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Abstract
We discuss several techniques for finding leading eigenvalues and eigenvectors for large sparse matrices. The
techniques are demonstrated on a scalar Helmholtz equation derived from a model semiconductor rib waveguide
problem. We compare the simple inverse iteration approach with more sophisticated methods, including min-
imum degree reordering, Arnoldi and Lanczos methods. We then propose a new Arnoldi method designed
particularly for the constrained generalized eigenvalue problem, a formulation arising naturally from the scalar
waveguide problem.

1 Problem Formulation

In the waveguide analysis (see e.g. [9]), the analysis of the propagation of the electric and magnetic fields in
waveguides, based on the use of Maxwell’s equations, often lead to scalar Helmholtz equations of the general form
V3.E, + k*E, = 3*E,, where E, denotes the z component of the electric field, k is the dielectric constant, 3 is
the unknown propagation constant, and V3 denotes the Laplacian operator in the transverse (z,y) coordinates (z
being the longitudinal coordinate). When this Helmholtz equation is solved for the z coordinate only, one must
impose internal continuity conditions across the boundaries between materials of different dielectric constants. The
combined equations are then discretized by finite differences yielding a large sparse ordinary matrix eigenvalue
problem Ax = Ax [9]. Discretizing the vector fields equations using finite element formulations leads to a large
sparse generalized eigenvalue problem [2]:

Ax = ABx (1)

where the matrix A™*" is real and non-singular, B™*" is real, symmetric, and positive definite.

Solving problem (1) constitutes the largest part of the computational effort. In this paper we are discussing
several iterative algorithms that can efficiently deal with problem (1) of several thousands in size on worksta-
tions. When B is banded, as is the case in many problem formulations from waveguide analysis, the Cholesky
decomposition B = LLT problem (1) can be used to reduce (1) to an ordinary eigenvalue problem:

L YAL Ty =)y (2)

where L is lower triangular and y = L”x. In an iterative method, L='AL~" dose not need to be explicitly
formed. This is possible because most iterative methods only need to form matrix-vector products. When B is
not banded but its Cholesky decomposition gives a sparse L, the reduction is still useful. But if L is not sparse,
then solving problems such as (1) becomes significantly more difficult and expensive. Since waveguide analysis
leads to generally banded matrices, in this paper, we will mainly concentrate on the ordinary eigenvalue problem
(2), assuming that the multiplication by A~ is feasible, and considering the matrix L='AL~T as A, if appropriate.

As a model test case, we derived the matrix A from the scalar Helmholtz equation, combined with suitable
internal continuity conditions, applied to a typical semiconductor rib waveguide. See [9] for the details. In our
examples, we used a matrix of modest size (1800 x 1800) with a zero structure shown in Figure 1. Computations
were carried out in MATLAB.
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2 Inverse Iteration, Minimum Degree Reordering and Deflation

Inverse iteration is a simple, powerful and effective method to compute the smallest modulus eigenvalue. Since
in the waveguide analysis the dominant mode (in the sense of largest real part), which is desired, generally does
not correspond to the largest or smallest eigenvalue in modulus, it is often necessary to combine a shift ¢ into
the iteration. Tterating with matrix (A — ol)~! will yield the eigenvalue closest to the given o. The convergence
factor is:

A1 — o]
e 3
v (3)

where Ay is the closet eigenvalue to o and A, is the second close one. We can see that if o is much closer to Aq
than to A2, the convergence can be very fast. Each iteration requires that a system of linear equations of the
form (A — 0I)Xpew = Xo1a be solved, often by a variant of LU Factorization [4]. If ¢ is updated using Rayleigh
quotients during the iteration, then the iteration converges quadratically in general, and cubically if the matrix
is symmetric [4], but changing o requires that (A — o) be re-factored from scratch in each iteration at great
expense. So often the shift is fixed, allowing the factoring to be done just once, where the shift is estimated in
advance by physical considerations. On the other hand, when only the largest eigenvalue in magnitude is needed,
the more straightforward power iteration may be used, but this method may suffer from slow convergence when
the first and second eigenvalues in magnitude are close to each other. The Inverse Iteration is summarized in the
following.

Algorithm 2.1 Basic Inverse Iteration:
1. Choose a random unit vector x¢ and a shift o;
2. Compute the LU decomposition of A — o1;
3. Tterate: for i = 1,2, ... until convergence do
4. Solve Ly = x¢ and Ux = y;
5. norm = ||x||2, x = x/norm;
6 Compute A = xT Ax = (xTxq)/norm;
7 Compute residual r = ||Az — AX||00;
8 If r is satisfied, then stop; Otherwise x¢ = x;
9 Optional If i = 0 (mod 8 or 10), then set o = A,
and compute the LU decomposition of (A — o).
(optional: for Rayleigh quotient iteration adaptive algorithm,)
10. end

Line 9 is an adaptive shift step for faster convergence which can yield quadratic convergence (cubic if A is
symmetric). However, it requires that the LU decomposition be repreated, which is very expensive, and especially
when A is not symmetric, the converged eigenvalue may not be the one that is closest to the original shift. Thus
often line 9 is skipped, or performed only once during several passes through the main loop.

If the matrix A is banded, we can reorder A using the minimum degree ordering before we do the LU decomposi-
tion [3]. This is a heuristic algorithm that reorders the equations so that (hopefully) the resulting L and U factors
are more sparse, i.e. have fewer non-zero elements. Then the total number of flops needed by the algorithm will be
considerably reduced. For the details of minimum degree reordering, please refer to [3]. For these experiments, we
have taken advantage of MATLAB’s built-in functions for various reordering algorithms including the minimum
degree reordering.

Algorithm 2.2 Inverse Iteration with Minimum Degree Reordering:

1. Choose a random unit vector x¢ and a shift o;

2.  Find the minimum degree reordering permutation P, replace A with PAP;

3. Compute the LU decomposition of A — o1;

4. The rest is the same as the Basic Inverse Iteration (Algorithm 2.1, steps 3-8).

With MATLAB we carried out a series of numerical experiments on a 1800 x 1800 matrix described in Section
1. Algorithm 2.1 and 2.2 were used respectively to find the dominant mode which corresponds to the eigenvalue



| Inverse Iteration | # FEigenvalues Sought || lters | Flop Count | Residual Norm |

Basic 1 4 8,255,268 6.4E-5
Reordering 1 4 5,225,559 7.4E-5
Reordering 2 18 8.485,461 3.9E-5

Table 1: Comparison of Basic and Reordering Inverse Iteration

A = 3.4404, fixing the shift at ¢ = 3.4. From Table 1 we can see that reordered inverse iteration can save over 1/3
of computation needed by the basic inverse iteration. We should point out that in MATLAB the LU decomposition
process may involve pivoting and this pivoting may reduce some of the advantage gained from reordering. To
see the potential advantage that could be gained just from minimum degree ordering if pivoting is turned off, we
computed the flop count for the Cholesky factorization on a shifted matrix A (like LU Decomposition without
pivoting for symmetric positive definite matrices [4]). The resulting Flop Counts with and without minimum
degree reordering are 2,013,624 and 3,685,377, respectively, representing a savings of 45% over the unreordered
version!

If we have already obtained the leading eigenvalue and need to find the next one closest to the known eigenvalue,
we can use the so called de flation technique, described as follows [8]. Suppose A and u are the known eigenpair
of A, and v is a vector such that v/'u = 1. Then it is easy to see that the matrix A’ = A — yuv” has the same
spectrum as A except that the one eigenvalue A has been shifted to A\ —«. For the power iteration A’ can be used
directly in the iteration. But we cannot do so in the case of the inverse iteration, because forming A’ explicitly
is too expensive and will destroy the sparsity. We here propose an efficient process that avoids forming A’. Since
what the inverse iteration needs is the matrix-vector product x = A'"'xy. We express A'~! in terms of A~!,
whose LU decomposition is already available. By the Sherman-Morrison formula [4] and using A~'u = A""'u, we
have

A7V = AT 4 yA a1l — v AT ) T AT
= A'+4 7 uv’ A1
Ay
= (I+pBuw")A™! (4)
where 3 = )‘VT,Y Since we already have LU decomposition of A, we can first compute y = A~ !'xg, and then

compute the product x = A'"'xy = y + B(v!y)u. Combining this into Algorithm 2.1 and 2.2 is the inverse
iteration with deflation. We would like to point out here that this deflation technique can be cascaded multiple
time, or generalized to the block version, e.g. deflation of multiple eigenvalues at the same time, by using the
Sherman-Morrison-Woodbury formula [4].

There are various choices for the vector v. The Hotelling’s deflation chooses v as the left eigenvector w, e.g.
wlA = Aw” or ATw = Aw. The advantage of this choice is that A’ will have the same eigenvectors as A. So
when A is symmetric, the right and left eigenvectors are the same, we can more easily compute the product:

x = A'7'x,
= (I+Buv")A %,
= y+(—7) "(u"x)u (5)

where y = A~ !'xy. The other common choice just takes v = u. But this choice will not preserve the eigenvectors.
So after the eigenvalue is found, we need another iteration to determine the eigenvector.

The other strategy to compute more than one eigenpair is block inverse iteration (also known as inverse
simultaneous iteration). In this iteration, we choose a shift o and several random vectors at the start, say
Xo = [%1,X2, ..., Xm], and then for i = 1,2, ... until convergence, iteratively compute:

Xi = (A*O'I)ilXifl
Xi = QiR;
Qi (6)

=
*
[



Equation (6) is the result of the QR decomposition in the previous line which orthogonalizes the columns of X;.
If the iteration converges, then the upper triangular matrix Ry will tend to be the leading k& x k part of the Schur
canonical form of (A — oI)~! [8], that is the diagonal elements of Rj will be close to the first k eigenvalues of
(A — o)~ in order of magnitude. So the eigenvalues nearest to o are obtained. The matrix Qj will be close to
the corresponding Schur vectors. If y is a eigenvector of Ry, then the Ritz vector x = @y is an approximate
eigenvector of A.

Algorithm 2.3 Block Inverse Iteration:
1.  Choose a set of random vectors Xg = [x1, X2, ..., X,,] and a shift o;

2.  Compute the LU decomposition of A — o1

3. Tterate: for 4 = 1,2, ... until convergent do

4 Solve LY = Xy and UX = Xj;

3. Compute QR decomposition X = QR;

6. If i = 0 mod k,

7 Compute the residual norm ||AQ — QR| = ||AQ — X||.

8 To compute AQ, solve LZ =@ and UY = Z.

9 If satisfied, then stop. Otherwise, Xy = @) and go on iteration;
7. end

8. Compute the eigenvector y of R, and the eigenvector of A is x = Qy.

Note that the number m of iterated vectors should be larger than the number k of eigenvalues needed. Depending
on the spectrum distribution, normally we could take m = k + 2 if k is two or three.

3 Arnoldi and Lanczos Method

Arnoldi method for the algebraic eigenvalue problem is very much like Galerkin method for the approximation
of eigenfunctions. Here we just give a brief derivation of the method. The Galerkin method uses a subspace to
form the approximate eigenfunctions. In a similar way, the Arnoldi method takes a subspace K C R™ to extract
approximate eigenvectors. The subspace is chosen to be the Krylov space of the form K = {vg, Avg, ..., A" 'v¢},
where v is an arbitrary vector and m is typically much smaller than n. Suppose we have a set of orthonormal
vectors v; that form the basis of K, and denote matrix V,,, = [v1,va, ..., vip]. Take x = V,,,y € K, and impose the
Galerkin condition to the residual r(\, x):

r(A,x) =Ax —x - K (7
which is equivalent to:
(AVpy — A\Vpy,vi) =0,i=12, ...,m (8)

Write (8) in the matrix form and denote H,, = VT AV, we then obtain a reduced approximation problem of
smaller size:

H,y = Ay 9)

Now the question is how to form the orthonormal basis v; of K. Here, the modified Gram-Schmidt orthogonaliza-
tion process can be used. Each Av; is generated, it is orthogonalized against all v; with ¢ < j. It is now known
that this reduced problem can indeed give good approximation to large modulus eigenvalues [7]. Below is the
algorithm.

Algorithm 3.1 Arnoldi Algorithm:

1. Choose an random unit vector vy;
2. Tterate: for j =1,2,...,m do

3. Compute w; = Avj;

4 Fori=1,2,...,5 do

5 hij = (vi, w;);



6. W]' = Wj — hijvi;

7. end

8 hj+1,j = ||WJ|| If hj+1,j = 0, then g0 to line ].].,
9. Vitlr = Wj/hj+17j;

10. end

11. Compute all the eigenpairs A,y of H,,;
12. Select the first & A’s in order of magnitude, and compute the eigenvectors x; = Vy;(i = 1,2, ...k);
13. Compute the residual ||Ax; — A\iX;i||oc = (€1 yi)hms1.m. If satisfied, then stop;

Otherwise increase m by 5 or 10, set vo = x; and restart iteration from line 2 again.

In line 13 the residual expression is obtained by multiplying y;, the eigenvector of H,,, to the following equation,
which comes straight from line 2 to 9.

AV = VpHp + hitmVmiirel, (10)
In line 8, if hj11,; = 0, then equation (10) will becomes
AV, = VH (1)

The above equation indicates the exact invariant subspace V; of A is obtained, and therefore the eigenvalues from
line 11 will be the exact eigenvalues of A. In practice, this is a rare case. The choice of m depends on the problem
size, spectrum distribution and the number of eigenvalues wanted. For a matrix of several thousands in size,
choosing m = 20 ~ 200 may be good enough if about first 4 ~ 10 top modulus eigenvalues are wanted.

The shift and inverse strategy as previously described for the inverse iteration can also be naturally combine
into Algorithm 2.1. In case the eigenvalues near a given point are wanted, this can be the winning strategy, as the
numerical experiment shows.

Algorithm 3.2 Shift and Inverse Arnoldi Algorithm:
Choose an random unit vector vi and shift o;
Compute the LU decomposition of (A — o);
Tterate: for j =1,2,...,m do
Solve Ly =vj and Uw =y, w; = w;
Continue as in Algorithm 3.1, steps 4 9.
Compute eigenvalues and vectors of (A — ¢I)~! as in Algorithm 3.1, steps 11 12,
mapping the eigenvalues back to those of A.

SOt W

While the Arnoldi method reduces the large matrix A into a small upper Hessenberg matrix H,,, the Lanczos
method, however, reduces the matrix into a small tridiagonal matrix, and solve the tridiagonal matrix for eigen-
values as the approximation [1]. In the Lanczos method the matrix V,,, will not be orthonormal. Instead, another
n x m matrix W,,, will be formed such that W,\'V,,, = I,,, and WL AV,,, = T,,, where T, is the tridiagonal matrix.
The shift and inverse strategy can be incorporated into the Lanczos as Algorithm 3.2.

Algorithm 3.3 Lanczos Algorithm

1.  Choose two vectors vi and w; such that (vi,wy) =1 Set £ =0,vg = wg =0
2. Tterate: for i =1,2,...,m do

3 a; = (Av;, w;);

4. v =Av; —a;v; — Bivi_1;

5. W = ATWi — ;W; — (SiWi,1;
6 Siv1 = | (v, w)['/?;

7 Biv1 = (v, w)/diy1;

8 Vigr = 0/ Biy1;

9. Wit1 = w/0iy1;

10. end

11. Compute the eigen pairs of T}, = [J;, o, Bi;

12. Select the first k eigenvalues \; in order of their magnitude;



| Iterative Method || k | m | Flop Count | Residual Norm |

Arnoldi 41 15 9,308,634 4.1E-4
Lanczos 4| 17 12,365,568 1.5E-5
Block Inverse itr. || 3 | n.a. | 53,560,729 4.4E-5

Table 2: Comparison of FLOPS by Arnoldi and Lanczos. k is the number of eigenvalues sought, and m is the
number of vectors generated.

13. Compute the corresponding eigenvectors x; = V,,,yi;
14. Compute the residual norm || Ax; — XiX;||0o;
15. If satisfied, then stop. Otherwise, increase m and start over again.

We used Arnoldi, Lanczos and block inverse iteration to solve the same problem as in Section 2. Shift and
inverse scheme and the minimum degree ordering were all combined in each algorithm. And five eigenvalues
closest to the shift ¢ = 3.4 were computed. The results are X : 3.4408, 3.5665, 3.1464, 3.7539, 2.8379. Table 2 gives
the comparison of flops. It is apparent that the Arnoldi and Lanczos methods are capable of computing more
eigenvalues with less cost than block inverse iteration, but inverse iteration may suffice if just one eigenvalue
is desired, depending on the distribution of the spectrum. When the matrix is symmetric, the the Arnoldi and
Lanczos methods reduce to the same algorithm, and the resulting algorithm is known by the Kaniel-Paige theory to
have very nice convergence properties, at least for the extreme eigenvalues [4]. When the matrix is nonsymmetric,
the Arnoldi method is more straightforward to implement and has somewhat better convergence properties, but
requires more space and cost per iteration than the Lanczos method. In addition, it is not entirely a simple matter
to compute the eigenvalues of the nonsymmetric tridiagonal matrix resulting from the Lanczos method. Deflation
can be incorporated into both Arnoldi and Lanczos methods.

4 Constrained Raleigh Quotient Maximization Problems
In the transverse magnetic field formulation using finite element method [5], the following problem is encountered:

A
Find (A\,x) s.t. A= max (Ax,x) (12)
CTx=0, (Bx, x)

x#0

where A is symmetric, B is symmetric positive definite, and C' has full column rank. This problem would be
the usual generalized eigenvalue problem if there were no constraint C?xz = 0. We call (12) Constrained Raleigh
Quotient Maximization Problem(CRQM). Mathematically, (12) is equivalent to the following regular eigenvalue
problem:

VvIiAvy =vTBVy (13)

where the matrix V' consists of an orthonormal basis spanning the constraint space {x : C7x = 0}. In case that
the matrix size is small, we can determine the matrix V' by the Singular Value Decomposition and solve the dense
problem (13). However, if the matrix size is as large as several thousands, this approach becomes computationally
intractable on workstations. Here, we propose an algorithm that can efficiently deal with large sparse case of
CRQM.

The algorithm is based on the Arnoldi. The regular Arnoldi forms an orthonormal basis of the Krylov space
K. As each new basis vector Av; is generated, it is orthogonalized against all v;,1 < ¢ < j — 1. Now we modify
this process by making Av; orthogonal not only to all previous v;’s but also orthogonal to all the column vectors
of C. The column vectors of the resulting matrix V,,, will be the basis of a “projected Krylov space” and will be
very good components to form approximate solution vectors for CRQM.



Algorithm 4.1 Arnoldi Algorithm for CRQM:
1. Choose a unit vector v; such that CTv; = 0;
2. Forj=1,2,...,mdo

3 Compute w; = Avj;

4. Fori=1,2,...,k do

5. tij = (CZ',W]‘);
6

7

8

Wj = Wj — tijci;

end
. Fori=1,2,...,7 do
9. hij = (Vz'7Wj);
10. W; = W; — hijvi;
11. end
12. hj+1,j = ||Wj||2 If hj+1,j = 0, then go to 14,
13. Vit1 = Wj/hj+1,j-

14. Compute the eigenvalues of H,, and choose the k largest A;s, where k < m.
15. Compute eigenvectors y; of H,, associated with );, and the CRQM solution vector x; = V,,y;, i =1,... k.

We have the following relations for the above algorithm.

AV = VHp +CTo + byt mVimsier, (14)
vIAv,, = H, (15)
c'v,, =0 (16)

Notice that equation (15) lays the groundwork for the algorithm that the Ritz vector x = V,,,y is an approximation
solution of CRQM.

It is seen that the Arnoldi method is easily adapted to incorporate the constraints. However, this method is still
under investigation, and though we expect the behavior to be very similar to the unconstrained Arnoldi method,
further numerical experiments are needed. In addition, the convergence theory has not yet been developed for
this specific algorithm. This work is in progress and will be reported soon.

5 Conclusions

Arnoldi and Lanczos methods are promising for the large sparse eigenvalue problems in waveguide analysis. The
computation cost of these two methods is far less than that of inverse iteration, especially when several eigenvalues
are sought. Strategies such as reordering, or “shift and inverse,” can be easily combined in these methods. And
either of them can be modified to fit new formulations of finite element method. Reordering technique can
significantly save computation, and should be explored whenever possible. We have also found MATLAB to be a
convenient and efficient tool for problems with size reaching of several thousands.
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Figurel. Matrix Non-Zeroes showing original matrix and LU factors combined. Upper figures show original order,

lower figures show minimum degree ordering. nz is the total number of nonzeroes.



