
Methods for Large Sparse Eigenvalue Problems from WaveguideAnalysis�Chang Peng and Daniel BoleyDepartment of Computer ScienceUniversity of MinnesotaMinneapolis, MN 55455AbstractWe discuss several techniques for �nding leading eigenvalues and eigenvectors for large sparse matrices. Thetechniques are demonstrated on a scalar Helmholtz equation derived from a model semiconductor rib waveguideproblem. We compare the simple inverse iteration approach with more sophisticated methods, including min-imum degree reordering, Arnoldi and Lanczos methods. We then propose a new Arnoldi method designedparticularly for the constrained generalized eigenvalue problem, a formulation arising naturally from the scalarwaveguide problem.1 Problem FormulationIn the waveguide analysis (see e.g. [9]), the analysis of the propagation of the electric and magnetic �elds inwaveguides, based on the use of Maxwell's equations, often lead to scalar Helmholtz equations of the general formr2TEx + k2Ex = �2Ex, where Ex denotes the x component of the electric �eld, k is the dielectric constant, � isthe unknown propagation constant, and r2T denotes the Laplacian operator in the transverse (x; y) coordinates (zbeing the longitudinal coordinate). When this Helmholtz equation is solved for the x coordinate only, one mustimpose internal continuity conditions across the boundaries between materials of di�erent dielectric constants. Thecombined equations are then discretized by �nite di�erences yielding a large sparse ordinary matrix eigenvalueproblem Ax = �x [9]. Discretizing the vector �elds equations using �nite element formulations leads to a largesparse generalized eigenvalue problem [2]: Ax = �Bx (1)where the matrix An�n is real and non-singular, Bn�n is real, symmetric, and positive de�nite.Solving problem (1) constitutes the largest part of the computational e�ort. In this paper we are discussingseveral iterative algorithms that can e�ciently deal with problem (1) of several thousands in size on worksta-tions. When B is banded, as is the case in many problem formulations from waveguide analysis, the Choleskydecomposition B = LLT problem (1) can be used to reduce (1) to an ordinary eigenvalue problem:L�1AL�Ty = �y (2)where L is lower triangular and y = LTx. In an iterative method, L�1AL�T dose not need to be explicitlyformed. This is possible because most iterative methods only need to form matrix-vector products. When B isnot banded but its Cholesky decomposition gives a sparse L, the reduction is still useful. But if L is not sparse,then solving problems such as (1) becomes signi�cantly more di�cult and expensive. Since waveguide analysisleads to generally banded matrices, in this paper, we will mainly concentrate on the ordinary eigenvalue problem(2), assuming that the multiplication by A�1 is feasible, and considering the matrix L�1AL�T as A, if appropriate.As a model test case, we derived the matrix A from the scalar Helmholtz equation, combined with suitableinternal continuity conditions, applied to a typical semiconductor rib waveguide. See [9] for the details. In ourexamples, we used a matrix of modest size (1800� 1800) with a zero structure shown in Figure 1. Computationswere carried out in MATLAB.�This work was funded in part by NSF grant CCR-9405380.



2 Inverse Iteration, Minimum Degree Reordering and DeationInverse iteration is a simple, powerful and e�ective method to compute the smallest modulus eigenvalue. Sincein the waveguide analysis the dominant mode (in the sense of largest real part), which is desired, generally doesnot correspond to the largest or smallest eigenvalue in modulus, it is often necessary to combine a shift � intothe iteration. Iterating with matrix (A � �I)�1 will yield the eigenvalue closest to the given �. The convergencefactor is: � = j�1 � �jj�2 � �j (3)where �1 is the closet eigenvalue to � and �2 is the second close one. We can see that if � is much closer to �1than to �2, the convergence can be very fast. Each iteration requires that a system of linear equations of theform (A � �I)xnew = xold be solved, often by a variant of LU Factorization [4]. If � is updated using Rayleighquotients during the iteration, then the iteration converges quadratically in general, and cubically if the matrixis symmetric [4], but changing � requires that (A � �I) be re-factored from scratch in each iteration at greatexpense. So often the shift is �xed, allowing the factoring to be done just once, where the shift is estimated inadvance by physical considerations. On the other hand, when only the largest eigenvalue in magnitude is needed,the more straightforward power iteration may be used, but this method may su�er from slow convergence whenthe �rst and second eigenvalues in magnitude are close to each other. The Inverse Iteration is summarized in thefollowing.Algorithm 2.1 Basic Inverse Iteration:1. Choose a random unit vector x0 and a shift �;2. Compute the LU decomposition of A� �I ;3. Iterate: for i = 1; 2; ::: until convergence do4. Solve Ly = x0 and Ux = y;5. norm = kxk2, x = x=norm;6. Compute � = xTAx = (xTx0)=norm;7. Compute residual r = kAx� �xk1;8. If r is satis�ed, then stop; Otherwise x0 = x;9. Optional If i = 0 (mod 8 or 10), then set � = �,and compute the LU decomposition of (A� �I).(optional: for Rayleigh quotient iteration adaptive algorithm)10. endLine 9 is an adaptive shift step for faster convergence which can yield quadratic convergence (cubic if A issymmetric). However, it requires that the LU decomposition be repreated, which is very expensive, and especiallywhen A is not symmetric, the converged eigenvalue may not be the one that is closest to the original shift. Thusoften line 9 is skipped, or performed only once during several passes through the main loop.If the matrix A is banded, we can reorder A using the minimum degree ordering before we do the LU decomposi-tion [3]. This is a heuristic algorithm that reorders the equations so that (hopefully) the resulting L and U factorsare more sparse, i.e. have fewer non-zero elements. Then the total number of ops needed by the algorithm will beconsiderably reduced. For the details of minimum degree reordering, please refer to [3]. For these experiments, wehave taken advantage of MATLAB's built-in functions for various reordering algorithms including the minimumdegree reordering.Algorithm 2.2 Inverse Iteration with Minimum Degree Reordering:1. Choose a random unit vector x0 and a shift �;2. Find the minimum degree reordering permutation P, replace A with PAP ;3. Compute the LU decomposition of A� �I ;4. The rest is the same as the Basic Inverse Iteration (Algorithm 2.1, steps 3{8).With MATLAB we carried out a series of numerical experiments on a 1800 � 1800 matrix described in Section1. Algorithm 2.1 and 2.2 were used respectively to �nd the dominant mode which corresponds to the eigenvalue



Inverse Iteration # Eigenvalues Sought Iters Flop Count Residual NormBasic 1 4 8,255,268 6.4E-5Reordering 1 4 5,225,559 7.4E-5Reordering 2 18 8.485,461 3.9E-5Table 1: Comparison of Basic and Reordering Inverse Iteration� = 3:4404, �xing the shift at � = 3:4. From Table 1 we can see that reordered inverse iteration can save over 1=3of computation needed by the basic inverse iteration. We should point out that in MATLAB the LU decompositionprocess may involve pivoting and this pivoting may reduce some of the advantage gained from reordering. Tosee the potential advantage that could be gained just from minimum degree ordering if pivoting is turned o�, wecomputed the op count for the Cholesky factorization on a shifted matrix A (like LU Decomposition withoutpivoting for symmetric positive de�nite matrices [4]). The resulting Flop Counts with and without minimumdegree reordering are 2; 013; 624 and 3; 685; 377, respectively, representing a savings of 45% over the unreorderedversion!If we have already obtained the leading eigenvalue and need to �nd the next one closest to the known eigenvalue,we can use the so called deflation technique, described as follows [8]. Suppose � and u are the known eigenpairof A, and v is a vector such that vTu = 1. Then it is easy to see that the matrix A0 = A � uvT has the samespectrum as A except that the one eigenvalue � has been shifted to �� . For the power iteration A0 can be useddirectly in the iteration. But we cannot do so in the case of the inverse iteration, because forming A0 explicitlyis too expensive and will destroy the sparsity. We here propose an e�cient process that avoids forming A0. Sincewhat the inverse iteration needs is the matrix-vector product x = A0�1x0. We express A0�1 in terms of A�1,whose LU decomposition is already available. By the Sherman-Morrison formula [4] and using A�1u = ��1u, wehave A0�1 = A�1 + A�1u(1� vTA�1u)�1vTA�1= A�1 + ��  uvTA�1= (I + �uvT )A�1 (4)where � = �� . Since we already have LU decomposition of A, we can �rst compute y = A�1x0, and thencompute the product x = A0�1x0 = y + �(vTy)u. Combining this into Algorithm 2.1 and 2.2 is the inverseiteration with deation. We would like to point out here that this deation technique can be cascaded multipletime, or generalized to the block version, e.g. deation of multiple eigenvalues at the same time, by using theSherman-Morrison-Woodbury formula [4].There are various choices for the vector v. The Hotelling's deation chooses v as the left eigenvector w, e.g.wTA = �wT or ATw = �w. The advantage of this choice is that A0 will have the same eigenvectors as A. Sowhen A is symmetric, the right and left eigenvectors are the same, we can more easily compute the product:x = A0�1x0= (I + �uvT )A�1x0= y + (�� )�1(uTx0)u (5)where y = A�1x0. The other common choice just takes v = u. But this choice will not preserve the eigenvectors.So after the eigenvalue is found, we need another iteration to determine the eigenvector.The other strategy to compute more than one eigenpair is block inverse iteration (also known as inversesimultaneous iteration). In this iteration, we choose a shift � and several random vectors at the start, sayX0 = [x1;x2; :::;xm], and then for i = 1; 2; ::: until convergence, iteratively compute:Xi = (A� �I)�1Xi�1Xi = QiRiXi+1 = Qi (6)



Equation (6) is the result of the QR decomposition in the previous line which orthogonalizes the columns of Xi.If the iteration converges, then the upper triangular matrix Rk will tend to be the leading k� k part of the Schurcanonical form of (A � �I)�1 [8], that is the diagonal elements of Rk will be close to the �rst k eigenvalues of(A � �I)�1 in order of magnitude. So the eigenvalues nearest to � are obtained. The matrix Qk will be close tothe corresponding Schur vectors. If y is a eigenvector of Rk, then the Ritz vector x = Qky is an approximateeigenvector of A.Algorithm 2.3 Block Inverse Iteration:1. Choose a set of random vectors X0 = [x1;x2; :::;xm] and a shift �;2. Compute the LU decomposition of A� �I ;3. Iterate: for i = 1; 2; ::: until convergent do4. Solve LY = X0 and UX = X0;5. Compute QR decomposition X = QR;6. If i = 0 mod k,7. Compute the residual norm kAQ�QRk = kAQ�Xk.8. To compute AQ, solve LZ = Q and UY = Z.9. If satis�ed, then stop. Otherwise, X0 = Q and go on iteration;7. end8. Compute the eigenvector y of R, and the eigenvector of A is x = Qy.Note that the numberm of iterated vectors should be larger than the number k of eigenvalues needed. Dependingon the spectrum distribution, normally we could take m = k + 2 if k is two or three.3 Arnoldi and Lanczos MethodArnoldi method for the algebraic eigenvalue problem is very much like Galerkin method for the approximationof eigenfunctions. Here we just give a brief derivation of the method. The Galerkin method uses a subspace toform the approximate eigenfunctions. In a similar way, the Arnoldi method takes a subspace K � Rn to extractapproximate eigenvectors. The subspace is chosen to be the Krylov space of the form K = fv0; Av0; :::; Am�1v0g,where v0 is an arbitrary vector and m is typically much smaller than n. Suppose we have a set of orthonormalvectors vi that form the basis of K, and denote matrix Vm = [v1;v2; :::;vm]. Take x = Vmy 2 K, and impose theGalerkin condition to the residual r(�;x): r(�;x) = Ax� �x ? K (7)which is equivalent to: (AVmy � �Vmy;vi) = 0; i = 1,2, ..., m (8)Write (8) in the matrix form and denote Hm = V TAV , we then obtain a reduced approximation problem ofsmaller size: Hmy = �y (9)Now the question is how to form the orthonormal basis vi of K. Here, the modi�ed Gram-Schmidt orthogonaliza-tion process can be used. Each Avj is generated, it is orthogonalized against all vi with i < j. It is now knownthat this reduced problem can indeed give good approximation to large modulus eigenvalues [7]. Below is thealgorithm.Algorithm 3.1 Arnoldi Algorithm:1. Choose an random unit vector v1;2. Iterate: for j = 1; 2; :::;m do3. Compute wj = Avj ;4. For i = 1; 2; :::; j do5. hij = (vi;wj);



6. wj = wj � hijvi;7. end8. hj+1;j = kwjk. If hj+1;j = 0, then go to line 11;9. vj+1 = wj=hj+1;j ;10. end11. Compute all the eigenpairs �;y of Hm;12. Select the �rst k �'s in order of magnitude, and compute the eigenvectors xi = V yi(i = 1; 2; :::k);13. Compute the residual kAxi � �ixik1 = (eTmyi)hm+1;m. If satis�ed, then stop;Otherwise increase m by 5 or 10, set v0 = x1 and restart iteration from line 2 again.In line 13 the residual expression is obtained by multiplying yi, the eigenvector of Hm, to the following equation,which comes straight from line 2 to 9.AVm = VmHm + hm+1;mvm+1eTm (10)In line 8, if hj+1;j = 0, then equation (10) will becomesAVj = VjHj (11)The above equation indicates the exact invariant subspace Vj of A is obtained, and therefore the eigenvalues fromline 11 will be the exact eigenvalues of A. In practice, this is a rare case. The choice of m depends on the problemsize, spectrum distribution and the number of eigenvalues wanted. For a matrix of several thousands in size,choosing m = 20 � 200 may be good enough if about �rst 4 � 10 top modulus eigenvalues are wanted.The shift and inverse strategy as previously described for the inverse iteration can also be naturally combineinto Algorithm 2.1. In case the eigenvalues near a given point are wanted, this can be the winning strategy, as thenumerical experiment shows.Algorithm 3.2 Shift and Inverse Arnoldi Algorithm:1. Choose an random unit vector v1 and shift �;2. Compute the LU decomposition of (A� �I);3. Iterate: for j = 1; 2; :::;m do4. Solve Ly = vj and Uw = y, wj = w;5. Continue as in Algorithm 3.1, steps 4{9.6. Compute eigenvalues and vectors of (A� �I)�1 as in Algorithm 3.1, steps 11{12,mapping the eigenvalues back to those of A.While the Arnoldi method reduces the large matrix A into a small upper Hessenberg matrix Hm, the Lanczosmethod, however, reduces the matrix into a small tridiagonal matrix, and solve the tridiagonal matrix for eigen-values as the approximation [1]. In the Lanczos method the matrix Vm will not be orthonormal. Instead, anothern�m matrix Wm will be formed such that W TmVm = Im and W TmAVm = Tm, where Tm is the tridiagonal matrix.The shift and inverse strategy can be incorporated into the Lanczos as Algorithm 3.2.Algorithm 3.3 Lanczos Algorithm1. Choose two vectors v1 and w1 such that (v1;w1) = 1 Set �1 = 0;v0 = w0 = 02. Iterate: for i = 1; 2; :::;m do3. �i = (Avi;wi);4. v = Avi � �ivi � �ivi�1;5. w = ATwi � �iwi � �iwi�1;6. �i+1 = j(v;w)j1=2;7. �i+1 = (v;w)=�i+1;8. vi+1 = v=�i+1;9. wi+1 = w=�i+1;10. end11. Compute the eigen pairs of Tm = [�i; �i; �i];12. Select the �rst k eigenvalues �i in order of their magnitude;



Iterative Method k m Flop Count Residual NormArnoldi 4 15 9,308,634 4.1E-4Lanczos 4 17 12,365,568 1.5E-5Block Inverse itr. 3 n.a. 53,560,729 4.4E-5Table 2: Comparison of FLOPS by Arnoldi and Lanczos. k is the number of eigenvalues sought, and m is thenumber of vectors generated.13. Compute the corresponding eigenvectors xi = Vmyi;14. Compute the residual norm kAxi � �ixik1;15. If satis�ed, then stop. Otherwise, increase m and start over again.We used Arnoldi, Lanczos and block inverse iteration to solve the same problem as in Section 2. Shift andinverse scheme and the minimum degree ordering were all combined in each algorithm. And �ve eigenvaluesclosest to the shift � = 3:4 were computed. The results are � : 3:4408; 3:5665; 3:1464; 3:7539; 2:8379. Table 2 givesthe comparison of ops. It is apparent that the Arnoldi and Lanczos methods are capable of computing moreeigenvalues with less cost than block inverse iteration, but inverse iteration may su�ce if just one eigenvalueis desired, depending on the distribution of the spectrum. When the matrix is symmetric, the the Arnoldi andLanczos methods reduce to the same algorithm, and the resulting algorithm is known by the Kaniel-Paige theory tohave very nice convergence properties, at least for the extreme eigenvalues [4]. When the matrix is nonsymmetric,the Arnoldi method is more straightforward to implement and has somewhat better convergence properties, butrequires more space and cost per iteration than the Lanczos method. In addition, it is not entirely a simple matterto compute the eigenvalues of the nonsymmetric tridiagonal matrix resulting from the Lanczos method. Deationcan be incorporated into both Arnoldi and Lanczos methods.4 Constrained Raleigh Quotient Maximization ProblemsIn the transverse magnetic �eld formulation using �nite element method [5], the following problem is encountered:Find (�;x) s.t. � = maxCTx=0;x6=0 (Ax;x)(Bx;x) (12)where A is symmetric, B is symmetric positive de�nite, and C has full column rank. This problem would bethe usual generalized eigenvalue problem if there were no constraint CTx = 0. We call (12) Constrained RaleighQuotient Maximization Problem(CRQM). Mathematically, (12) is equivalent to the following regular eigenvalueproblem: V TAV y = V TBV y (13)where the matrix V consists of an orthonormal basis spanning the constraint space fx : CTx = 0g. In case thatthe matrix size is small, we can determine the matrix V by the Singular Value Decomposition and solve the denseproblem (13). However, if the matrix size is as large as several thousands, this approach becomes computationallyintractable on workstations. Here, we propose an algorithm that can e�ciently deal with large sparse case ofCRQM.The algorithm is based on the Arnoldi. The regular Arnoldi forms an orthonormal basis of the Krylov spaceK. As each new basis vector Avj is generated, it is orthogonalized against all vi; 1 � i � j � 1. Now we modifythis process by making Avj orthogonal not only to all previous vi's but also orthogonal to all the column vectorsof C. The column vectors of the resulting matrix Vm will be the basis of a \projected Krylov space" and will bevery good components to form approximate solution vectors for CRQM.



Algorithm 4.1 Arnoldi Algorithm for CRQM:1. Choose a unit vector v1 such that CTv1 = 0;2. For j = 1; 2; :::;m do3. Compute wj = Avj ;4. For i = 1; 2; :::; k do5. tij = (ci;wj);6. wj = wj � tijci;7. end8. For i = 1; 2; :::; j do9. hij = (vi;wj);10. wj = wj � hijvi;11. end12. hj+1;j = kwjk2. If hj+1;j = 0, then go to 14;13. vj+1 = wj=hj+1;j .14. Compute the eigenvalues of Hm and choose the k largest �is, where k � m.15. Compute eigenvectors yi of Hm associated with �i, and the CRQM solution vector xi = Vmyi, i = 1; : : : ; k.We have the following relations for the above algorithm.AVm = VmHm + CTm + hm+1;mvm+1eTm (14)V TmAVm = Hm (15)CTVm = 0 (16)Notice that equation (15) lays the groundwork for the algorithm that the Ritz vector x = Vmy is an approximationsolution of CRQM.It is seen that the Arnoldi method is easily adapted to incorporate the constraints. However, this method is stillunder investigation, and though we expect the behavior to be very similar to the unconstrained Arnoldi method,further numerical experiments are needed. In addition, the convergence theory has not yet been developed forthis speci�c algorithm. This work is in progress and will be reported soon.5 ConclusionsArnoldi and Lanczos methods are promising for the large sparse eigenvalue problems in waveguide analysis. Thecomputation cost of these two methods is far less than that of inverse iteration, especially when several eigenvaluesare sought. Strategies such as reordering, or \shift and inverse," can be easily combined in these methods. Andeither of them can be modi�ed to �t new formulations of �nite element method. Reordering technique cansigni�cantly save computation, and should be explored whenever possible. We have also found MATLAB to be aconvenient and e�cient tool for problems with size reaching of several thousands.References[1] D. L. Boley. Krylov space methods on state-space control models. Circ., Syst. & Signal Proc., 1992. toappear.[2] Bernice M. Dillon and Jon P. Webb, \A comparison of Formulations for the Vector Finite Element Analysisof Waveguides", IEEE Trans. Microwave Theory Tech., vol. 42, pp. 308-316, Feb. 1994.[3] Alan George and Joseph W. Liu, Computer Solution of Large Sparse Positive De�nite Systems. Prentice Hall,Englewood Cli�s, 1981.[4] Gene H. Golub and Charles F. Van Loan, Matrix Computations, John Hopkins University Press, 1989.[5] Zine-Eddine Abid, Klein L. Johnson, and Anand Gopinath, \Analysis of Dielectric Guides by Vector Trans-verse Magnetic Field Finite Elements", J. of Lightwave Tech., vol. 11, pp. 1545-1549.



[6] B. N. Parlett, The Symmetric Eigenvalue Problem. Prentice Hall, Englewood Cli�s, 1980.[7] Y. Saad, \Variations on Arnoldi's method for computing eigenelements of large unsymmetric matrices", LinearAlgebra Appl., 34:269-295, 1980.[8] Y. Saad, Numerical Methods for Large Eigenvalue Problems, pp. 153-156. Manchester University Press, 1992.[9] M.S. Stern, \Semivectorial Polarised �nite di�erence method for Optical Waveguides with Arbitrary IndexPro�les", IEE PROCEEDINGS, vol .135, Pt.J, No.1, pp. 56-63, Feb.
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nz = 89080Figure1. Matrix Non-Zeroes showing original matrix and LU factors combined. Upper �gures show original order,lower �gures show minimum degree ordering. nz is the total number of nonzeroes.


