$	yes thermal pb.	
Cote/vibrobox	12,328	301,700	no vibroacoustic pb.	
Cunningham/qa8fk	66,127	$1,660,579$	no 3-D acoustics pb.	
Koutsovasilis/F2	71,505	$5,294,285$	no structural pb.	

Generalization of MLR via DD

- DD: PartGraphRecursive from METIS
- balancing with diagonals
- higher ranks used in two problems (cant and vibrobox)
- Show SPD cases first then non-SPD

MATRIX	ICT/ILDLT				MLR-CG/GMRES				
	fill			i-t] fill			i-t
Andrews	2.6	0.44	32	0.16		62.3	1.38	27	0.08
cant	4.3	2.47	F	19.01	10	54.3	7.89	253	5.30
Dubcova2	1.4	0.14	42	0.21		41.5	0.60	47	0.09
cfd1	2.8	0.56	314	3.42		52.3	3.61	244	1.45
thermal1	3.1	0.15	108	0.51		53.2	0.69		0.33
cfd2	3.6	1.14	F	12.27		43.1	4.70	312	4.70
thermal2	5.3	4.11	148	20.45		55.4	15.15	178	14.96

Conclusion

> Promising approach -
> Many more avenues to explore:

- Nonsymmetric case,
- Implementation on GPUS,
- Storage for 3D case
- ...

