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Abstract

The explicit analytical expressions of the optimal approximation solutions for
the symmetric Procrustes problems of the linear matrix equation AXB = C are
derived, with the projection theorem in Hilbert space , the quotient singular value
decomposition (QSVD) and the canonical correlation decomposition (CCD) being
used.
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1 Introduction

The least-squares problems of linear matrix equations are called Procrustes problems(cf.
Higham,1988 and Andersson and Elfving, 1997). The unconstrained and constrained
least squares problems have been of interest for many applications, including particle
physics and geology , inverse Sturm-Liouville problem [11], inverse problems of vibra-
tion theory [6], control theory, digital image and signal processing, photogrammetry,
finite elements, and multidimensional approximation [8]. Penrose(cf. [2], [13] ) first
considered the linear matrix equation

AX = B (1.1)

and obtained its general solution and least-squares solution by making use of the Moore-
Penrose generalized inverse, then Sun[14] obtained the least-squares solution and the
related optimal approximation solution of Eq. (1.1) when X is a real matrix. When X
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is constrained to be a real symmetric matrix , the least-squares solution of (1.1) was
derived by Higham and Sun respectively in 1988([12] and [15]) , and Sun also obtained
the related symmetric optimal approximation solution of Eq. (1.1) in [15].

In this paper , the following linear matrix equation

AXB = C (1.2)

are considered . Fausett and Fulton[8] and Zha[18] considered the unconstrained least-
squares problems of Eq. (1.2), Eric Chu[4] and Dai Hua[5] obtained the general ex-
pressions for the symmetric solution of Eq. (1.2) by using the general singular value
decomposition of matrices (GSVD), and the symmetric and skew-symmetric least-
squares solutions of Eq. (1.2) have been derived by Deng, Hu and Zhang[7]. But
it remains unsolved about the optimal approximation solutions for the symmetric and
skew-symmetric Procrustes problems of this equation. Therefore in the following, we
will consider the optimal approximation solutions of the symmetric least squares prob-
lems of Eq. (1.2). We always suppose that Rm×n is the set of all m × n real matrices,
SRn×n and ORn×n are the sets of all symmetric and orthogonal matrices in Rn×n,
respectively, A ∗ B represent the Hadamard product of A and B, and ‖Y ‖F denotes
the Frobenius norm of a real matrix Y , defined as

‖Y ‖2
F =< Y, Y >=

∑

i,j

y2
ij ,

here the inner product is given by < A, B >= trace(AT B), and Rm×n become a Hilbert
space with the inner product.

Problem I. Given matrices A ∈ Rm×n,B ∈ Rn×p,C ∈ Rm×p and Xf ∈ Rn×n, let

SE = {X|X ∈ SRn×n, ‖AXB − C‖F = min}. (1.3)

Then find Xe ∈ SE , such that

‖Xe − Xf‖F = min
X∈SE

‖X − Xf‖F . (1.4)

We first introduce some results about the quotient singular value decomposition
(QSVD) and the canonical correlation decomposition (CCD)of matrices , as soon as
the projection theorem on Hilbert space, which are essential tools for the Problem , see
[3],[9], [10] and [16] for details.

The QSVD is a simple form of the GSVD. The QSVD of a pair of matrices (A,BT )
is as follows.

QSVD Theorem. Let A ∈ Rm×n, B ∈ Rn×p. Then there exist orthogonal
matrices U ∈ ORm×m, V ∈ ORp×p and a nonsingular matrix Y ∈ Rn×n such that

A = UΣ1Y
−1, BT = V Σ2Y

−1, (1.5)

where

Σ1 =





Ir′ 0 0 0
0 S 0 0
0 0 0 0





r′

s′

m − r′ − s′
,

r′ s′ t′ n − k′

(1.6)
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Σ2 =





0 0 0 0
0 Is′ 0 0
0 0 It′ 0





p + r′ − k′

s′

t′
,

r′ s′ t′ n − k′

(1.7)

k′ = rank(AT , B), r′ = k′ − rank(B),

s′ = rank(A) + rank(B) − k′, S = diag(σ1, · · · , σs′),

σi > 0(i = 1, · · · , s′), t′ = k′ − r′ − s′.

When A and BT are of full column rank, i.e. r(B) = r(A) = n, then r′ = 0, s′ = n, k′ =
n, and

Σ1 =

(

S
0

)

n
m − n

, Σ2 =

(

0
Is′

)

p − n
n

.

n n
(1.8)

The canonical correlations decomposition of the matrix pair (AT , B) is given by
the following theorem.

CCD Theorem. LetA ∈ Rm×n, B ∈ Rn×p, and assume that g = rank(A), h =
rank(B), g ≥ h. Then there exist a orthogonal matrix Q ∈ ORn×n and nonsingular
matrices XA ∈ Rm×m, XB ∈ Rp×p such that

AT = Q[ΣA, 0]X−1
A , B = Q[ΣB, 0]X−1

B , (1.9)

where ΣA ∈ Rn×g and ΣB ∈ Rn×h are of the forms:

ΣA =

















Ii 0 0
0 Λj 0
0 0 0
0 0 0
0 ∆j 0
0 0 It

















, ΣB =

(

Ih

0

)

, (1.10)

with the same row partitioning, and

Λj = diag(λi+1, . . . , λi+j), 1 > λi+1 ≥ . . . ≥ λi+j > 0,
∆j = diag(δi+1, . . . , δi+j), 0 < δi+1 ≤ . . . ≤ δi+j < 1,
λ2

i+1 + δ2
i+1 = 1, . . . , λ2

i+j + δ2
i+j = 1, i.e.,Λ2

j + ∆2
j = I,

Here,
i = rank(A) + rank(B) − rank[AT , B],
j = rank[AT , B] + rank(AB) − rank(A) − rank(B),
t = rank(A) − rank(AB), g = i + j + t.

Following is the projection theorem (cf. [16]).

Lemma 1.1 Let H be a Hilbert space, M be a subspace of H, and M⊥ be the orthogonal
complement subspace of M. For a given H ∈ H, if there exists an M0 ∈ M such that
‖H − M0‖ ≤ ‖H − M‖ holds for any M ∈ M, then M0 is unique and M0 ∈ M is the
unique minimization vector in M if and only if (H − M0)⊥M, i.e.,(H − M0) ∈ M⊥.
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2 The main results

In this section, the explicit expression for the solution of Problem I is derived. Without
loss of generality, we suppose that rank(A) ≥ rank(B).

Instead of considering the solution of Problem I, we will find a matrix C0, and then
transform Problem I to the following equivalent problem.

Problem I0. Given matrices A ∈ Rm×n,B ∈ Rn×p,C0 ∈ Rm×p and Xf ∈ Rn×n,
let

SE0
= {X|X ∈ SRn×n, AXB = C0}. (2.11)

Then find Xe ∈ SE0
, such that

‖Xe − Xf‖F = min
X∈SE0

‖X − Xf‖F . (2.12)

First we use the projection theorem on Rm×p.

Theorem 2.1 Given A ∈ Rm×n, B ∈ Rn×p, C ∈ Rm×p, let X0 be one of the symmetric
least-squares solutions of the matrix equation (1.2) and define

C0 = AX0B, (2.13)

then the matrix equation

AXB = C0, (2.14)

is consistent in SRn×n, and the symmetric solution set SE0
of the matrix equation

(2.13) is the same as the symmetric least-squares solution set SE of the matrix equation
(1.2).

Proof. Let

L = {Z|Z = AXB, X ∈ SRn×n}. (2.15)

Then L is obviously a linear subspace of Rm×p.Because X0 is the symmetric least-
squares solutions of the matrix equation (1.2), from (2.13) we see that C0 ∈ L and

‖C0 − C‖F = ‖AX0B − C‖F

= minX∈SRn×n ‖AXB − C‖F

= minZ∈L ‖Z − C‖F .

Then by Lemma 1.1 we have

(C0 − C)⊥L or (C0 − C) ∈ L⊥.
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Next for all X ∈ SRn×n, AXB − C0 ∈ L, it then follows that

‖AXB − C‖2
F

= ‖(AXB − C0) + (C0 − C)‖2
F

= ‖AXB − C0‖
2
F + ‖C0 − C‖2

F .

Hence, SE = SE0
, and the conclusion of the theorem is true. ¤

Now suppose A ∈ Rm×n, B ∈ Rn×p and the matrix pair (A,BT ) has the QSVD
(1.5), and partition UT CV into the following blocks matrix.

UT CV =





C11 C12 C13

C21 C22 C23

C31 C32 C33





r′

s′

m − r′ − s′

p + r′ − k′ s′ t′

, (2.16)

then the expression of C0 will be shown in the following theorem.

Theorem 2.2 Let A,B, C be given in Problem I, the matrix pair (A,BT ) have the
QSVD (1.5), and UT CV be partitioned by (2.16), then for any symmetric least-squares
solution X0 of the matrix equation (1.2) the matrix C0 defined by (2.13) can be deter-
mined by the following form.

C0 = UC∗V T , C∗ =





0 C12 C13

0 SX̂22 C23

0 0 0





r′

s′

m − r′ − s′

p + r′ − k′ s′ t′

, (2.17)

where

X̂22 = φ ∗ (CT
22S + SC22),

φ = (ϕkl) ∈ SRs′×s′ , ϕkl = 1
σ2

k
+σ2

l

, 1 ≤ k, l ≤ s′.
(2.18)

Proof. From Theorem 2.1 in [7] we know that the symmetric least-squares solution
of the matrix equation (1.2) can be obtained using of the QSVD of matrix pair (A,BT )
and the general form of the solution is

X0 = Y









X ′
11 C12 C13 X ′

14

CT
12 X̂22 S−1C23 X ′

24

CT
13 (S−1C23)

T X ′
33 X ′

34

X ′T
14 X ′T

24 X ′T
34 X ′

44









Y T , (2.19)

where X̂22 is given by (2.18) and X ′
11 ∈ SRr′×r′ , X ′

33 ∈ SRt′×t′ , X ′
44 ∈ SR(n−k′)×(n−k′),
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X ′
14 ∈ Rr′×(n−k′), X ′

24 ∈ Rs′×(n−k′), X ′
34 ∈ Rt′×(n−k′) are arbitrary matrix blocks.

Substituting (1.5),(2.19) into (2.13), we can easily obtain (2.17). ¤

Evidently, (2.17) shows that the matrix C0 in theorem 2.2 is dependent only on
the matrices A,B and C, but is independent on the symmetric least-squares solution
X of the matrix equation (1.2). Since C0 is known, from Theorem 2.1 we know that
Problem I is equivalent to Problem I0. In Problem I0, since SE0

6= ∅, we can derive
the general expression of of the elements of SE0

in the following theorem. In this
theorem, given A ∈ Rm×n, B ∈ Rn×p ,while C0 is given by (2.17),and assume that
g = rank(A), h = rank(B), the matrix pair (AT , B) has CCD (1.9).Notice that we
only state the result with g = h, because in the case g > h, the results of the theorem
and process of the proof are similar, only the partitions of the related matrices are more
complex.

Suppose X ∈ SE0
, then partition the symmetric matrix X∗ ≡ QT XQ into blocks

matrix,

X∗ = (Xkl)6×6, (2.20)

with the row numbers (and the related column numbers) of blocks are i, j, t, n − g −
j − t, j, t respectively, and Xkl = XT

lk, k, l = 1, 2, . . . , 6. Let E = XT
AC0XB and also

partition E into blocks matrix,

E = (Ekl)4×4, (2.21)

with the row numbers of blocks are i, j, t,m− g and the column numbers of blocks are
i, j, t, p − g respectively.

Theorem 2.3 In Problem I0, the general form of the elements of SE0
can be expressed

as X = QX∗QT , where X∗ has the form
















E11 E12 E13 X14 X∗T
51 ET

31

ET
12 X22 X23 X24 X∗T

52 ET
32

ET
13 XT

23 X33 X34 X∗T
53 ET

33

XT
14 XT

24 XT
34 X44 X45 X46

X∗
51 X∗

52 X∗
53 XT

45 X55 X56

E31 E32 E33 XT
46 XT

56 X66

















(2.22)

where X∗
51 = ∆−1

j (E21−ΛjE
T
12), X

∗
52 = ∆−1

j (E22−ΛjX22), X
∗
53 = ∆−1

j (E23−ΛjX23),while

Xkk = XT
kk, 2 ≤ k ≤ 6, X14, X23, X24, X34, X45, X46 and X56 are arbitrary matrices with

the associated sizes.

Proof. Suppose X ∈ SE0
, then

AXB = C0. (2.23)

Substitute (1.9) into (2.23),we have
(

ΣT
A

0

)

X∗(ΣB, 0) = E, (2.24)
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then substitute (1.10),(2.20) and (2.21) into (2.24), it holds






X11 X12 X13 0

ΛjX21 + ∆jX51 ΛjX22 + ∆jX52 ΛjX23 + ∆jX53 0

X61 X62 X63 0

0 0 0 0






=







E11 E12 E13 E14

E21 E22 E23 E24

E31 E32 E33 E34

E41 E42 E43 E44






.(2.25)

Because the matrix equation (2.23) is consistent, therefore we can obtain some Xij

from (2.25) directly. Comparing with both sides of (2.25) , the expression (2.22) of X∗

can be derived according to the symmetric property of X∗. ¤

The following lemmas are needed for the main results.

Lemma 2.1 [17] For given J1, J2, J3 and J4 ∈ Rm×n,

Sa = diag(a1, . . . , am) > 0, Sb = diag(b1, . . . , bm) > 0,
Sc = diag(c1, . . . , cm) > 0, Sd = diag(d1, . . . , dm) > 0,

there exists a unique W ∈ Rm×n, such that

‖SaW − J1‖
2
F + ‖SbW − J2‖

2
F + ‖ScW − J3‖

2
F + ‖SdW − J4‖

2
F = min

and W can be expressed as

W = P ∗ (SaJ1 + SbJ2 + ScJ3 + SdJ4),

where

P = (pkl) ∈ Rm×n, pkl = 1/(a2
k + b2

k + c2
k + d2

k), 1 ≤ k ≤ m, 1 ≤ l ≤ n.

Lemma 2.2 For given J1, J2 and J3 ∈ Rs×s, Sa = diag(a1, . . . , as) > 0,Sb = diag(b1, . . . ,
bs) > 0, Sc = diag(c1, . . . , cs) > 0, there exists a unique symmetric matrix W ∈ SRs×s,
such that

µ ≡ ‖SaW − J1‖
2
F + ‖SbW − J2‖

2
F + ‖ScW − J3‖

2
F = min,

and W can be expressed as

W = Φ ∗ (SaJ1 + JT
1 Sa + SbJ2 + JT

2 Sb + ScJ3 + JT
3 Sc), (2.26)

where

Φ = (φkl) ∈ Rs×s, φkl = 1/(a2
k + a2

l + b2
k + b2

l + c2
k + c2

l ), 1 ≤ k, l ≤ s.

Proof. For W ∈ SRs×s, it holds wkl = wlk (1 ≤ k, l ≤ s), and

µ =
∑s

k=1[(akwkk − J1kk)
2 + (bkwkk − J2kk)

2 + (ckwkk − J3kk)
2]

+
∑

1≤k<l≤s[(akwkl − J1kl)
2 + (alwkl − J1lk)

2 + (bkwkl − J2kl)
2

+(blwkl − J2lk)
2 + (ckwkl − J3kl)

2 + (clwkl − J3lk)
2].

165



Since the function µ is a continuous and differentiable function of 1
2s(s + 1) variables

wkl, hence µ obtains its minimum value at {wkl} when ∂µ
∂wkl

= 0, i.e.,

wkl =
akJ1kl + alJ1lk + bkJ2kl + blJ2lk + ckJ3kl + clJ3lk

a2
k + a2

l + b2
k + b2

l + c2
k + c2

l

, 1 ≤ k ≤ l ≤ s.

Therefore W can be expressed by (2.26). ¤

Finally we give the the optimal approximation solutions for the symmetric least-
squares problems of the linear matrix equation AXB = C, and we still suppose that
rank(A) = rank(B).

Theorem 2.4 Let matrices A,B, C and Xf be given in Problem I, suppose rank(A) =
rank(B), partition the matrix QT XfQ into blocks matrix

QT XfQ = (X
(f)
kl )6×6, (2.27)

with the same row and column numbers as X∗ of (2.20). Then the unique solution Xe

of Problem I can be expressed as Xe = QX∗Q
T , and X∗ is equal to





















E11 E12 E13 {X
(f)
14 } X̄T

51 ET
31

ET
12 X̄22 X̄23 {X

(f)
24 } X̄T

52 ET
32

ET
13 X̄T

23 {X
(f)
33 } {X

(f)
34 } X̄T

53 ET
33

{X
(f)
41 } {X

(f)
42 } {X

(f)
43 } {X

(f)
44 } {X

(f)
45 } {X

(f)
46 }

X̄51 X̄52 X̄53 {X
(f)
54 } {X

(f)
55 } {X

(f)
56 }

E31 E32 E33 {X
(f)
64 } {X

(f)
65 } {X

(f)
66 }





















(2.28)

where X̄51 = ∆−1
j (E21 − ΛjE

T
12), X̄52 = ∆−1

j (E22 − ΛjX̄22), X̄53 = ∆−1
j (E23 − ΛjX̄23),

{X
(f)
kl } =

1

2
(X

(f)
kl + X

(f)T
lk ) = {X

(f)
lk }T ,

X̄22 = Ψ ∗ [X
(f)
22 + X

(f)T
22 + ∆−1

j Λj(∆
−1
j E22 − X

(f)T
25 ) + (∆−1

j E22 − X
(f)T
25 )T Λj∆

−1
j

+∆−1
j Λj(∆

−1
j E22 − X

(f)
52 ) + (∆−1

j E22 − X
(f)
52 )T Λj∆

−1
j ],

Ψ = (ψkl) ∈ Rj×j , ψkl =
1

2(1 + (
δi+k

λi+k
)2) + (

δi+l

λi+l
)2)

, 1 ≤ k, l ≤ j.

and

X̄23 = G ∗ [X
(f)
23 + X

(f)T
32 + ∆−1

j Λj(∆
−1
j E23 − X

(f)T
35 ) + ∆−1

j Λj(∆
−1
j E23 − X

(f)
53 ),

G = (gkl) ∈ Ri×t, gkl =
1

2
λi+k, 1 ≤ k,≤ i, 1 ≤ l ≤ t.
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Proof. Suppose X ∈ SE = SE0
, by using (2.22) and (2.27), we have

‖X − Xf‖
2
F = ‖X∗ − QT XfQ‖2

F

= (‖X33 − X
(f)
33 ‖2

F ) + (‖X44 − X
(f)
44 ‖2

F ) + (‖X55 − X
(f)
55 ‖2

F ) + (‖X66 − X
(f)
66 ‖2

F )

+(‖X14 − X
(f)
14 ‖2

F + ‖XT
14 − X

(f)
41 ‖2

F ) + (‖X24 − X
(f)
24 ‖2

F + ‖XT
24 − X

(f)
42 ‖2

F )

+(‖X34 − X
(f)
34 ‖2

F + ‖XT
34 − X

(f)
43 ‖2

F ) + (‖X45 − X
(f)
45 ‖2

F + ‖XT
45 − X

(f)
54 ‖2

F )

+(‖X46 − X
(f)
46 ‖2

F + ‖XT
46 − X

(f)
64 ‖2

F ) + (‖X56 − X
(f)
56 ‖2

F + ‖XT
56 − X

(f)
65 ‖2

F )

+(‖X22 − X
(f)
22 ‖2

F + ‖(∆−1
j (E22 − ΛjX22))

T − X
(f)
25 ‖2

F +

‖∆−1
j (E22 − ΛjX22) − X

(f)
52 ‖2

F ) + (‖X23 − X
(f)
23 ‖2

F + ‖XT
23 − X

(f)
32 ‖2

F +

‖(∆−1
j (E23 − ΛjX23))

T − X
(f)
35 ‖2

F + ‖∆−1
j (E23 − ΛjX23) − X

(f)
53 ‖2

F ) + α0,

(2.29)

where α0 is a constant.
According to (2.29), ‖X −Xf‖

2
F = min if and only if each of the brackets in (2.29)

takes minimum. Notice that Xkk = XT
kk, k = 3, 4, 5, 6 and by making use of Lemma 2.1

and Lemma 2.2, the results of this theorem can be derived easily. ¤

Conclusions. Using the projection theorem in Hilbert space , the quotient singular
value decomposition and the canonical correlation decomposition , we have obtained the
explicit analytical expressions of the optimal approximation solutions for the symmetric
least-squares problems of the linear matrix equation AXB = C. In fact, we have also
obtained the explicit analytical expressions of the optimal approximation solutions for
the skew-symmetric least-squares problems of the linear matrix equation AXB = C ,
because of the limitation of the pages, we omit the content here, and we can design
new algorithms to solve the large scale least-square problems of linear matrix equation
AXB = C. These new results have generalized the work of Eric Chu [4], Dai Hua [5],
Higham [12] and Sun [15] in some aspects.
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