OF MINNESOTA TWIN CITIES

Multilevel Low-Rank preconditioners

Yousef Saad

Department of Computer Science and Engineering

University of Minnesota

SIAM-PP Feb 21,2014

Introduction, Motivation

Primary goal for this work: Alternatives to ILU preconditioners

First motivation: avoid irregular computations [Use: GPUs]

Second: revisit approximate inverse preconditioners – but from the angle of Low-rank approximations.

Third: exploit recent work on HSS matrices, H-matrices, ... [J. Xia et al 2010, Hackbusch, Engquist and Ying,...]

Low-rank Multilevel Approximations

Starting point: symmetric matrix derived from a 5-point discretization of a 2-D Pb on $n_x \times n_y$ grid

Corresponding splitting on FD mesh:

 \blacktriangleright $A_{11} \in \mathbb{R}^{m imes m}$, $A_{22} \in \mathbb{R}^{(n-m) imes (n-m)}$

In the simplest case second matrix is:

Thus: $A = \underbrace{(A + EE^T)}_B - EE^T$ Note: $E \in \mathbb{R}^{n \times n_x}, X \in \mathbb{R}^{n_x \times n_x}$ $n_x = |\text{ separator }| = [O(n^{1/2}) \text{ in 2-D}, O(n^{2/3}) \text{ in 3-D}]$

Next step: use Sherman-Morrison formula:

$$A^{-1} = B^{-1} + (B^{-1}E)X^{-1}(B^{-1}E)^T$$

 $X = I - E^T B^{-1}E$

Multilevel Low-Rank (MLR) algorithm

 \blacktriangleright Use in a recursive framework [apply recursively to B_1, B_2] Next step: low- $B^{-1}E pprox U_k V_k^T, egin{array}{c} U_k \in \mathbb{R}^{n imes k}, \ V_k \in \mathbb{R}^{n_x imes k}, \ V_k \in \mathbb{R}^{n_x imes k}. \end{array}$ rank approx. for $B^{-1}E$ ► Replace $B^{-1}E$ by $U_kV_k^T$ in $X = I - (E^TB^{-1})E$: $X \approx G_k = I - V_k U_k^T E$, $(\in \mathbb{R}^{n_x \times n_x})$ Leads to ... Preconditioner $M^{-1}=B^{-1}+U_kH_kU_k^T$ [\]Use recursivity

► Can show :
$$H_k = (I - U_k^T E V_k)^{-1}$$
 and $H_k^T = H_k$

Recursive multilevel framework

•
$$A_i = B_i + E_i E_i^T, B_i \equiv \begin{pmatrix} B_{i_1} \\ B_{i_2} \end{pmatrix}$$
.

- Next level, set $A_{i_1}\equiv B_{i_1}$ and $A_{i_2}\equiv B_{i_2}$
- Repeat on A_{i_1}, A_{i_2}
- Last level, factor A_i (IC, ILU)
- Binary tree structure:

Generalization: Domain Decomposition framework

Domain partitioned into 2 domains with an edge separator

Matrix can be permuted to: $PAP^{T} = \begin{pmatrix} \hat{B}_{1} & \hat{F}_{1} & & \\ \hat{F}_{1}^{T} & C_{1} & -X & \\ & & \hat{B}_{2} & \hat{F}_{2} & \\ & & -X^{T} & \hat{F}_{2}^{T} & C_{2} \end{pmatrix}$

Interface nodes in each domain are listed last.

Each matrix \hat{B}_i is of size $n_i \times n_i$ (interior var.) and the matrix C_i is of size $m_i \times m_i$ (interface var.)

Let:
$$E_{\alpha} = \begin{pmatrix} 0 \\ \alpha I \\ 0 \\ \frac{X^T}{\alpha} \end{pmatrix}$$
 then we have:

$$egin{aligned} PAP^T &= egin{pmatrix} B_1 \ B_2 \end{pmatrix} - EE^T & ext{with} & B_i &= egin{pmatrix} \hat{B}_i & \hat{F}_1 \ \hat{F}_i^T & C_i + D_i \end{pmatrix} \ & ext{and} & egin{pmatrix} D_1 &= lpha^2 I \ D_2 &= rac{1}{lpha^2} X^T X \end{aligned}$$

> α used for balancing

> Better results when using diagonals instead of αI

Experiments

- Hardware: Intel Xeon X5675 processor
- C/C++; Intel Math Kernel Library (MKL, version 10.2)
- Model 2-D/3-D Problems discret. with 5pt/7pt FD

 $-\Delta u - cu = g$ in Ω + B.C.

- c > 0 in $-\Delta u cu$; i.e., $-\Delta$ shifted by -sI.
- \bullet 2D case: s=0.01, 3D case: s=0.05
- MLR + GMRES(40) compared to ILDLT + GMRES(40)
- 2-D problems: #lev= 4, rank= 5, 7, 7
- 3-D problems: #lev= 5, rank= 5, 7, 7
- ILDLT failed for most cases

Grid	ILDLT-GMRES				MLR-GMRES			
	fill	p-t	its	i-t	fill	p-t	its	i-t
256^2	6.5	0.16	F		6.0	0.39	84	0.30
512^{2}	8.4	1.25	F		8.2	2.24	246	6.03
1024^{2}	10.3	10.09	F		9.0	15.05	F	
$32^2 imes 64$	5.6	0.25	61	0.38	5.4	0.98	62	0.22
64³	7.0	1.33	F		6.6	6.43	224	5.43
128^{3}	8.8	15.35	F		6.5	28.08	F	

Avoiding recursivity: 'standard' DD framework

➤ Global system can be permuted to the form →
 ➤ u_i's internal variables
 ➤ y interface variables

Split as:
$$A \equiv \begin{pmatrix} B & \hat{F} \\ \hat{E}^T & C \end{pmatrix} = \begin{pmatrix} B \\ C \end{pmatrix} + \begin{pmatrix} \hat{F} \\ \hat{E}^T \end{pmatrix}$$
Define : $F \equiv \begin{pmatrix} \hat{F} \\ -I \end{pmatrix}; \quad E \equiv \begin{pmatrix} \hat{E} \\ -I \end{pmatrix}$

► Then:

$$egin{bmatrix} egin{array}{c|c} B & \hat{F} \ \hline \hat{E}^T & C \end{bmatrix} = egin{bmatrix} B + \hat{F} \hat{E}^T & 0 \ \hline 0 & C + I \end{bmatrix} - F E^T$$

Low-Rank Approximation DD preconditioners

> Property: $\hat{F}\hat{E}^{T}$ is 'local', i.e., no inter-domain couplings \rightarrow

$$egin{aligned} A_0 &\equiv \left[egin{aligned} B + \hat{F} \hat{E}^T & 0 \ 0 & C + I \ \end{aligned}
ight] \ &= ext{block-diagonal} \end{aligned}$$

Sherman-Morrison \rightarrow

$$A^{-1} = A_0^{-1} + A_0^{-1} F G^{-1} E^T A_0^{-1}$$
$$G \equiv I - E^T A_0^{-1} F$$

Options: (a) Approximate $A_0^{-1}F, E^T A_0^{-1}, G^{-1}$ [as before] (b) Approximate only G^{-1} [new]

 \blacktriangleright (b) requires 2 solves with A_0 but will be more accurate

Let $G \approx G_k$ Preconditioner \rightarrow

$$M^{-1} = A_0^{-1} + A_0^{-1} F G_k^{-1} E^T A_0^{-1}$$

Symmetric Positive Definite case

> Matrix A_0 is SPD.

 $\blacktriangleright \text{ Let } H = E^T A_0^{-1} E$

 \blacktriangleright Eigenvalues of H are between 0 and 1.

Next, approximate H as $H \approx U_k D_k U_k^T$; $G_k = I - U_k D_k U_k^T$. Then:

$$G_k^{-1} \equiv (I - U_k D_k U_k^T)^{-1} = I + U_k [(I - D_k)^{-1} - I] U_k^T$$

► Observation: $A^{-1} = M^{-1} + A_0^{-1} E[G^{-1} - G_k^{-1}] E^T A_0^{-1}$

 \blacktriangleright k largest eigenvalues of G matched – others set == 0

Consequence: AM⁻¹ has
 n - s + k eigenvalues equal to 1, others between 0 and 1
 More general alternative. Let γ = 1/(1 − θ) and
 G⁻¹_{k,θ} ≡ γI + U_k[(I − D_k)⁻¹ − γI]U^T_k

> k largest eigenvalues of G matched – others set == θ

- > $\theta = 0$ yields previous case
- > When $\theta = \lambda_{k+1}$ we get

• n - s + k eigenvalues equal to one, others ≥ 1

Next: An example for a 900×900 Laplacean, 4 domains, s = 119

k = 5 Eigenvalues of AM^{-1} for the case $\theta = 0$

SIAM-PP 02/22/2014 p. 19

k = 15 Eigenvalues of AM^{-1} for the case $\theta = \lambda_{k+1}$

k = 5 Eigenvalues of AM^{-1} for the case $\theta = \lambda_{k+1}$ - computed from 3k steps of Lanczos

k = 15 Eigenvalues of AM^{-1} for the case $\theta = \lambda_{k+1}$ - computed from 3k steps of Lanczos

SIAM-PP 02/22/2014 p. 22

Conclusion

Promising alternatives to ILUs can be found in new forms of approximate inverse techniques

- Seek "data-sparsity" instead of regular sparsity
- DD approch easier to implement, easier to understand than recursive approach
 - Other advantages:
- Easy to update
- > Requires little memory [store U_k, D_k]