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Abstract—Elementary flux modes are an important class of
metabolic pathways used to characterize the functioning and
behavior of metabolic networks of biochemical reactions in a
biological cell. The computation of the elementary flux modes
is accomplished by using the so-called Nullspace Algorithm

whose high computational cost and memory requirements still
limit the computation to relatively small metabolic networks.
We combine a “combinatorial” parallelization with a novel
divide-and-conquer paradigm into a new implementation of
the Nullspace Algorithm with lower memory requirements. We
discuss the disadvantages of the combinatorial parallelization
and divide-and-conquer ideas and explain why their combina-
tion attains more computational power. The improved parallel
Nullspace Algorithm is used to compute up to nearly 50 million
elementary flux modes for a metabolic network for yeast, a
task which was previously not possible using either of the two
approaches individually.
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I. INTRODUCTION

Metabolic networks belong to a class of biological net-

works which allow the representation of biochemical reac-

tions and their relationships within a biological cell or its

compartments. One potent way of observing the metabolic

network and its interactions is throughout feasible metabolic

pathways which satisfy thermodynamic and stoichiometric

constraints. Metabolic pathways, in particular a class of

elementary flux modes, have many different applications

in chemical engineering and biochemistry. Elementary flux

modes were used in the dissection of a biological cell and

analysis of cellular metabolic capabilities [1], [2], phenotype

prediction [3], gene knockout studies [4]–[7] and estimation

of overall reaction flux distribution [8]–[12].

We propose a new parallel algorithm for the improved

computation of elementary flux modes which combines an

earlier distributed-memory parallel algorithm and a divide-

and-conquer idea. The combined algorithm attains lower

memory requirements and allows computation of the ele-

mentary modes for larger metabolic networks.

This paper is organized as follows. In section II we

briefly sketch the background of the metabolic networks and

metabolic pathway theory, the elementary flux modes and

the Nullspace Algorithm. We also illustrate the Nullspace

Algorithm through a simple example network and describe

both the combinatorial parallel Nullspace Algorithm and

the divide-and-conquer approach. The novel “combined”

parallel Nullspace Algorithm is described in section III,

and the results of its application to the yeast (S. cerevisiae)

metabolic network are given in the section IV.

II. BACKGROUND AND RELATED WORK

A. Metabolic networks and pathways

We use the sample metabolic network in Figure 1 to

illustrate our parallel algorithm. This ‘toy’ network has

five internal metabolites (A,B,C,D,P) and nine reactions

(r1, r2, r3, r4, r5, r6r, r7, r8r, r9). Each reaction consumes

and produces metabolites in fixed proportions. All but two

reactions are thermodynamically irreversible, flowing only in

the positive direction. Reversible reactions are denoted with

a trailing ‘r’. Every reaction is characterized by the reaction

rate (also known as flux rate) which numerically gives the

rate at which the substrate metabolites are converted to the

product metabolites.

The dotted line in Figure 1 marks the boundary between

the interior and exterior of the given structure, which may

be an entire cell or an internal compartment (organelle).

Reactions crossing the network boundary and limited to

transport of a particular metabolite between the interior and

exterior of the system are known as exchange reactions

(r1, r4, r8r, r9 in the simple example).

To represent the metabolic network in an analytical way

we use the stoichiometry matrix illustrated in equation (2)

where rows correspond to metabolites and columns corre-

spond to reactions. Matrix element Ni,j , if non-zero, gives

the molar amount of metabolite i produced (if Ni,j > 0) or
consumed (if Ni,j < 0) by a unit flux of reaction j. The

flux rate for the reaction can be negative only if the reaction

is reversible.

At any given moment, some of the reactions in the

metabolic network will have non-zero reaction rate, while

some others will have zero reaction rate. The complete set



A

B

C P
r1

D

r8r

r5 r6r

r2

r9

r4

r7

r3

Bext

Aext Pext

Dext

Figure 1: Simple illustrative metabolic network [13]

of flux rates is collected into a reaction rate (flux rate) vector

r:

r =
(

r1 r2 r3 r4 r5 r6 r7 r8 r9

)T
(1)

The reaction rate vector is equivalent to the concept of

a metabolic pathway. It was earlier determined that the

metabolic network in a biological cell can be considered

to be in quasi steady-state when the concentration of each

internal metabolite is assumed to be constant [14] and

the relationship between the stoichiometry matrix and the

reaction rate vector satisfies the constraint (3).
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(2)

N · r = 0 (3)

In the typical metabolic network the number of reactions

is higher than the number of metabolites so that the con-

straints (3) have many solutions. Of particular interest is a

subset of solutions known as elementary flux modes (EFM)

[15], [16]. The elementary flux mode is a metabolic pathway

or a reaction rate vector with a property that there is no other

valid reaction rate vector whose non-zero elements form a

subset of the non-zero elements of the given flux vector.

B. Nullspace Algorithm

Currently, the most efficient algorithm for the computation

of elementary flux modes is the Nullspace Algorithm [17]–

[22] which is derived from the “double description method”

for the enumeration of extreme rays (or vertices) in the con-

vex polyhedral cone (polytope) [23], [24]. The complexity

of the enumeration of extreme rays in the convex cone still

remains an open question [25]–[27]. It is however known

that the related problem of enumerating vertices in the

unbounded polyhedron is NP-hard. Genome-scale metabolic

networks [28] may have up to more than 3000 reactions,

and the computation of elementary modes in that case still

represents a computational challenge.

C. Example: Nullspace Algorithm and EFM computation

Using the example of the metabolic network given in Fig-

ure 1, we will illustrate the Nullspace Algorithm [17]–[22]

and the parallelization ideas. Prior to running the algorithm,

the metabolic network and its stoichiometry matrix may

be reduced by eliminating redundant reactions, metabolites,

and constraints using known methods [19], [21], [29]. The

original stoichiometry matrix in equation (2) can thus be

reduced to the equivalent matrix in equation (4). It has been

shown [19], [21], [29] that such reduced network has the

equivalent set of elementary flux modes as the original one,

and this preprocessing reduction step yields a more efficient

computation of the elementary flux modes.
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. (4)

The Nullspace Algorithm begins by computing a basis
for the nullspace of Nred (the “nullspace matrix”). This is
usually accomplished by reducing Nred to row echelon form
and permuting the columns so that the stoichiometric matrix
takes on the form (−R(2), I). The resulting nullspace matrix
then has the form

Kredperm =

(

R(1)

R(2)

)

=

(

I

R(2)

)

=

r2

r4

r5

r7

r1

r3

r6r

r8r



















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 −2
−1 1 0 −2
1 −1 1 1



















(5)
with the rows corresponding to the identity matrix being
pushed to the top. The remaining rows are ordered by the
increasing number of non-zero elements in the row [19],
[21], [23], a heuristic proven to often improve the efficiency
of Nullspace Algorithm. We also reorder the columns of
Nred to to match the row order of (5), obtaining

Nredperm =
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The columns of the initial nullspace matrix form the

initial set of columns which will be iteratively paired as a

convex linear combination of two columns to form candidate

elementary flux modes. Some of the candidate columns will

be accepted and retained in the nullspace matrix, while some

others will be rejected using a so-called ”algebraic rank test”

[18], [20], [21], [30], as will be described below.

Having reduced the size of the initial metabolic network,

computed the initial nullspace matrix and reordered its rows

according to proven heuristics [19], [21], [23] we may start

the core of the Nullspace Algorithm. In Fig. 2 we show the

intermediate nullspace matrices obtained at each iteration
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Figure 2: Steps of the Nullspace Algorithm on network of Fig. 1.

of the Nullspace Algorithm. The Nullspace Algorithm starts

by processing the first row of the matrix R(2) and ends by

processing the last row of the nullspace matrix. In each

iteration, we separate the columns according to whether

their entry in the row currently being processed is positive,

negative, or zero. Columns with a zero entry are simply

passed along to the next iteration. Each column with a

positive entry is paired with each column with a negative

entry to form a convex linear combination such that the

combined entry in the current row is zero. The result is

a new candidate flux mode.

A rank test [18], [20], [21], [30] is then used to check

that the new candidate flux modes are indeed elementary.

For every candidate column, we extract the columns from

Nredperm corresponding to the non-zero entries in the candi-

date flux mode to form a submatrix. The nullity (dimension

of the right nullspace) of this submatrix should be equal to

1 in order to retain the candidate elementary flux mode, or

otherwise it will be rejected [18], [20], [21], [30]. If this

submatrix has at least two more columns (reactions with

non-zero fluxes) than rows (metabolites), then the candidate

column has too many non-zeros and therefore is summarily

rejected. Otherwise the rank of the submatrix must be

computed by using a numerical algorithm such as the LU,

QR or SVD [31].

The columns (flux modes) that survive to the next iteration

consist of those columns from the previous iteration which

had a zero entry in the row currently being processed,

plus those columns which had a positive entry, plus the

new candidate columns which have passed the rank test.

These latter columns necessarily have a zero in the cur-

rently processed row. Old columns with negative entries are

removed if the reaction corresponding to the current row is

irreversible, but these columns are kept if the current reaction

is reversible. Because of the fact that during the processing

of a row corresponding to a reversible reaction, no column is

removed, a usual heuristic is to process reversible reactions

last.

We now illustrate in Figure 2 the steps outlined above on

the example of Figure 1. We start with the nullspace matrix

K
(1)
redperm and begin the first iteration at row r1. Since, all the

columns have either positive or zero elements in this row, we

skip to the next iteration because no candidate columns can

be formed. The second iteration is at row r3 and there is one

column with a positive entry and one column with a negative

entry. This allows the formation of a single candidate flux

mode equal to
(

0 2 0 1 0 0 0 −1
)T

.

We then extract the submatrix using the indices of non-

zero elements in this candidate column, and compute its

nullity. Since the nullity is equal to 1, we retain this column

for the next iteration. As the current row corresponds to

the irreversible reaction r3, prior to proceeding to the next

iteration, we remove the column having the negative element

(-2). The resulting nullspace matrix after the second iteration

is given in the matrix K
(3)
redperm. In third iteration, there are

again one column with a positive entry and one with a neg-

ative entry, which allows the formation of a single candidate

elementary flux mode
(

1 1 0 0 1 1 0 0
)T

. This

candidate column is retained as well after computing that

the nullity is equal to 1.

The third iteration corresponds to the reversible

reaction r6r , hence the columns having negative

elements for the current row are not removed. In

the fourth iteration, the nullspace matrix K
(4)
redperm

has two columns with positive and two columns

with negative elements for the row corresponding

to the reaction r8r . This produces four candidate

elementary flux modes
(

1 1 0 0 1 1 0 0
)T

,
(

1 2 0 1 1 0 −1 0
)T

,
(

0 1 1 0 1 1 1 0
)T

,
(

0 2 1 1 1 0 0 0
)T

. Two of these columns are

duplicates, so only three are probed using the rank test

to check whether they are elementary flux modes. As the

generation of candidates may yield duplicated columns a



Algorithm 1 [EFM ] = NullspaceAlg(N, K)

Input:
reduced stoichiometry matrix (Nm×q); initial nullspace matrix

Kq×(q−m) =

[

R(1)

R(2)

]

Output:
matrix of elementary flux modes EFMq×nems

1: K(q−m+1) = K

2: for k = q − m + 1 to q do
3: candEFM = GenerateEFMCands(K(k))
4: candEFM = Sort&RemoveDuplicates(candEFM)
5: candEFM = RankTests(N, candEFM)
6: K(k) = RemoveNegColumns(K(k))
7: K(k+1) = [K(k) candEFM ]
8: end for
9: return K(q+1)

procedure for their removal is to sort the columns by their

binary representation and eliminate duplicated columns in

one run.

The final nullspace matrix can be directly obtained from

the matrix K
(5)
redperm, and the core of the Nullspace Algo-

rithm is complete. The K
(5)
redperm matrix corresponds to the

permuted reduced stoichiometry matrix given in (6). Rows

of the matrix K
(5)
redperm of EFMs are permuted to the original

order, and the row corresponding to the redundant reaction

r9 is added back to obtain the matrix EFM in equation (7).

EFM =

r1

r2

r3

r4

r5

r6r

r7

r8r

r9





























1 0 1 0 1 1 1 1
1 0 0 0 1 1 0 0
0 1 0 0 1 0 1 0
0 1 0 2 1 2 1 2
0 0 1 0 0 0 1 1
−1 1 0 0 0 −1 1 0
0 0 0 1 0 1 0 1
1 −1 1 −1 0 0 0 0
0 1 0 0 1 0 1 0





























(7)

The high-level pseudocode for the Nullspace Algorithm

is sketched in Algorithm 1.

D. Combinatorial parallel Nullspace Algorithm

A shared-memory based parallelization of the Nullspace

Algorithm was earlier proposed in EFMTools [19], while

the distributed memory parallelization based on message

passing was implemented [17] as a better fit to the available

computer architecture. Our parallelization when run on a

single processor was found in [17] to have similar perfor-

mance to the serial version of EFMTools. We name this

distributed memory version as the “combinatorial parallel

Nullspace Algorithm” and give its pseudocode in Algorithm

2. The description of functions used in the pseudocode of

the algorithm is given in Table I.

Algorithm 2 [K] = ParallelNullspAlg(N, K, Nnodes)

Input:
reduced stoichiometry matrix (Nm×q); initial nullspace matrix

Kq×(q−m) =

[

R(1)

R(2)

]

Output:
bit-valued matrix of elementary modes EFMq×nems

1: K(q−m+1) = K

2: procId ⇐ compute node ID

3: for k = q − m + 1 to q do
4: candEFM = ParallelGenerateEFMCands(K(k),

P rocId,Nnodes)
5: candEFM = Sort&RemoveDuplicates(candEFM)
6: candEFM = RankTests(N, candEFM)
7: {communicate candEFM and merge }
8: candEFM = Communicate&Merge(candEFM)
9: K(k) = RemoveNegColumns(K(k))
10: K(k+1) = [K(k) candEFM ]
11: end for
12: return K(q+1)

Table I
DESCRIPTION OF FUNCTIONS USED IN ALGORITHMS 1 AND 2

GenerateEFMCands:
Generates next set of candidate elementary modes by convex com-
binations of current set of modes that annihilates the flux of the
current reaction.

ParallelGenerateEFMCands:
Generates candidate elementary modes local for the current compute
node.

Sort RemoveDuplicates:
Sorts the candidate elementary flux modes and removes local
duplicates.

RankTests:
Applies the algebraic rank tests to the candidates local to current
compute node.

RemoveNegColumns:
If the current iteration corresponds to an irreversible reaction, re-
move all columns (modes) for which this reaction’s flux is negative.

Communicate Merge:
Send each compute node’s locally computed EFMs to other compute
nodes. Merge the incoming EFMs with local set and remove
duplicates.

The combinatorial parallel Nullspace Algorithm [17] at-

tained good scalability, reduced overhead in the communi-

cation and merge of exchanged candidate elementary flux

modes among the compute nodes. However, its disadvantage

is that it still requires to store the copies of the current matrix

of candidate EFMs (Fig. 2) in the local memory across all

compute nodes during the computation, which imposes an

upper limit of the size of the networks which can be handled.

E. Divide-and-conquer

In [32], the authors proposed a parallelization based on

the divide-and-conquer approach to compute the complete

set of the elementary flux modes. The complete set of the

elementary flux modes is partitioned across the selected

subset of qsub reactions into 2qsub disjoint EFM subsets

where the zero/nonzero flux pattern of the elementary flux

modes in the ith subset corresponds to the binary repre-



sentation of the number i, for i ∈ 0, . . . , 2qsub − 1. In the

example of 8 elementary flux modes from matrix EFM

in (7), the partitions across reactions r8r and r9 will be

{6,8}, {1,3,4}, {5,7}, {2} where subset elements are column

indices. The reactions for partitioning elementary flux modes

can not be randomly selected, as the pre-processing step

of reducing metabolic network size will eliminate some of

them. This divide-and-conquer approach is also based on the

following proposition [30], [32], which can easily be proved

by mathematical induction.

Proposition 1: If the Nullspace Algorithm is stopped at

its (q−q′)th iteration, then the set of elementary flux modes

with all the last q′ reactions having non-zero flux values

coincides with the set of columns in the current nullspace

matrix having non-zero flux values in the last q′ elements.

We use Proposition 1 to incorporate the divide-and-

conquer idea with the combinatorial parallel Nullspace Al-

gorithm (Algorithm 2), as described in the following section.

III. COMBINED PARALLEL NULLSPACE ALGORITHM

In Algorithm 3, we propose the incorporation of the

divide-and-conquer approach in the combinatorial parallel

Nullspace Algorithm described in Algorithm 2. Initially, the

reaction subset size qsub is selected and the elementary

modes are computed for each of the 2qsub subsets. In lines

5 and 6 indices of reactions which should have non-zero

and zero flux values are extracted according to the binary

representation of the current iteration value k. For the i-

th subset, a reduced stoichiometry matrix is formed by

removing the columns corresponding to the indices zfRows

of reactions with zero flux values. This results in the reduced

stoichiometry matrix Ni (line 8), and new nullspace matrix

Ki is recomputed (line 9). The rows of the nullspace matrix

Ki are reordered so that the reactions corresponding to the

indices in nzfRows are put at the bottom of the matrix

(line 11). We then run the combinatorial parallel Nullspace

Algorithm (line 14) described in Algorithm 2 on the pair

(Ni, Ki). Rows corresponding to those reactions which

should have zero reaction flux values are appended back to

the matrix EFMi (lines 17-21) and the iteration is complete.

A. Example

We now illustrate the divide-and-conquer idea on our

sample metabolic network. Once the initial nullspace matrix

is found for the stoichiometry matrix, we consider the four

subproblems across the two reactions r6r and r8r .

• Reactions r6r, r8r should both have zero flux values.
Columns corresponding to the reactions r6r, r8r are
removed from the matrix Nredperm in equation (6) to
obtain the matrix given in equation (8).

Nr00 =

A

B

C

P







−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0 0 1 −1 0 0
1 0 0 0 0 −1
0 −1 0 2 0 1






. (8)

Algorithm 3 [K] = CombParallelNullspAlg(N, K, qsub)
Input:

stoichiometry matrix (Nm×q); initial nullspace of the form

Kq×(q−m) =

[

R(1)

R(2)

]

Output:

matrix of elementary modes EFMq×nems

1: {Reduce initial metabolic network (N, K) to equivalent smaller net-

work.}
2: (Nred, Kred) ⇐ (N, K); EFM = [ ];
3: for k = 0 to 2qsub − 1 do
4: {dec2binvec - get binary representation of number as a vector.

nzfRows - indices of last qsub rows which must have non-zero flux.
zfRows - indices of last qsub rows which must have zero flux.}

5: nzfRows = q − qsub + find(dec2binvec(k))
6: zfRows = q − qsub + find(¬dec2binvec(k))
7: {from last qsub rows of nullspace matrix remove rows correspond-

ing to zero reaction flux for the kth subproblem }
8: Ni = Nred;Ni(:, zfRows) = [ ];
9: Ki = null(Ni)
10: {reorder rows in Ki so that rows corresponding to nzfRows are

at the bottom }
11: Ki = ReorderRows(Ki);Ni = ReorderColumns(Ni);
12: lastRowIter := q − qsub

13: {Run parallel algorithm on the pair (Ni, Ki) until reaching

iteration corresponding to lastRowIterth row}
14: EFMi = ParallelNullspAlg(Ni, Ki, Nnodes, lastRowIter)

15: {keep only those columns in EFMi which have non-zero values

in the last length(nzfRows) rows }
16: selectedRowInd = q − qsub + (1 : length(nzfRows))
17: EFMi = EFMi(:, all(EFMi(selectedRowInd, :)))
18: {add zero-rows to the EFMi in order to obtain the wanted subset

of EFMs}
19: numEmsi = size(EFMi, 2)
20: EFMi(nzfRows , :) = EFMi(selectedRowInd, :)
21: EFMi(zfRows , :) = zeros(length(zfRows), numEms)
22: EFM = [EFM EFMi]
23: end for
24: return EFM

The nullpace matrix corresponding to the matrix Nr00
is given as Kr00.

Kr00 =

r2

r4

r5

r7

r1

r3













2 0
0 2
−1 1
−1 1
1 1
2 0













×
1

2
. (9)

When the Nullspace Algorithm is run on the pair
(Nr00, Kr00) two elementary flux modes are obtained:

EFMr00 =

r2

r4

r5

r7

r1

r3













0 1
2 1
1 0
1 0
1 1
0 1













. (10)

• Reaction r6r should have zero and reaction r8r should
have non-zero flux values. This requires the removal
of the column corresponding to the reaction r6r in the
matrix Nredperm to obtain matrix Nr01



Nr01 =
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P







−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r8r

0 0 1 −1 0 0 −1
1 0 0 0 0 −1 0
0 −1 0 2 0 1 0






. (11)

The nullpace matrix corresponding to the matrix Nr01
is given as Kr01.

Kr01 =

r2

r4

r5

r7

r1

r3

r8r















2 0 0
0 2 0
0 0 2
−1 1 0
2 0 2
2 0 0
1 −1 2















×
1

2
. (12)

Running the Nullspace Algorithm until before the
row corresponding to the reaction r8r on a pair
(Nr01, Kr01), and extracting those columns having non-
zero flux values for the reaction r8r we obtain two
elementary flux modes:

EFMr01 =

r2

r4

r5

r7

r1

r3

r8r















0 0
2 0
0 1
1 0
0 1
0 0
−1 1















. (13)

• Reaction r6r should have non-zero and reaction r8r

should have zero flux values. This requires the removal
of the column corresponding to the reaction r8r in the
matrix Nredperm to obtain matrix Nr10.

Nr10 =

A

B

C

P







−1

r2

0

r4

−1

r5

0

r7

1

r1

0

r3

0

r6r

0 0 1 −1 0 0 −1
1 0 0 0 0 −1 1
0 −1 0 2 0 1 0






. (14)

The nullspace matrix corresponding to the matrix Nr10
is given as Kr10.

Kr10 =

r2

r4

r5

r7

r1

r3

r6r















1 0 0
0 1 0
0 0 1
−1 1 −1
1 0 1
2 −1 2
1 −1 2















. (15)

Similarly, using the Nullspace Algorithm and running it
until before the reaction corresponding to the row r6r,
two elementary flux modes are obtained:

EFMr10 =

r2

r4

r5

r7

r1

r3

r6r















1 0
2 1
0 1
1 0
1 1
0 1
−1 1















. (16)

• reactions r6r and r8r have both non-zero fluxes.
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(17)

Kr11 =
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. (18)

In this last case, the Nullspace Algorithm is run on
a pair of matrices (Nr11, Kr11) until before the row
corresponding to the reaction r6r, and the elementary
flux modes having non-zero values for both reactions
r6r and r8r are extracted. This yields two elementary
flux modes:

EFMr11 =

r2

r4

r5

r7

r1

r3

r6r

r8r



















1 0
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0 0
0 0
1 0
0 1
−1 1
1 −1



















. (19)

We see that the union of elementary flux modes obtained

for all four cases coincides with the elementary flux modes

given in Fig. 2. In our combined parallel Nullspace Algo-

rithm, each of the four subtasks would be run independently

using the combinatorial parallel Nullspace Algorithm given

earlier in Algorithm 2 and described in [17].

IV. RESULTS

We used the “Calhoun” parallel platform of the Minnesota

Supercomputing Institute and Blue Gene/P of IBM to test

our combined parallel Nullspace Algorithm.

Blue Gene/P parallel configuration with up to 512 com-

pute nodes was used to perform the computation [33]. To

provide a better understanding of the results of executing

combined parallel Nullspace Algorithm and software we

give a brief overview of the Blue Gene/P platform. The

smallest component in the system is the chip. Single chip has

a PowerPC 450 quad-core processor with 4GB of memory.

Each processor core runs at a frequency of 850 MHz, and

each processor core can perform four floating-point opera-

tions per cycle, giving a theoretical peak performance of 13.6

gigaFLOPS/chip. The chip constitutes the compute card. The

I/O card is the next building block. This card is physically

very similar to the compute card. However, the I/O card

has the integrated Ethernet enabled for communication with

the outside world. The I/O cards and the compute cards

form a so-called node card. The node card has 2 rows of

16 compute cards and 0-2 I/O nodes depending on the I/O

configuration. Further, a midplane has 16 node cards. A



R4 : F6P + ATP =⇒ FDP + ADP

R5 : FDP =⇒ F6P

R9 : PYR + ATP =⇒ PEP + ADP

R10 : PEP + ADP =⇒ PYR + ATP

R12 : GL3P + FAD mit =⇒ DHAP + FADH mit

R26 : GL3P =⇒ GLY

R15 : G6P + 2 NADP =⇒ 2 NADPH + CO2 + RL5P

R21 : ACCOA + OA =⇒ COA + CIT

R23 : ICIT + NADP =⇒ CO2 + NADPH + AKG

R24 : AKG mit + NAD mit + COA mit =⇒ CO2 + NADH mit + SUCCOA mit

R27 : FUM + FADH =⇒ SUCC + FAD

R33 : PYR + COA =⇒ ACCOA + FOR

R37 : PYR + ATP + CO2 =⇒ ADP + OA

R38 : PYR =⇒ ACEADH + CO2

R40 : ACEADH + NADH =⇒ ETOH + NAD

R41 : ACEADH + NADP =⇒ AC + NADPH

R42 : OA + ATP =⇒ PEP + CO2 + ADP

R43 : PEP + CO2 =⇒ OA

R46 : ICIT =⇒ GLX + SUCC

R47 : ACCOA + GLX =⇒ COA + MAL

R53 : ACEADH + NAD =⇒ AC + NADH

R54 : ATP =⇒ ADP

R58 : NADH + NAD mit =⇒ NAD + NADH mit

R59 : NH3ext =⇒ NH3

R60 : GLY =⇒ GLYext

R62 : GLCext + PEP =⇒ G6P + PYR

R63 : AC =⇒ ACext

R64 : LAC =⇒ LACext

R65 : FOR =⇒ FORext

R66 : ETOH =⇒ ETOHext

R67 : SUCC =⇒ SUCCext

R68 : O2ext =⇒ O2

R69 : CO2 =⇒ CO2ext

R70 : 7437 G6P + 611 G3P + 437 R5P + 130 E4P + 500 PEP + 2060 PYR + 45

ACCOA mit + 362 ACCOA + 733 AKG + 1232 OA + 1158 NAD + 434 NAD mit +

6413 NADPH + 1568 NADPH mit + 40141 ATP + 5587 NH3 =⇒ 1000 BIO + 247

CO2 + 45 COA mit + 362 COA + 1158 NADH + 434 NADH mit + 6413 NADP +

1568 NADP mit + 40141 ADP

R72 : PYR mit + COA mit + NAD mit =⇒ ACCOA mit + NADH mit + CO2

R73 : OA mit + ACCOA mit =⇒ CIT mit + COA mit

R75 : ICIT mit + NAD mit =⇒ AKG mit + NADH mit + CO2

R76 : ICIT mit + NADP mit =⇒ AKG mit + NADPH mit + CO2

R77 : ICIT + NADP =⇒ AKG + NADPH + CO2

R82 : MAL mit + NADP mit =⇒ PYR mit + NADPH mit + CO2

R85 : ETOH mit + COA mit + 2 ATP mit + 2 NAD mit =⇒ ACCOA mit + 2

ADP mit + 2 NADH mit

R86 : ACEADH mit + NAD mit =⇒ AC mit + NADH mit

R87 : ACEADH mit + NADP mit =⇒ AC mit + NADPH mit

R93 : ADP + ATP mit =⇒ ADP mit + ATP

R98 : FUM mit + SUCC =⇒ SUCC mit + FUM

R100 : SUCC =⇒ SUCC mit

R101 : AKG + MAL mit =⇒ AKG mit + MAL

Figure 3: S. cerevisiae Metabolic Network I with 62

metabolites and 78 reactions: the irreversible reactions

rack holds 2 midplanes, for a total of 32 node cards or

1024 compute cards. A full petaflop system contains 72

racks. Finally, the compute nodes may be configured at boot

time to operate in one of three modes: a) symmetric multi-

processing mode b) virtual node mode and c) dual mode.

Symmetric-multiprocessing mode runs the main process on

one processor and can spawn up to 3 threads on the

remaining processors. In dual mode, the CPUs with rank

0 and 2 run a main program process, and each can spawn

an additional thread. Virtual node mode runs the underlying

program on all four processors, without additional threading.

“Calhoun” is an SGI Altix XE 1300 Linux cluster. The

cluster consists of 256 compute nodes, each containing two

quad-core 2.66 GHz Intel Xeon “Clovertown”-class proces-

sors sharing 16 GB of main memory. In total, “Calhoun”

R3r : G6P ⇐⇒ F6P

R6r : FDP ⇐⇒ G3P + DHAP

R7r : G3P ⇐⇒ DHAP

R8r : G3P + NAD + ADP ⇐⇒ PEP + ATP + NADH

R13r : DHAP + NADH ⇐⇒ GL3P + NAD

R16r : RL5P ⇐⇒ R5P

R17r : RL5P ⇐⇒ X5P

R18r : R5P + X5P ⇐⇒ G3P + S7P

R19r : X5P + E4P ⇐⇒ F6P + G3P

R20r : G3P + S7P ⇐⇒ E4P + F6P

R22r : CIT ⇐⇒ ICIT

R25r : SUCCOA mit + ADP mit ⇐⇒ ATP mit + COA mit + SUCC mit

R28r : FUM ⇐⇒ MAL

R29r : MAL + NAD ⇐⇒ NADH + OA

R30r : PYR + NADH ⇐⇒ NAD + LAC

R32r : ACCOA + 2 NADH ⇐⇒ ETOH + 2 NAD + COA

R36r : ATP + AC + COA ⇐⇒ ADP + ACCOA

R74r : CIT mit ⇐⇒ ICIT mit

R78r : ACEADH mit + NADH mit ⇐⇒ ETOH mit + NAD mit

R79r : SUCC mit + FAD mit ⇐⇒ FUM mit + FADH mit

R80r : FUM mit ⇐⇒ MAL mit

R81r : MAL mit + NAD mit ⇐⇒ OA mit + NADH mit

R88r : CIT + MAL mit ⇐⇒ CIT mit + MAL

R89r : MAL + SUCC mit ⇐⇒ MAL mit + SUCC

R90r : CIT + ICIT mit ⇐⇒ CIT mit + ICIT

R92r : AC mit ⇐⇒ AC

R94r : PYR =⇒ PYR mit

R95r : ETOH =⇒ ETOH mit

R96r : MAL mit =⇒ MAL

R97r : ACCOA mit =⇒ ACCOA

R102r : OA ⇐⇒ OA mit

Figure 4: S. cerevisiae Metabolic Network I with 62

metabolites and 78 reactions: the reversible reactions.

additional internal metabolite:

GLC

added reactions:

R1 : GLC + ATP =⇒ G6P + ADP

R14 : GLY + ATP =⇒ GL3P + ADP

R56 : 24 ADP + 20 NADH mit + 10 O2 =⇒ 24 ATP + 20 NAD mit

R57 : 24 ADP + 20 FADH + 10 O2 =⇒ 24 ATP + 20 FAD

R61 : GLCext =⇒ GLC

reactions made reversible:

R54r : ATP ⇐⇒ ADP

R60r : GLY ⇐⇒ GLYext

R63r : AC ⇐⇒ ACext

modified reaction:

R62 : GLC + PEP =⇒ G6P + PYR

Figure 5: S. cerevisiae Metabolic Network II with 63

metabolites and 83 reactions: differences from Network I.

consists of 2048 compute cores and 4 TB of main mem-

ory. Compute node is consists of two multi-chip modules

(MCMs) each composed of two dies. These dies are two

separate pieces of silicon connected to each other and ar-

ranged on a single module. Each die has two processor cores

that share a 4 MB L2 cache. Each MCM communicates with

the main memory in the system via a 1,333 MHz front-side

bus (FSB). All of the systems within “Calhoun” are inter-

connected with a 20-gigabit non-blocking InfiniBand fabric

used for interprocess communication (IPC). The InfiniBand

fabric is a high-bandwidth, low-latency network, the intent

of which is to accommodate high-speed communication for

large MPI jobs. The nodes are also interconnected with

two 1-gigabit ethernet networks for administration and file

access, respectively.

Algorithms 1, 2 and 3 are implemented in software which



is distributed under the GNU General Public License (GPL).

Source code and documentation are freely available at the

web site: http://elmocomp.sourceforge.net/.

We used two metabolic networks of S. cerevisiae : Net-

work I of dimensions 62 × 78 (35× 55) and Network II of

dimension 63 × 83 (40 × 61), respectively, where values in

parentheses correspond to the size of the reduced metabolic

network after elimination of redundant constraints. The

list of reactions in the Metabolic Network I is given in

Figures 3 and 4. Metabolic Network II is the same except

for the modifications listed in Figure 5. In these figures

reversible reactions are denoted with suffix “r” and external

metabolites with suffix “ext”. Elementary flux modes were

computed for Network I using the combinatorial paral-

lel Nullspace Algorithm (Algorithm 2) and the combined

parallel Nullspace Algorithm (Algorithm 3) on Intel Xeon

(Clovertown) machine. The results of the computation using

Algorithm 2 are given in table II, while the results of

using Algorithm 3 are given in table III. In table III the

row subset identifies the subproblem in the divide-and-

conquer partitioning, and the zero-flux pattern in the two

reactions R89r and R74r used (R and R denote that the

reaction R has zero and non-zero flux value in the given

EFM subproblem, respectively). To compute the elementary

flux modes for the subproblems in the combined parallel

Nullspace Algorithm we used 16 cores across 4 compute

nodes and compared that results with the column in Table II

corresponding to 16 cores. The divide-and-conquer splitting

in the Algorithm 3 decreased the number of intermediate

candidate modes from 159,599,700,951 to 81,714,944,316,

what resulted in the effective reduction of the computation

time from 208.98 seconds ((Table II)) to 141.6 seconds.

The set of EFMs for Metabolic Network II was computed

using the combined parallel Nullspace Algorithm (Algorithm

3) on the Blue Gene/P parallel platform (Table IV) using 256

processors in SMP mode. Initially, we tried computing the

elementary modes for this network using the combinatorial

parallel Nullspace Algorithm (Algorithm 2), but due to high

memory requirements the computation had to be abandoned

at 59th iteration, two iterations before completion. We

used this as a guidance to estimate the number of the

partitioning reactions in a divide-and-conquer approach to

compute the elementary modes using the combined parallel

Nullspace Algorithm. The reactions which were used as

the partitioning subset comprised of the last three reac-

tions in the reordered nullspace matrix {R60r, R90r, R54r},
where the reaction R60r corresponds to the last row in the

nullspace matrix. However, for partitions R60r R90rR54r

(interrupted during the execution of the last iteration step)

and R60rR90rR54r we were not able to complete the

computation irrespective of the number of compute nodes

used due to high memory requirements. This required the

partitioning of the two subproblems by addition of one

more reaction to the subset. We performed further splitting

within the two subsets using four instead of three reactions

and computed the elementary flux modes for the partitions

across the last four reactions in the nullspace matrix corre-

sponding to R60r R90rR54rR22r , R60r R90rR54rR22r,

R60rR90rR54rR22r , R60rR90rR54rR22r. For the case

of subset ID=1 in a three-reaction split we were able to esti-

mate the number of generated intermediate candidate modes

to be equal to 21,268,414,872,504. By addition of the fourth

reaction to the partitioning subset the number of candidate

elementary modes, as shown in Table IV, was reduced to

4,447,206,371,897 (=4,340,558,712,549+106,647,659,348).

For the case of subset ID=3, we were not able to compute the

number of generated candidate modes in the three-reaction

split, as the computation was interrupted two iteration steps

before the end, but the number of generated candidate modes

in the four-reaction split is given in Table IV.

A. Time scalability

Computation time is proportional to the number of gen-

erated intermediate elementary modes. Divide-and-conquer

approach usually leads to the decrease of the cumulative

number of intermediate modes compared to the unsplit

problem, and the execution times are proportional to these

numbers of modes. It is yet unclear how to select the sub-

set of reactions in divide-and-conquer that may maximally

decrease the number of intermediate candidate elementary

flux modes.

B. Memory scalability

The combinatorial parallel Nullspace Algorithm has the

disadvantage that it requires the storage of the current

nullspace matrix in the local memory across all compute

nodes at each step. Hence, until that bottleneck is removed,

the combinatorial parallel Nullspace Algorithm may only be

used for problems where the current nullspace matrix may fit

in the local memory of the compute node. The divide-and-

conquer feature of the combined parallel Nullspace algo-

rithm “fits” the larger problem to the available architecture,

where combinatorial parallel algorithm only could not be

applied. However, cumulative memory requirements for all

subproblems compared to the original problem remain the

same.

C. Discussion

The divide-and-conquer approach requires the selected of

the initial subset of reactions to be used in the partitioning.

If the size of this subset is large, the number of partitions to

explore may be impractically high. Currently the estimation

of the minimal number of partitions that should be used in

elementary mode computations is a manual procedure. An

automated method to select the subset and estimate the ap-

proximate number of elementary modes for a given reaction

partition would be helpful to make the combined parallel

Nullspace Algorithm a fully automated procedure. In order



Table II
PARALLEL COMPUTATION OF EFMS ON S. cerevisiae METABOLIC

NETWORK I USING ALGORITHM 2 ON INTEL XEON MACHINE

# nodes 1 2 1 1 4 8 16

# cores per node 1 1 4 8 4 4 4

total # cores 1 2 4 8 16 32 64

memory per core 12gb 12gb 3gb 1.5gb 3gb 3gb 3gb

gen. cand (sec) 2744.76 1383.93 688.60 349.05 179.04 95.44 46.83

rank test (sec) 112.88 77.42 52.80 33.98 20.38 12.21 8.01

communicate (sec) 0 0.06 0.09 0.18 0.17 0.19 0.18

merge (sec) 0 0.68 1.01 1.40 1.45 1.62 1.74

total time (sec) 2894.40 1490.85 761.29 404.33 208.98 115.46 61.87

Total # candidate modes: 159,599,700,951 Total # EFM: 1,515,314

Table III
PARALLEL COMPUTATION OF EFMS ON S. cerevisiae METABOLIC

NETWORK I USING ALGORITHM 3 ON INTEL XEON (CLOVERTOWN)
MACHINE WITH PARTITIONING ACROSS REACTIONS {R89r , R74r}

USING 16 PROCESSORS

subset R89r R74r R89r R74r R89r R74r R89rR74r

# EFM 274,919 599,344 207,533 433,518

gen. cand
17.50 57.36 17.29 24.61

(sec)

rank test
2.96 7.18 2.34 3.78

(sec)

comm
0.05 0.10 0.05 0.10

(sec)

merge
0.16 0.44 0.11 0.36

(sec)

total time
21.97 67.77 20.79 31.07

(sec)

Cumulative total time: 141.6 secs Total # EFM: 1,515,314

Total # candidate modes: 81,714,944,316

Table IV
PARALLEL COMPUTATION OF EFMS ON S. cerevisiae METABOLIC

NETWORK II USING ALGORITHM 3 ON BLUE GENE/P PARALLEL

PLATFORM WITH PARTITIONING ACROSS REACTIONS

{R54r , R90r , R60r} AND USING 256 COMPUTE NODES

subset binary partition # candidate modes # EFM time

ID subset (sec)

0 R60r R90r R54r 6,214,645,617,622 5,461,652 1575.23

1
R60r R90r R54r R22r 4,340,558,712,549 5,192,050 1105.26

R60r R90r R54r R22r 106,647,659,348 713,038 53.45

2 R60r R90r R54r 15,066,250,207,733 9,565,657 3342.69

3
R60r R90rR54r R22r 4,644,781,999,541 7,768,777 1380.74

R60r R90rR54r R22r 378,647,219,526 2,070,396 178.15

4 R60r R90r R54r 692,798,105,813 2,004,634 255.18

5 R60r R90r R54r 5,498,326,647,776 5,902,918 1437.18

6 R60rR90r R54r 1,634,149,803,325 3,170,692 548.96

7 R60rR90rR54r 1,724,004,561,529 7,920,995 766.17

Total # EFM:49,764,544 Total time: 2h 57min 23 secs

to give an intuition about the computational complexity of

this problem it would be worth mentioning that to enumerate

all the elementary modes having non-zero flux for a specific

reaction is NP-hard [26], [27]. In addition, to decide if there

exists an elementary mode with non-zero fluxes for two or

more given reactions is NP-hard as well.

V. CONCLUSION

This paper gives an improved parallel Nullspace Algo-

rithm to compute the elementary flux modes in the metabolic

network. The earlier combinatorial parallel Nullspace Al-

gorithm [17] which had high memory requirements was

combined with the divide-and-conquer idea [32] for the

computation of the elementary flux modes. The efficiency

of applying the divide-and-conquer approach depends on the

proper selection of the reactions subset used to partition the

space of elementary flux modes into disjoint subsets com-

puted independently. The combination of two algorithmic

ideas may reduce the computation time by lowering the total

number of intermediate candidate elementary modes and

fit the larger problems to the available parallel architecture

where previously the combinatorial parallel Nullspace Algo-

rithm failed. Using this method, we were able to complete

the computation of the nearly 50 million elementary flux

modes on the variation of the yeast metabolic network.

Future work should focus on several points. First, the current

nullspace matrix should not be stored across all the compute

nodes in the combinatorial parallel Nullspace Algorithm, but

should be partitioned in an efficient way instead. Second,

design of the strategy of selecting the reaction subset used

in the divide-and-conquer part of the algorithm that gen-

erates minimal number of intermediate elementary mode

candidates would lead to the improvement of the compu-

tation time. Third, different algorithmic paradigms such as

partitioning of the metabolic network graph as an alternative

to the divide-and-conquer approach exposed in this paper

should also be considered.
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