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Abstract

The explicit analytical expressions of the optimal approximation solutions for
the symmetric Procrustes problems of the linear matrix equation AXB = C' are
derived, with the projection theorem in Hilbert space , the quotient singular value
decomposition (QSVD) and the canonical correlation decomposition (CCD) being
used.
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1 Introduction

The least-squares problems of linear matrix equations are called Procrustes problems(cf.
Higham,1988 and Andersson and Elfving, 1997). The unconstrained and constrained
least squares problems have been of interest for many applications, including particle
physics and geology , inverse Sturm-Liouville problem [11], inverse problems of vibra-
tion theory [6], control theory, digital image and signal processing, photogrammetry,
finite elements, and multidimensional approximation [8]. Penrose(cf. [2], [13] ) first
considered the linear matrix equation

AX =B (1.1)

and obtained its general solution and least-squares solution by making use of the Moore-
Penrose generalized inverse, then Sun[14] obtained the least-squares solution and the
related optimal approximation solution of Eq. (1.1) when X is a real matrix. When X
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is constrained to be a real symmetric matrix , the least-squares solution of (1.1) was
derived by Higham and Sun respectively in 1988([12] and [15]) , and Sun also obtained
the related symmetric optimal approximation solution of Eq. (1.1) in [15].

In this paper , the following linear matrix equation

AXB=C (1.2)

are considered . Fausett and Fulton[8] and Zha[18] considered the unconstrained least-
squares problems of Eq. (1.2), Eric Chu[4] and Dai Hual[5] obtained the general ex-
pressions for the symmetric solution of Eq. (1.2) by using the general singular value
decomposition of matrices (GSVD), and the symmetric and skew-symmetric least-
squares solutions of Eq. (1.2) have been derived by Deng, Hu and Zhang[7]. But
it remains unsolved about the optimal approximation solutions for the symmetric and
skew-symmetric Procrustes problems of this equation. Therefore in the following, we
will consider the optimal approximation solutions of the symmetric least squares prob-
lems of Eq. (1.2). We always suppose that R™*™ is the set of all m x n real matrices,
SR™™ and OR™™ are the sets of all symmetric and orthogonal matrices in R™*"™,
respectively, A x B represent the Hadamard product of A and B, and ||Y||r denotes
the Frobenius norm of a real matrix Y, defined as

Y[ =<Y,Y >=> "y,
.3
here the inner product is given by < A, B >= trace(A” B), and R™*" become a Hilbert

space with the inner product.
Problem I. Given matrices A € R™*",B € R"*P,C' € R™*P and Xy € R™", let

Sp ={X|X € SR™" ||AXB — C||r = min}. (1.3)
Then find X, € Sg, such that
X = Xlr = win X = X (14)

We first introduce some results about the quotient singular value decomposition
(QSVD) and the canonical correlation decomposition (CCD)of matrices , as soon as
the projection theorem on Hilbert space, which are essential tools for the Problem , see
[3],[9], [10] and [16] for details.

The QSVD is a simple form of the GSVD. The QSVD of a pair of matrices (A4, BT)
is as follows.

QSVD THEOREM. Let A € R™"™ B € R"™P. Then there exist orthogonal
matrices U € OR™ ™ V € ORP*P and a nonsingular matriz Y € R™"™ such that

A=Ux Y7, BT =vyy ! (1.5)
where
L. 0 0 O r’
Y1 = 0 S 0 0 s )
0 0 0 0 m—r —s (1.6)
st o n—k
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0 0 0 0\ ptr—FK
22 = 0 IS/ 0 0 S/
o 0 I, 0] ¢
st o n—k
K = rank(AT B),v = k' — rank(B),
s' = rank(A) + rank(B) — k', S = diag(oy,- -, 04),
o >0=1,---,8),t =K -1 - 5.
When A and BT are of full column rank, i.e. r(B) = r(A) = n, then 7’ = 0,s' = n, k' =

n, and
(S n _ 0 p—n
El<0)m—n’ E2(Isr> n (1.8)

n n

The canonical correlations decomposition of the matrix pair (AT, B) is given by
the following theorem.

CCD THEOREM. LetA € R™* ™ B € R"*P  and assume that g = rank(A),h =
rank(B), g > h. Then there exist a orthogonal matrix ¢ € OR"™ "™ and nonsingular
matrices X4 € R™*™, Xpg € RP*P such that

AT =Q[24,01X,", B=Q[Ep0X5, (1.9)

where ¥4 € R™9 and Y5 € R™" are of the forms:

(1.10)

co oo oM
obPooro
cocoococo

[\

8]

|

7N

o =

N——

I;
with the same row partitioning, and

A]' = diag()\iﬂ, ey )‘i-l-j)a 1>XNp1 2.2 A >0,
Agj = digg(éiﬂ, ey 5i;—j)7 20 <01 < ... §25i+j j 1,
A+ =1 A, +6k =1, de  Aj+AT=1,
Here,

i = rank(A) + rank(B) — rank[AT, B],

j = rank[AT, B] + rank(AB) — rank(A) — rank(B),

t = rank(A) —rank(AB), g=i+j+t.

Following is the projection theorem (cf. [16]).

Lemma 1.1 Let H be a Hilbert space, M be a subspace of H, and M~ be the orthogonal
complement subspace of M. For a given H € H, if there exists an My € M such that
|H — M| < ||H — M|| holds for any M € M, then My is unique and Mo € M is the
unique minimization vector in M if and only if (H — Mo) LM, i.e.,(H — My) € M.
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2 The main results

In this section, the explicit expression for the solution of Problem I is derived. Without
loss of generality, we suppose that rank(A) > rank(B).

Instead of considering the solution of Problem I, we will find a matrix Cj, and then
transform Problem I to the following equivalent problem.

Problem Iy. Given matrices A € R™*",B € R"*?,Cy € R™*P and X; € R"*",
let

Sg, = {X|X € SR"", AXB = Cy}. (2.11)
Then find X, € Sg,, such that

Xe—X = mi X — X¢||p- 2.12
IXe = Xyl = gnin I1X = X7 (2.12)

First we use the projection theorem on R™*P.

Theorem 2.1 Given A € R™*" B € R"*P C € R™*P let Xy be one of the symmetric
least-squares solutions of the matriz equation (1.2) and define

Cy= AXyB, (2.13)
then the matriz equation
AXB = (Y, (2.14)

is consistent in SR™™, and the symmetric solution set Sg, of the matriz equation
(2.13) is the same as the symmetric least-squares solution set Sg of the matriz equation

(1.2).

Proof. Let

L£={Z|Z=AXB,X € SR™"}. (2.15)

Then L is obviously a linear subspace of R"*P Because X is the symmetric least-
squares solutions of the matrix equation (1.2), from (2.13) we see that Cy € £ and

ICo = Cllr = [[AXoB — C||r
= minXESRan ||AXB — CHF

= minZeg ||Z - CHF

Then by Lemma 1.1 we have

(Co—C)LL or (Co—C)e Lt
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Next for all X € SR™*", AXB — Cy € L, it then follows that
|AXB - C|%

= |[(AXB — Co) + (Co — O)|%

= ||AXB — Co||% + ||Co — C|%.

Hence, Sg = SE,, and the conclusion of the theorem is true. [
Now suppose A € R™*" B € R™P and the matrix pair (4, BT) has the QSVD
(1.5), and partition UTC'V into the following blocks matrix.

Cii Ci2 Ci3 r
C31  C3y  Css m—r —s
prr —k st

, (2.16)

then the expression of Cy will be shown in the following theorem.

Theorem 2.2 Let A, B,C be given in Problem I, the matriz pair (A, BT) have the
QSVD (1.5), and UTCV be partitioned by (2.16), then for any symmetric least-squares
solution Xo of the matriz equation (1.2) the matriz Cy defined by (2.13) can be deter-
mined by the following form.

0 012 Clg ’I“/
C() = UC*VT, Cc* = 0 SXQQ 023 S/
0 0 0 m—r' —s
P+ P Y t

(2.17)

where

Xao = ¢ # (CHS + SC),
o (2.18)
6= (om) € SR o = 7z, 1 < k1< s
Proof. From Theorem 2.1 in [7] we know that the symmetric least-squares solution
of the matrix equation (1.2) can be obtained using of the QSVD of matrix pair (A4, BT)
and the general form of the solution is

X1 C12 Ciz X4
Cg XQQ 571023 Xé4
Cly (S7'Cw)"  Xiy X3y
X74 X34 X5 X

Xo=Y YT, (2.19)

where X9 is given by (2.18) and X/, € SR"*" | X}, € SR'*?' X/, € SR(—K)x(n=),

163



X, € Rx0n=K) X1 e R*(=K) x1 € RYX(=K) are arbitrary matrix blocks.
Substituting (1.5),(2.19) into (2.13), we can easily obtain (2.17). O

Evidently, (2.17) shows that the matrix Cp in theorem 2.2 is dependent only on
the matrices A, B and C, but is independent on the symmetric least-squares solution
X of the matrix equation (1.2). Since Cj is known, from Theorem 2.1 we know that
Problem I is equivalent to Problem Iy. In Problem Iy, since Sg, # 0, we can derive
the general expression of of the elements of Sg, in the following theorem. In this
theorem, given A € R™*"™ B € R™P  while Cj is given by (2.17),and assume that
g = rank(A),h = rank(B), the matrix pair (A7, B) has CCD (1.9).Notice that we
only state the result with g = h, because in the case g > h, the results of the theorem
and process of the proof are similar, only the partitions of the related matrices are more
complex.

Suppose X € Sg,, then partition the symmetric matrix X* = Q7 X(Q into blocks
matrix,

X* = (Xr)6xs, (2.20)

with the row numbers (and the related column numbers) of blocks are i, j,t,n — g —
j — t,j,t respectively, and Xy = Xl:’,;,k,l =1,2,...,6. Let £ = XZCOXB and also
partition E into blocks matrix,

E = (Ej)axa, (2.21)

with the row numbers of blocks are 4, j,t, m — g and the column numbers of blocks are
i,J,t,p — g respectively.

Theorem 2.3 In Problem Iy, the general form of the elements of Sg, can be expressed
as X = QX*QT, where X* has the form

En Ein Eiz X Xi  EL
El, Xo X3 X XiI Fi
Eg X%;) X33 X34 ng Egg,)
XU X%, X% Xu Xus  Xue
X5 Xi Xi Xl Xss Xso
Es1 Es Esz X}y X% Xes

(2.22)

where Xgl = Aj_l(Egl—Ang),ng = A]-_I(EQQ—AJXQQ),X§3 = Aj_l(EQ;),—AjXQ?,),’while
Xir = X,Z;C, 2 <k <6, X4, Xos3, Xog, X34, Xu5, Xug and Xsg are arbitrary matrices with
the associated sizes.

Proof. Suppose X € Sg,, then
AXB = (. (2.23)

Substitute (1.9) into (2.23),we have

( zog > X*(25,0) = E, (2.24)
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then substitute (1.10),(2.20) and (2.21) into (2.24), it holds

X1 X2 Xi3 0 Ein Eix Eiz Eu
AjXor +8; X510 AjXoo+ A Xs2 AjXaz+AjXs3 0 _ Eo1 Ea2 Ea3 Fou (2.25)
Xe61 Xo2 Xeo3 0 E31 Esx Ezs FEszg )
0 0 0 0 Ey Eip Eiz Ey

Because the matrix equation (2.23) is consistent, therefore we can obtain some Xj;
from (2.25) directly. Comparing with both sides of (2.25) , the expression (2.22) of X*
can be derived according to the symmetric property of X*. [

The following lemmas are needed for the main results.

Lemma 2.1 L7 For gwen Jy, Ja, J3 and Jy € R™*™,

b m) 07

Sq = diag(ay,...,am) >0, Sy=diag(by,...,bm) >
S dm) >0,

Se =diag(ci,...,cm) >0, Sg=diag(dy,..
there exists a unique W € R™ ™, such that
1SaW = Jil|F + [1SW — o3 + |SW = J5||F + [1SaW — Ju|F = min
and W can be expressed as
W = P« (SgJ1 + SpJ2 + ScJ3 + Sqda),
where
P=(pn) € R™ " ppy=1/(ai +bi +ci +dp),1 <k <m,1<1<n.

Lemma 2.2 For given Jy, Jy and J3 € R**%, S, = diag(ay,...,as) > 0,S, = diag(by, ...,
bs) >0, S, = diag(ci,...,cs) > 0, there exists a unique symmetric matric W € SR%**,
such that

p=1SaW = Jillfe + 1S5W = Jallfo + S W — Js||7 = min,
and W can be expressed as

W = ® % (SgJy + JL S + SyJo + J2 Sy + SeJ3 + J1 Se), (2.26)
where

D = (¢p1) € R¥* gy = 1/(ai +af + b7 +07 +ct +¢f),1 <kl <s.
Proof. For W € SR**%_ it holds wy; = wy (1 <k, 1 <'s), and
=Yg l(arwir — Jire)?* + (brwir — Jore)? + (crwre — Jaxr)?]
+ 2 1 <ker<sl@rwry — Jig)? + (awi — Jur)? + (bpwp — Jor)?

+(brwgr — Jok)* + (ckwir — Jar)? + (Qwi — Jaik)?].
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Since the function p is a continuous and differentiable function of %s(s + 1) variables

wgg, hence p obtains its minimum value at {wy;} when aTZ =0, i.e.,

_agpJig + agJuk + b Jogr + 0ok + i Jsp + aJsik
Wl = P) 2 12 112 L2 .2 , 1<kE<I<s.
ay +aj + by + b7 +ci + ¢

Therefore W can be expressed by (2.26). O

Finally we give the the optimal approximation solutions for the symmetric least-
squares problems of the linear matrix equation AXB = C, and we still suppose that
rank(A) = rank(B).

Theorem 2.4 Let matrices A, B,C and Xy be given in Problem I, suppose rank(A) =
rank(B), partition the matriz QT X;Q into blocks matriz

RTX;Q= (X}E;{))ﬁx& (2.27)

with the same row and column numbers as X* of (2.20). Then the unique solution X
of Problem I can be expressed as X. = QX.QT, and X, is equal to

Ey Eqo Es {Xff:)} X5 E3)
El, X» Xs (XY XL @ EL
EL X5 (xYy (x@y XL EL
(xPy (x$y xdhy xy xy xiy
X Xs2  Xss (X (xy (xiDy
By By By (XY} (x@y (x$)

(2.28)

Koy = U (X + X7 + AT (AT Bay — X)) + (A7 By — X700

AT (AT Eay — X)) + (A7 By — XP)TA;071,
1

itk \2 0it12

2(1+ (35££)2) + (£)2)

Aitk Aitl

U = (Pgg) € R, ahyy = A< k1<y.

and

Ko = G # (X3 + XPT + AT (A Bay — XIT) + AN (AT Ens — X)),

. 1
G = (gu) € R, g = §>\i+ka 1<k <i1<1<t
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Proof. Suppose X € Sg = Sg,, by using (2.22) and (2.27), we have
IX = X712 = | X* — QTX;Q%
— (1 X33 = XPNZ) + (1 Xaa — XPUZ) + (1 X5 — XLN2) + (1 Xes — X [12)
(X1 = X2+ 1XT = XPNZ) + (1X00 = XD + 1XE - XD112)

(1 X0 — X2+ 1XE - XP12) + (1Xas = XD 1%+ 1XE - xP11%)
(f) f) (f) f) (229)
(1 Xas — X2+ 11XT — XEPN%) + (1Xs6 — X512+ 11X% — X112

(1 X2z — X N2+ (AT (Bar — A Xa2))” — X512+
AT (Ban — AjXa2) = XP12) + (1 X2s — X 13 + 1XE — X P |12+

(AT (Bas — AjX23)T — XS 1% + 187 (Bas — Ay Xas) — X112 + ao,

where g is a constant.

According to (2.29), || X — X¢[|% = min if and only if each of the brackets in (2.29)
takes minimum. Notice that Xy, = ng, k =3,4,5,6 and by making use of Lemma 2.1
and Lemma 2.2, the results of this theorem can be derived easily. [

Conclusions. Using the projection theorem in Hilbert space , the quotient singular
value decomposition and the canonical correlation decomposition , we have obtained the
explicit analytical expressions of the optimal approximation solutions for the symmetric
least-squares problems of the linear matrix equation AXB = C. In fact, we have also
obtained the explicit analytical expressions of the optimal approximation solutions for
the skew-symmetric least-squares problems of the linear matrix equation AXB = C
because of the limitation of the pages, we omit the content here, and we can design
new algorithms to solve the large scale least-square problems of linear matrix equation
AXB = C. These new results have generalized the work of Eric Chu [4], Dai Hua [5],
Higham [12] and Sun [15] in some aspects.
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