OF MINNESOTA TWIN CITIES

Multilevel low-rank approximation preconditioners

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

SIAM CSE Boston - March 1, 2013

First:

- Joint work with Ruipeng Li
- Work supported by NSF

Introduction

Preconditioned Krylov subspace methods offer a good alternative to direct solution methods

- Especially for 3D problems
- Compromise between performance and robustness
- But there are challenges:
 - Highly indefinite systems [Helmholtz, Maxwell, ...]
 - Highly ill-conditioned systems [structures,..]
 - Problems with extremely irregular nonzero pattern
 - Recent: impact of new architectures [many core, GPUs]

Introduction (cont.)

Main issue in using GPUs for sparse computations:

• Huge performance degradation due to 'irregular sparsity'

	Matrix -name	N	NNZ
Matrices:	FEM/Cantilever	62,451	4,007,383
	Boeing/pwtk	217,918	11,634,424

Performance of Mat-Vecs on NVIDIA Tesla C1060

	Sing	gle Pr	ecision	Double Precision				
Matrix	CSR	JAD	DIA	CSR	JAD	DIA		
FEM/Cantilever	9.4	10.8	25.7	7.5	5.0	13.4		
Boeing/pwtk	8.9	16.6	29.5	7.2	10.4	14.5		

Sparse Forward/Backward Sweeps

Next major ingredient of precond. Krylov subs. methods

ILU preconditioning operations require L/U solves: $x \leftarrow U^{-1}L^{-1}x$ Sequential outer loop.

for i=1:n for j=ia(i):ia(i+1) $x(i) = x(i) - a(j)^*x(ja(j))$ end end

Parallelism can be achieved with level scheduling:

- Group unknowns into levels
- Unknowns x(i) of same level can be computed simultaneously
- $ullet 1 \leq nlev \leq n$

ILU: Sparse Forward/Backward Sweeps

• Very poor performance [relative to CPU]

Motrix	Ν	CPU	GPL		
IVIALITA	IN	<u>M</u> flops	#lev	Mflops	ble
Boeing/bcsstk36	23,052	627	4,457	43	era
FEM/Cantilever	62,451	653	2,397	168	nis
COP/CASEYK	696,665	394	273	142	
COP/CASEKU	208,340	373	272	115	rec

GPU Sparse Triangular Solve with Level Scheduling

Very poor performance when #levs is large

A few things can be done to reduce the # levels but perf. will remain poor

So...

Either GPUs must go...

SIAM-CSE – March 1, 2013

or ILUs must go...

SIAM-CSE – March 1, 2013

Or perhaps: Alternative preconditioners?

What would be a good alternative?

Wish-list:

- A preconditioner requiring few 'irregular' computations
- Something that trades volume of computations for speed
- If possible something that is robust for indefinite case
- Good candidate:
- Multilevel Low-Rank (MLR) approximate inverse preconditioners

Related work:

• Work on HSS matrices [e.g., JIANLIN XIA, SHIVKUMAR CHAN-DRASEKARAN, MING GU, AND XIAOYE S. LI, *Fast algorithms for hierarchically semiseparable matrices*, Numerical Linear Algebra with Applications, 17 (2010), pp. 953–976.]

- Work on H-matrices [Hackbusch, ...]
- Work on 'balanced incomplete factorizations' (R. Bru et al.)
- Work on "sweeping preconditioners" by Engquist and Ying.
- Work on computing the diagonal of a matrix inverse [Jok Tang and YS (2010) ..]

Low-rank Multilevel Approximations

Starting point: symmetric matrix derived from a 5-point discretization of a 2-D Pb on $n_x \times n_y$ grid

Corresponding splitting on FD mesh:

 \blacktriangleright $A_{11} \in \mathbb{R}^{m imes m}$, $A_{22} \in \mathbb{R}^{(n-m) imes (n-m)}$

In the simplest case second matrix is:

Above splitting can be rewritten as

$$A = \underbrace{(A + EE^T)}_B - EE^T$$

$$egin{aligned} A &= B - EE^T,\ B &:= egin{pmatrix} B_1\ & B_2 \end{pmatrix} \in \mathbb{R}^{n imes n}, & E &:= egin{pmatrix} E_1\ E_2 \end{pmatrix} \in \mathbb{R}^{n imes n_x}, \end{aligned}$$

Note: $B_1 := A_{11} + E_1 E_1^T$, $B_2 := A_{22} + E_2 E_2^T$.

Shermann-Morrison formula:

$$A^{-1} = B^{-1} + B^{-1}E(\overbrace{I - E^{T}B^{-1}E}^{X})^{-1}E^{T}B^{-1}$$

$$A^{-1} \equiv B^{-1} + B^{-1}EX^{-1}E^{T}B^{-1}$$

 $X = I - E^{T}B^{-1}E$

$$\blacktriangleright$$
 Note: $E \in \mathbb{R}^{n imes n_x}$, $X \in \mathbb{R}^{n_x imes n_x}$

> n_x = number of points in separator [$O(n^{1/2})$ for 2-D mesh, $O(n^{2/3})$ for 3-D mesh]

• Use in a recursive framework

• Similar idea was used for computing the diagonal of the inverse [J. Tang YS '10]

Multilevel Low-Rank (MLR) algorithm

> Method: Use lowrank approx. for $B^{-1}E$

$$B^{-1}E pprox U_k V_k^T, egin{array}{c} U_k \in \mathbb{R}^{n imes k}, \ V_k \in \mathbb{R}^{n_x imes k}, \end{array}$$

► Replace $B^{-1}E$ by $U_kV_k^T$ in $X = I - (E^TB^{-1})E$: $X \approx G_k = I - V_kU_k^TE$, $(\in \mathbb{R}^{n_x \times n_x})$ Leads to ...

Preconditioner:

$$M^{-1} = B^{-1} + U_k [V_k^T G_k^{-1} V_k] U_k^T$$

 \swarrow Use recursivity

Note: From
$$A^{-1} = B^{-1}[I + EX^{-1}E^TB^{-1}]$$
 could define:
 $M_1^{-1} = B^{-1}[I + EG_k^{-1}V_kU_k^T].$

[rationale: approximation made on 'one side only']

- \succ It turns out M_1 and M are equal!
- ➤ We have: M⁻¹ = B⁻¹ + U_kH_kU_k^T, with H_k = V_k^TG_k⁻¹V_k.
 ➤ No need to store V_k: Only keep U_k and H_k (k × k).
 ➤ We can show : H_k = (I - U_k^TEV_k)⁻¹
 ... and : H_k is symmetric

Recursive multilevel framework

•
$$A_i = B_i + E_i E_i^T, B_i \equiv \begin{pmatrix} B_{i_1} \\ B_{i_2} \end{pmatrix}$$
.

- Next level, set $A_{i_1}\equiv B_{i_1}$ and $A_{i_2}\equiv B_{i_2}$
- Repeat on A_{i_1}, A_{i_2}
- Last level, factor A_i (IC, ILU)
- Binary tree structure:

Generalization: Domain Decomposition framework

Domain partitioned into 2 domains with an edge separator

Matrix can be permuted to: $PAP^{T} = \begin{pmatrix} \hat{B}_{1} & \hat{F}_{1} & & \\ \hat{F}_{1}^{T} & C_{1} & -X & \\ & & \hat{B}_{2} & \hat{F}_{2} & \\ & & -X^{T} & \hat{F}_{2}^{T} & C_{2} \end{pmatrix}$

Interface nodes in each domain are listed last.

Each matrix \hat{B}_i is of size $n_i \times n_i$ (interior var.) and the matrix C_i is of size $m_i \times m_i$ (interface var.)

Let:
$$E_{\alpha} = \begin{pmatrix} 0 \\ \alpha I \\ 0 \\ \frac{X^T}{\alpha} \end{pmatrix}$$
 then we have:

$$egin{aligned} PAP^T &= egin{pmatrix} B_1 \ B_2 \end{pmatrix} - EE^T & ext{with} & B_i &= egin{pmatrix} \hat{B}_i & \hat{F}_1 \ \hat{F}_i^T & C_i + D_i \end{pmatrix} \ & ext{and} & egin{pmatrix} D_1 &= lpha^2 I \ D_2 &= rac{1}{lpha^2} X^T X \end{aligned}$$

Better results when using diagonals instead of αI

SIAM-CSE – March 1, 2013

21

Theory: 2-level analysis for model problem

► Interested in eigenvalues γ_j of $A^{-1} - B^{-1} = B^{-1}EX^{-1}E^TB^{-1}$ when A = Pure Laplacean ... They are:

SIAM-CSE - March 1, 2013

> Decay of the γ_j s when nx = ny = 32.

Note $\sqrt{\beta_j}$ are the singular values of $B^{-1}E$.

In this particular case 3 eigenvectors will capture 92 % of the inverse whereas 5 eigenvectors will capture 97% of the inverse.

EXPERIMENTS

Experimental setting

- Hardware: Intel Xeon X5675 processor (12 MB Cache, 3.06 GHz, 6-core)
- C/C++; Intel Math Kernel Library (MKL, version 10.2)
- Stopping criteria:
 - $\parallel r_i \parallel \leq 10^{-8} \parallel r_0 \parallel$
 - Maximum number of iterations: 500

2-D/3-D model problems (theory)

$$egin{aligned} -\Delta u - cu &= -\left(x^2 + y^2 + c
ight)e^{xy} & ext{in } \left(0,1
ight)^2, \ &+ ext{ Dirichlet BC} \end{aligned}$$

3-D elliptic PDE

$$egin{aligned} -\Delta u - cu &= -6 - c\left(x^2 + y^2 + z^2
ight) & ext{in } \left(0,1
ight)^3, \ &+ ext{ Dirichlet BC} \end{aligned}$$

SIAM-CSE - March 1, 2013

Tests: SPD cases

- SPD cases, pure Laplacean (c = 0 in previous equations)
- MLR + PCG compared to IC + PCG
- 2-D problems: #lev= 5, rank= 2
- 3-D problems: #lev= 5, 7, 10, rank= 2

Crid	NT		IC ⁻	T-CG		MLR-CG				
Gnu	1 N	fill	p-t	its	i-t	fill	p-t	its	i-t	
256^{2}	65 <i>K</i>	3.1	0.08	69	0.19	3.2	0.45	84	0.12	
512^{2}	262 <i>K</i>	3.2	0.32	133	1.61	3.5	1.57	132	1.06	
1024^{2}	1,048K	3.4	1.40	238	15.11	3.5	4.66	215	9.77	
$32^2.64$	65K	2.9	0.14	33	0.10	3.0	0.46	43	0.08	
64³	262K	3.0	0.66	47	0.71	3.1	3.03	69	0.63	
128^{3}	2,097K	3.0	6.59	89	13.47	3.2	24.61	108	10.27	

Set-up times for MLR preconditioners are higher

Bear in mind the ultimate target architecture [SIMD...]

Symmetric indefinite cases

- c > 0 in $-\Delta u cu$; i.e., $-\Delta$ shifted by -sI.
- \bullet 2D case: s=0.01, 3D case: s=0.05
- MLR + GMRES(40) compared to ILDLT + GMRES(40)
- 2-D problems: #lev= 4, rank= 5, 7, 7
- 3-D problems: #lev= 5, rank= 5, 7, 7
- ILDLT failed for most cases
- Difficulties in MLR: #lev cannot be large, [no convergence]
- inefficient factorization at the last level (memory, CPU time)

Grid	IL	DLT-GN	ЛRЕ	S	MLR-GMRES				
	fill	p-t	its	i-t	fill	p-t	its	i-t	
256^2	6.5	0.16	F		6.0	0.39	84	0.30	
512^{2}	8.4	1.25	F		8.2	2.24	246	6.03	
1024^{2}	10.3	10.09	F		9.0	15.05	F		
$32^2 imes 64$	5.6	0.25	61	0.38	5.4	0.98	62	0.22	
64³	7.0	1.33	F		6.6	6.43	224	5.43	
128^{3}	8.8	15.35	F		6.5	28.08	F		

General symmetric matrices - Test matrices

MATRIX	Ν	NNZ	SPD	DESCRIPTION
Andrews/Andrews	60,000	760,154	yes	computer graphics pb.
Williams/cant	62,451	4,007,383	yes	FEM cantilever
UTEP/Dubcova2	65,025	1,030,225	yes	2-D/3-D PDE pb.
Rothberg/cfd1	70,656	1,825,580	yes	CFD pb.
Schmid/thermal1	82,654	574,458	yes	thermal pb.
Rothberg/cfd2	123,440	3,085,406	yes	CFD pb.
Schmid/thermal2	1,228,045	8,580,313	yes	thermal pb.
Cote/vibrobox	12,328	301,700	no	vibroacoustic pb.
Cunningham/qa8fk	66,127	1,660,579	no	3-D acoustics pb.
Koutsovasilis/F2	71,505	5,294,285	no	structural pb.

SIAM-CSE – March 1, 2013

Generalization of MLR via DD

- **DD:** PartGraphRecursive from METIS
- balancing with diagonals
- higher ranks used in two problems (cant and vibrobox)
- Show SPD cases first then non-SPD

	ICT/ILDLT					MLR-CG/GMRES					
	fill	p-t	its	i-t	k	lev	fill	p-t	its	i-t	
Andrews	2.6	0.44	32	0.16	2	6	2.3	1.38	27	0.08	
cant	4.3	2.47	F	19.01	10	5	4.3	7.89	253	5.30	
Dubcova2	1.4	0.14	42	0.21	4	4	1.5	0.60	47	0.09	
cfd1	2.8	0.56	314	3.42	5	5	2.3	3.61	244	1.45	
thermal1	3.1	0.15	108	0.51	2	5	3.2	0.69	109	0.33	
cfd2	3.6	1.14	F	12.27	5	4	3.1	4.70	312	4.70	
thermal2	5.3	4.11	148	20.45	5	5	5.4	15.15	178	14.96	

MATRIX	ICT/ILDLT					MLR-CG/GMRES					
	fill	p-t	its	i-t	k	lev	fill	p-t	its	i-t	
vibrobox	3.3	0.19	F	1.06	10	4	3.0	0.45	183	0.22	
qa8fk	1.8	0.58	56	0.60	2	8	1.6	2.33	75	0.36	
F2	2.3	1.37	F	13.94	5	5	2.5	4.17	371	7.29	

Conclusion

- Promising approach –
- Many more avenues to explore:
- Nonsymmetric case,
- Implementation on GPUS,
- Storage for 3D case

