
Fast Identi�cation of Impulse Response Modesvia Krylov Space Methods1Daniel L. Boley2, Franklin T. Luk3, David Vandevoorde3AbstractConsider an underlying signal which is a sum of r ex-ponentials plus noise. We present a novel combinationof fast techniques which enables us to determine allthe underlying modes in only O(r2) operations, while�ltering out most of the noise. Almost all previouslyknown methods applied to noisy signals require at leastO(r3) operations. 1 IntroductionLet fhkg1k=1 denote a complex-valued signal, and let Hrepresent the associated in�nite Hankel matrix whose(i; j)-element is de�ned by Hij = hi+j�1:H = 0BBB@ h1 h2 h3 h4 . . .h2 h3 h4 h5 . . .h3 h4 h5 h6 . . .h4 h5 h6 h7 . . .. . . . . . . . . . . . . . .1CCCA (1)This matrix is symmetric (not Hermitian if complex):HT = H:Throughout this paper, the notation MT denotes thetranspose of M , as distinct from the more usual con-jugate transpose denoted by MH . Suppose that theunderlying signal is a sum of r exponentials, i.e., fork = 1; 2; : : :, hk = rXi=1 �ki di; (2)where the �i's are distinct complex numbers. Thenthe Hankel matrix H will have rank r; in general, thevalue of r is not known. The matrix H admits thefactorization: H = V TDV;where D is diagonal and V is Vandermonde:D 4= diag(d1; d2; : : : ; dr)1This research was partially supported by NSF Grants CCR-9405380 & CCR-96287862Department of Computer Science and Engineering, Univer-sity of Minnesota, Minneapolis MN 55455, USA3Department of Computer Science, Rensselaer Polytechnic In-stitute, Troy NY 12180, USA

and V 4= 0BBBB@ 1 �1 �21 �31 � � �1 �2 �22 �32 � � �1 �3 �23 �33 � � �... ... ... ... . . .1 �r �2r �3r � � �1CCCCA : (3)We stress that a diagonal decomposition is possibleonly if the �j 's are distinct. Vandevoorde [15] discussesthe general case when the modes are not distinct. If thisdecomposition can be computed quickly, then this canbe used to compute a fast decomposition of a noisy sig-nal with the view of extracting the important \signal"modes. The purpose of this work is to indicate how afast computation may be accomplished.The paper is organized as follows. Section 2 describesa Krylov method that reduces the given Hankel matrixto a tridiagonal form. In Section 3 we explain howthe overall computation can be performed very quickly,using only O(r2) operations. Finally, an example ispresented in Section 4 to illustrate the details of ourapproach. 2 Krylov SequenceThe key idea behind our method is to note that thecolumns of H can be thought of the Krylov sequencegenerated by the so-called \shift-up" matrix.Assume that the matrix H of (1) has rank r. By atheorem of Gantmacher [7, vol. 2, p. 207], the signalsatis�es a recurrence relation of length r:hk = ar�1hk�1 + ar�2hk�2 + � � �+ a0hk�r; (4)which generates the entire signal once the r initial val-ues fh1; h2; : : : ; hrg are �xed. The recurrence (4) is adi�erence equation which can be used to solve for thevector: a = (a0; a1; � � � ; ar�1)T ;after the next r values fhr+1; hr+2; : : : ; h2rg have be-come known.Let C denote the companion matrix corresponding tothe polynomial:p(�) 4= �r � ar�1�r�1 � � � � � a1�� a0; (5)p. 1



that is,C 4= 0BBBBBBB@ 0 10 1. . . . . .. . . . . .0 1a0 a1 a2 � � � ar�2 ar�1
1CCCCCCCA : (6)We show that the �rst r rows of H can be regarded asa Krylov sequence generated by C. Lethk 4= 0BB@ hkhk+1...hk+r�11CCA (7)denote the �rst r entries in the k-th column of H ; e.g.,h1 4= 0BB@h1h2...hr1CCA :The �rst r rows of H can be written asH1:r;1:1 = (h1 h2 h3 � � � ) ;so H1:r;1:1 = (h1 Ch1 C2h1 � � � ) : (8)Since every row is a linear combination of the �rst rrows, we have that (8) impliesH1:1;1:1 = �h(1)1 Zh(1)1 Z2h(1)1 � � � � ; (9)where h(1)1 denotes the �rst column of the in�nite Han-kel matrix H , and

Z 4= 0BBBBBBBBBB@
0 1 � � �0 1 � � �. . . . . . � � �. . . . . . � � �0 1 � � �0 . . .... ... ... ... ... ... . . .

1CCCCCCCCCCAis the \shift-up" matrix. The consequence of (9) isthat the (r+1)-dimensional Krylov space generated byexpanding (8) by r steps can be computed by using (9)and shifting in the entries.Our algorithms will be based on the application of theLanczos algorithm to the companion matrix C and theinitial vector h1, yielding the expansion:� CX = XTCTY = Y eT ; (10)

where the matrices T and eT are tridiagonal and thematrix Y TX is diagonal. The �rst column of X isexactly h1 and the �rst column of Y is chosen to bee1 4= (1; 0; � � � ; 0)T :The subsequent columns xk of X are generated by therecurrence, for k = 1; 2; � � �:tk;k+1 � xk+1 = Cxk � tk;k � xk � tk;k�1 � xk�1; (11)where tk;k and tk;k�1 are scalars computed to enforcethe biorthogonality conditions :8<: yTk xk+1 = 0yTk�1xk+1 = 0;and tk;k+1 is an arbitrary scaling factor, usually set sothat the resulting vector xk+1 has unit length. Thesescalars are assembled into the tridiagonal matrix T .The columns yk of Y are generated by an analogousrecurrence using CT and generating the entries of eT .Implementation details for this standard Lanczos algo-rithm can be found in [8, x9.4.3].Notice that the two relations (8) and (9) generate iden-tical vectors, when limited to the �rst r entries of the�rst (r+1) vectors. Hence we can obtain the identicalLanczos expansion using Z with starting vector h(1)1 ,where only the �rst (2r�1) entries of this latter vectorare known. The unknown entries beyond the (2r�1)-stare shifted in, but do not a�ect the coe�cients T or eTuntil the (r+1)-st step, which is beyond the step wherewe wish to terminate the algorithm. Hence we can re-place the C in (11) with Z. The equivalence betweenthis algorithm and the Berlekamp-Massey algorithm,as well as a symmetrized version [13] of this algorithm,are discussed in [2]. From this equivalence, it is shownthat the complexity of this algorithm is O(r) ops perstep, a total of O(r2) ops for the r steps we require.This Lanczos method will be used to determine theeigenvalues of C. Suppose �1; �2; : : : ; �r denote theroots of the polynomial p(�) of (5), which we will as-sume for the purpose of this paper to be simple. Thegeneral case has been treated in [15, 3]. If the expan-sion (10) is carried out until the size of T becomes r�r,then the eigenvalues of C match those of T . The resultwill be mathematically equivalent to Prony's method[14], which consists of solving for the coe�cients of thepolynomial (5) using the Yule-Walker equations(h1 h2 � � � hr ) a = hr+1;and then �nding the roots of the polynomial (5) de-termined by the solution a. However, it is well knownthat the roots of a polynomial can be very sensitive tothe coe�cients of the polynomial, especially when theyare not well separated; by using the Lanczos methodwe are able to �nd those roots without forming thepolynomial at all. p. 2



3 Fast Vandermonde DecompositionWe sketch our algorithm to compute the Vandermondedecomposition fast. Many of the individual pieces tothe algorithms are \o�-the-shelf" methods, some aremore experimental, and some have received very littlediscussion. Most details can be found in [15].We begin with an outline of the basic steps:1. Use a Lanczos algorithm to generate the tridiag-onal matrix T .2. Compute the \modes" generating the signal,i.e., the eigenvalues of T .3. Compute the diagonal matrix D:D = V �THV �1;where V is the Vandermonde matrix (3) gener-ated by the eigenvalues in step 2. The diagonalstructure of D follows from the theory developedin the previous section.4. Select the most \important" rows of V and en-tries of D.We �ll in the main details for these steps. For step 1,we use a variant of the Lanczos algorithm discussed inthe previous section. However, for a signal corruptedby noise, we must take a sample much longer than thenoise-free rank of the signal (the number of modes gen-erating the underlying noise-free signal). In this case,we can carry out the Lanczos algorithm to as manysteps as desired (up to the length of the signal samplewe have).The Lanczos algorithm can su�er a breakdown situ-ation if some column xk is orthogonal to the corre-sponding column yk. In this situation, a \look-head"variety of the Lanczos has been developed in [6], wherethe biorthogonality conditions are relaxed to some ex-tent, but the result is that the matrices T and eT areno longer tridiagonal. In the context of the analysis ofsignals corrupted by noise, this is a rare event, but ifit should happen, one possible solution is to apply thenonsymmetric Lanczos process to T itself to generate anew \T", starting with a random starting vector. Thecost will still be O(r2).Once the tridiagonal matrix has been generated, thetask is to �nd its eigenvalues in step 2. The QR-typealgorithm is a standard algorithm for the general non-Hermitian eigenproblem. It is based on the iteration:� QR = T old � sIT new � sI = RQ; (12)

where Q;R are respectively unitary and upper trian-gular and s is a shift to accelerate convergence. Mostimplementations include many extras for e�ciency androbustness which space does not permit us to discusshere. However, this \standard" algorithm does not pre-serve any tridiagonal structure present in the iterateT old, unless T old is Hermitian.There are two variants of the QR-type algorithm thatcan be applied here that can preserve the tridiagonalstructure even for non-Hermitian matrices. One possi-bility is the complex symmetric QR algorithm proposedin [5], for which the matrix T must be symmetrized(unless we use the symmetrized Lanczos algorithm instep 1). Even when T is real, if the signs of the cor-responding superdiagonal and subdiagonal entries of Tare opposite, then the symmetrized matrix will be com-plex. The resulting QR algorithm is a direct analog ofthe ordinary Hermitian QR method, but using complexorthogonal rotations and complex symmetric matricesinstead of unitary rotations and Hermitian matrices,respectively. The resulting Q in (12) is \complex or-thogonal," meaning QTQ = I;as opposed to \unitary," meaningQHQ = I:It follows that the symmetry and the tridiagonal struc-ture of T old are preserved.The other option is to use the LR algorithm [16], whichis based on the LU factorization without pivoting topreserve the tridiagonal structure. In this algorithmthe Q in (12) is replaced by a lower triangular L com-puted using Gaussian elimination without pivoting.The LR algorithm can break down because of a zeropivot during the Gaussian elimination, but if a randomshift is applied when this occurs, the process can stillexhibit very rapid convergence. If T is real, an implicitdouble-shift LR algorithm can in principle be carriedout in real arithmetic [16]. Both algorithms requirelinear time for each iteration in a manner very similarto the Hermitian analog, and the number of iterationsis generally O(r) in a manner very similar to the QRalgorithm usually employed. So the total cost will beO(r2) for both methods. The relative merits betweenthese alternative algorithms have not been studied indetail.In step 3, we must �nd the diagonal matrixD. Becauseof the structure of V , the diagonal entries of D appearin the �rst column of the matrix DV :DV = V �TH:This �rst column is the solution d to the Vandermondesystem: V Td = h1: p. 3



This can be solved with a fast Vandermonde solver[1], where Higham [9, p. 438] recommends ordering theeigenvalues with the Leja ordering to achieve numeri-cal stability in the algorithm in spite of the possible ill-conditioned nature of V . A simple derivation of the fastalgorithm can be found in [8, x4.6.2]. It is based on thefact that an implicit \UL" decomposition of the matrixV can be computed in O(r2) time using divided di�er-ences [10, ch. 6]. A more recent O(r log2 r) algorithmhas been proposed in [12], and all these algorithms in-cluding this last one have been extended to the case ofconuent Vandermonde matrices (arising when several�i's coincide). 4 Analysis of a SignalConsider a signal fhkg which su�ers from the presenceof noise. How can we recover the principal modes thatgenerate the signal?A popular method by Kung [11] based on the singularvalue decomposition (SVD) is known to be an e�ec-tive method for �nding modes, but it su�ers from theneed to carry out both an SVD and a matrix eigensolu-tion, each costing O(r3) operations. A second popularapproach is to form the Hankel matrix generated bythe signal, and then proceed to �nd a nearby Hankelmatrix of a lower rank [4]. The Vandermonde decom-position of this nearby low-rank Hankel matrix yieldsthe parameters in (2). The method of [4] iterates untilit converges to a nearby Hankel matrix. Unfortunately,this method requires the repeated use of the SVD andhence costs up to O(r3) operations per iteration.We indicated in Section 3 how the Vandermonde de-composition can be computed quickly. An obvious wayto obtain a nearby Hankel matrix of a lower rank isto set to zero all the diagonal entries in D that aresmaller than a certain tolerance. Although this crudemethod does not always yield the best approximation,a judicious combination of this approach with other cri-teria can yield a good result. The biggest advantage ofthis technique is its low total cost of O(r2) operations,instead of the O(r3) operations per step of any SVD-based iterative approach as described in the previousparagraph.We illustrate our fast approach here. Start with a sig-nal generated by �ve modes, shown by circles on thecomplex plane in Figure 1, to which has been addedwhite noise with a signal-to-noise ratio of 5.4dB. Wethen form the 128 � 128 Hankel matrix H and com-pute its Vandermonde decomposition:H = V TDV:Figure 2 shows the absolute values of the diagonal en-tries of D in descending order. It turns out that select-
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Figure 1: Original noise-free modes (o) and those com-puted from the noisy tridiagonal matrix dis-cussed in Section 3 (* & x).
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Figure 2: Diagonal entries from Vandermonde decompo-sition
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Figure 3: Discrete Fourier Transform (DFT) of theoriginal signal (dotted) and the reconstructedreduced-order signal (solid). Small circles markthe angles corresponding the original modes.
ing the modes corresponding to the �ve largest valuesof D does not yield satisfactory results, but we can al-most recover the correct modes by the following simpleprocedure. We select the modes corresponding to thelargest entries in D (also called weights), speci�callythose that are within 10% of the largest entry (in abso-lute value); in this case ten modes were selected. Thenwe choose a subset of these ten using a second criterionbased on the Discrete Fourier Transform (DFT) of thesignal. The DFT of the original signal is shown by thedotted line in Figure 3. As most of the modes lie rela-tively close to the unit circle, their argument (angle onthe complex plane) maps to the horizontal axis of Fig-ure 3. In fact, we have marked the angles correspond-ing to the �ve original \unknown" modes by means ofcircles along the x-axis. This leads to our second cri-terion, viz., select those modes for which the DFT islarger than a certain threshold (in this case 30%) ofthe largest value in the DFT (in absolute value). Thisselection criterion is applied only to those modes thatsurvived the �rst selection process. In this example,out of the ten modes only six survived the second se-lection process. These �nal six modes are marked by*'s in Figure 1, and the resulting DFT using these sixmodes is shown by the solid line in Figure 3. We re-mark that one can still distinguish the two close peaksin this DFT corresponding to the two very close orig-inal modes. Although our fast method has worked sowell on this example, we should emphasize that thechoice of criteria requires further study. Indeed, sev-eral more sophisticated selection criteria are presentedand analyzed in [15].
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