
LOCAL LINEAR
CONVERGENCE OF ADMM

Daniel Boley

Model QP/LP: min 1/2x
TQx+ cTx s.t. Ax = b, x ≥ 0, (1)

Lagrangian: L(x,y) = 1/2x
TQx+ cTx− yTx s.t. Ax = b, (2)

where y ≥ 0 is the vector of Lagrange multipliers for the inequality con-
straints x ≥ 0.
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Applications
• Machine Learning
“minimize some loss fcn subject to fitting training data”

• Economics, Operations Research, many others.

Properties
• Models are very large

• Often subproblems can be solved easily

• Leads to idea of splitting problem into easy pieces.

Previous Convergence Theory
• Very abstract theory based on monotone linear operators.

• Recent results are of the form O(k) or O(k2), where k = iteration
number.

• Bounds are far from actual behavior.
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Dual Ascent Method

Model QP/LP: min 1/2x
TQx+ cTx s.t. Ax = b, x ≥ 0, (1)

Lagrangian: L(x,y) = 1/2x
TQx+ cTx− yTx s.t. Ax = b, (2)

where y ≥ 0 = Lagrange multipliers for the constraints x ≥ 0.

Primal Problem: minxmaxy L(x,y) : · · · = ∞ when constraints violated.

Dual Problem: maxyminx L(x,y) : boxed expr is relatively easy to solve.

Dual Ascent Method: solve minx L(x,y) in dual problem exactly, take small
gradient ascent steps on dual variable y.
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Split Primal variables into x, z:

min 1/2x
TQx+ cTx+ g(z) s.t. Ax = b, x = z, (3)

where g(z) is the indicator function for the non-negative orthant:

g(z) =

{

0 if z ≥ 0
∞ if any component of z is negative.

.

g(z) is a non-smooth convex function encoding the inequality constraints.

Associated [partially] augmented Lagrangian

Lρ(x, z,y) = 1/2x
TQx+ cTx+ g(z) + yT (x− z) + 1/2ρ‖x− z‖22, s.t. Ax = b,

(4)
where y is the vector of Lagrange multipliers for the additional equality
constraint x− z = 0, ρ is a proximity penalty parameter chosen by the user.
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Splitting

Using the common splitting boyd11, the ADMM method consists of three
steps: first minimize Lagrangian with respect to x, then with respect to z,
and then perform one ascent step on the Lagrange multipliers u:

1. Set x[k+1] = argmin
x
1/2x

TQx+ cTx+ 1/2ρx
Tx+ ρxT (u[k] − z[k])

subject to Ax = b

2. Set z[k+1] = argmin
z
g(z) + 1/2ρz

Tz− ρzT (x[k+1] + u[k])

3. Set u[k+1] = u[k] +∇uLρ(x
[k+1], z[k+1],u).

(5)
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Closed Form

Each step of Alg I can be solved in closed form, leading to the ADMM
iteration (with no acceleration) consisting of the following steps repeated
until convergence, where z[k],u[k] denote the vectors from the previous pass,
and ρ is a given fixed proximity penalty:

Algorithm 1: One Pass of ADMM

Start with z[k],u[k].

1. Solve

(
Q+ ρI AT

A 0

)(
x[k+1]

ν

)

=

(
ρ(z[k] − u[k])− c

b

)

for x[k+1],ν.

2. Set z[k+1] = max{0,x[k+1]+u[k]} (where “max” is taken elementwise).

3. Set u[k+1] = u[k] + x[k+1] − z[k+1].

Result is z[k+1],u[k+1] for next pass.
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Complementarity Property

Lemma 1. After every pass, the vectors z[k+1],u[k+1] satisfy

a. z[k+1] ≥ 0,

b. u[k+1] ≤ 0,

c. z
[k+1]
i · u

[k+1]
i = 0, ∀i (a complementarity condition).

d. x[k+1] satisfies the equality constraints Ax[k+1] = b.
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Combine Iterates into a Single Vector

Use the complementarity condition to store z,u in a single vector.

Let w = z− u, and let d be a vector of flags such that

di = +1 iff ui = 0 ⇐⇒ i-th constraint is inactive,
di = −1 iff ui 6= 0 ⇐⇒ i-th constraint is active.

Because of the complementarity condition, zi = 1/2(1 + di)wi and ui =
−1/2(1 − di)wi. If D = Diag(d) (the diagonal matrix with elements of
vector d on the diagonal), then 1/2(I−D)w = −u and 1/2(I+D)w = z. The
flags indicate which inequality constraints are actively enforced on z at each
pass.
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Single Vector Iteration

The modified ADMM iteration using the new variables can be written as:

Algorithm 2: One Pass of Modified ADMM

Start with w[k], D[k].

1. Solve

(
Q/ρ+ I AT /ρ

A 0

)(
x[k+1]

ν

)

=

(
w[k] − c/ρ

b

)

for x[k+1],ν.

2. Set wtmp = x[k+1] − 1/2(I−D[k])w[k], where D[k] = Diag(d[k]);

3. D[k+1] = Diag(sign(wtmp));

4. Set w[k+1] = |wtmp| = D[k+1]wtmp.

Result is w[k+1], D[k+1] for next pass.
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Eliminate x

Iteration is carried by z,u. So eliminate x entirely, by inverting the matrix
in step one explicitly.

(
x

ν

)

=

(
Q/ρ+ I AT /ρ

A 0

)−1 (
w − c/ρ

b

)

=

(
N RATS

ρSAR −ρS

)(
w − c/ρ

b

)

,

(6)

where R = (Q/ρ + I)−1 is the resolvent of Q, S = (ARAT )−1 is the inverse
of the Schur complement, and N = R−RATSAR.

Matrix Form of Iteration

Lemma 2. The operator N = R−RATSAR is positive semi-definite and
‖N‖2 ≤ ‖R‖2 ≤ 1. If Q is strictly positive definite, then also ‖R‖2 < 1. If
we have an LP, then N = I−AT (AAT )−1A = orthogonal projector onto the
nullspace of A.
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ADMM as a Matrix Recurrence

Combine formulas

x[k+1] = Nw[k] +

h
︷ ︸︸ ︷

RATSb−Nc/ρ

wtmp = x[k+1] − 1/2(I−D[k])w[k]

D[k+1] = Diag(sign(wtmp))

w[k+1] = |wtmp| = D[k+1]wtmp

to get

Algorithm 3: One Pass of Reduced ADMM

Start with w[k], D[k].
0. wtmp = (N − 1/2(I−D[k]))w[k] + h

1. D[k+1] = Diag(sign(wtmp))

2. w[k+1] = D[k+1]wtmp

Result is w[k+1], D[k+1] for next pass.
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Spectral Properties

The spectral properties of M [k] = D[k+1](N−1/2(I−D
[k])) play a critical role

in the convergence of this procedure.

Lemma 3. ‖M‖2 = ‖D[k+1](N − 1/2(I−D[k]))‖2 ≤ 1. Any eigenvalues of

M = D[k+1](N − 1/2(I−D[k])) on the unit circle must have a complete set of
eigenvectors (no Jordan blocks larger than 1× 1).

Lemma 4. If D = D[k+1] = D[k] (the flags remain unchanged), then all
eigenvalues of D(N − 1/2(I−D)) must lie in the closed disk in the complex
plane with center 1/2 and radius 1/2, denoted D(1/2,

1/2). The only possible
eigenvalue on the unit circle is +1, and if present must have a complete set
of eigenvectors. In the case of a linear program, Q = 0, N is an orthogonal
projector, and all the eigenvalues of M = D(N − 1/2(I −D)) lie on the
boundary of D(1/2,

1/2).
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Example: Spectrum of ADMM Iteration Operator
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◦ = eigenvalues for LP near end of iteration.
∗ = eigenvalues for QP.
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Matrix Recurrence.

Step 2 of Algorithm 3 is written as follows:

(
w[k+1]

1

)

= M
[k]
aug

(
w[k]

1

)

=

(
M [k] D[k+1]h

0 1

)(
w[k]

1

)

=

(
D[k+1](N − 1/2(I−D[k])) D[k+1]h

0 1

)(
w[k]

1

)

,

(7)

where h = RATSb−Nc/ρ

Converges to eigenvector: if eigenvector is all non-negative, get solution to
original QP/LP. Otherwise, the flag matrix (D) will change to yield a new
operator.
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Solution to QP/LP is an eigenproblem.

Lemma 5. Let Maug be the augmented matrix in recurrence and assume
D = D[k+1] = D[k] is a flag matrix of the form Diag(±1, . . . ,±1). Suppose
(

w
1

)

is an eigenvector corresponding to eigenvalue 1 of the matrix Maug and

furthermore suppose w ≥ 0.

Then the primal variables defined by x = z = 1/2(I+D)w and dual variables
y = ρu = −ρ/2(I−D)w satisfy the first order KKT conditions.

Conversely, if x = z,u satisfy the KKT conditions,

then

(

w
1

)

is an eigenvector of Maug corresponding to eigenvalue 1, where

w = z − u, and Maug is defined as in the recurrence with D[k+1] = D[k] =
D = Diag(d) with entries di = +1 if zi > 0, di = −1 if ui < 0, else di = ±1
(either sign).
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Regimes based on spectral properties.

If D[k+1] = D[k]:

[a] The spectral radius of M [k] is strictly less than 1. If close enough to
the optimal solution (if it exists), the result is linear convergence to
that solution.

[b] M [k] has an eigenvalue equal to 1 which results in a 2×2 Jordan block

for M
[k]
aug. The process tends to a constant step, either diverging, or

driving some component negative, resulting in a change in the operator
M [k].

[c] M [k] has an eigenvalue equal to 1, but M
[k]
aug still has no non-diagonal

Jordan block for eigenvalue 1; If close enough to the optimal solution
(if it exists), the result is linear convergence to that solution.

If D[k+1] 6= D[k], then we transition to a new operator:

[d] M [k] has have an eigenvalue of absolute value 1, but not equal to 1.
This can occur when the iteration transitions to a new set of active
constraints.
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Local Convergence is Linear.

Theorem 6. Suppose the LP/QP has a unique solution x∗ = z∗ and
corresponding unique optimal Lagrange multipliers y∗ for the inequality
constraints, and this solution has strict complementarity: that is either
z∗i > 0 = y∗i or y∗i < 0 = z∗i (i.e. w∗i = z∗i − y∗i /ρ > 0) for every index
i. Then eventually the ADMM iteration reaches a stage where it converges
linearly to that unique solution.
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Example: A Simple Basis Pursuit Problem

min
x

‖x‖1 subject to Ax = b, (8)

or a soft variation allowing for noise (similar to LASSO )

min
x

‖Ax− b‖22 subject to ‖x‖1 ≤ tol, (9)

where the elements of A,b are generated independently by a uniform distri-
bution over [−1,+1]. A is 20× 40.

Problem (9) is a model to find a sparse best fit, with a trade-off between
goodness of fit and sparsity.
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ADMM applied to the Basis Pursuit LP
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Unaccelerated ADMM applied to the LASSO QP
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Spectrum of ADMM Iteration Operator – LASSO
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◦ = eigenvalues for LP in final regime.
∗ = eigenvalues for QP.
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Toy Example

Simple resource allocation model:
• x1 = rate of cheap process (e.g. fermentation),
• x2 = rate of costly process (e.g. respiration).

maximizex +2x1 +30x2 (desired end product production)
subject to x1 +x2 ≤ x0,max (limit on raw material)

2x1 +50x2 ≤ 200 (internal capacity limit)
x1 ≥ 0 x2 ≥ 0 (irreversibility of reactions)

Put into standard form:

minimizex −2x1 − 30x2 (desired end product production)
subject to x1 +x2 + x3 = x0,max (limit on raw material)

2x1 +50x2 + x4 = 200 (internal capacity limit)
x1 ≥ 0 x2 ≥ 0 (irreversibility of reactions)
x3 ≥ 0 x4 ≥ 0 (slack variables)

(10)
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Typical Convergence Behavior v0,max = 99.9
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ADMM on Example 1: typical behavior. Curves: A: error ‖(z[k] − u[k]) −
(z∗ − u∗)‖2. B: ‖(z[k] − u[k]) − (z[k−1] − u[k−1])‖2. C: ‖(x[k] − z[k])‖2. D:
‖(z[k] − z[k−1])‖2/10 (D is scaled by 1/10 just to separate it from the rest).
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Matrix Operators

N =








0.5201 −0.0210 −0.4991 0.0096
−0.0210 0.0012 0.0197 −0.0204
−0.4991 0.0197 0.4793 0.0108
0.0096 −0.0204 0.0108 0.9994







, h =








48.3546
2.0968

49.4487
−1.5470







.

ADMM Iterates for k = 1, . . . , 124 follow:

(

w[k+1]

1

)

= Maug

(

w[k]

1

)

=










0.5201 −0.0210 −0.4991 0.0096 48.3546
−0.0210 0.0012 0.0197 −0.0204 2.0968
−0.4991 0.0197 0.4793 0.0108 49.4487
−0.0096 0.0204 −0.0108 0.0006 1.5470

0 0 0 0 1.0000










(

w[k]

1

)

.
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Eigenstructure of Operator

The eigenvalues of the operator Maug are given by its Jordan canonical form:

J = Diag(J1, J4) = Diag

((

1 1
0 1

)

, 6.2357e-4± 2.4964e-2i, 0

)

The 2×2 Jordan block corresponding to eigenvalue 1 indicates we are in the
“constant-step” regime [b]. The difference between two consecutive iterates
quickly converges to Maug’s only eigenvector for eigenvalue 1:

(

w[k+1]

1

)

−

(

w[k]

1

)

=⇒










0.4160
−0.0166
−0.3993

0
0










,
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Final Regime

for k = 133, . . . , 154:

(

w[k+1]

1

)

= Maug

(

w[k]

1

)

=










0.5201 −0.0210 −0.4991 0.0096 48.3546
−0.0210 0.0012 0.0197 −0.0204 2.0968
0.4991 −0.0197 0.5207 −0.0108 −49.4487

−0.0096 0.0204 −0.0108 0.0006 1.5470

0 0 0 0 1.0000










(

w[k]

1

)

,

(11)
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Final iterate:
(

w∗

1

)

=

(

w[155]

1

)

= (99.8958, 0.0042, 0.8334, 0.5833, 1)T .

(Eigenvector for M).

The final flag matrix is D∗ = Diag(+1,+1,−1,−1), indicating that the first
two components of w∗ correspond to primal variables (x∗1, x

∗
2) and the last

two to dual variables (u∗3, u
∗
4), all non-zero.

Thus the true optimal solution to LP is x∗1 = 99.8958, x∗2 = 0.0042. u∗3 =
−0.8334, u∗4 = −0.5833.

σ(M) = 0.7217 =⇒ fast convergence.
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Second Toy Example v0,max = 3.99

For k < 561 in “constant step” regime.

For k ≥ 561:

(

w[k+1]

1

)

= Maug

(

w[k]

1

)

=










0.4799 0.0210 0.4991 −0.0096 −0.4444
−0.0210 0.0012 0.0197 −0.0204 3.9924
0.4991 −0.0197 0.5207 −0.0108 0.5368
0.0096 −0.0204 0.0108 0.9994 −0.5094

0 0 0 0 1.0000










(

w[k]

1

)

,

(12)
converging to eigenvector

(

w∗

1

)

=








28.0
3.9
30.0
5.0
1







.
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Convergence Of Second Toy Example
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ADMM on Example 2: slow linear convergence.

Second largest eigenvalue = σ(M) = 0.999896. convergence is very slow:
−1/ log10(σ(M)) = 22135 iterations needed per decimal digit of accuracy.
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Convergence Of Second Toy Example
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Convergence behavior of first two components ofw[k] for Example 2, showing
the initial straight line behavior (initial regime [b]) leading to the spiral (final
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FUTURE WORK

ADMM ⇐⇒ power method with different operators, changing with regime.
Replace power method with faster eigensolver.

Conduct similar analysis on other patterns (e.g. LASSO).

Discover relation between eigenvalues controlling convgernce rate and origi-
nal QP/LP.
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