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Abstract

Elementary flux modes give a mathematical representation of metabolic pathways in metabolic
networks satisfying the constraint of non-decomposability. The large cost of their computa-
tion shifts attention to computing a minimal generating set which is a conically independent
subset of elementary flux modes. When a metabolic network has reversible reactions and
also admits a reversible pathway, the minimal generating set is not unique. A theoretical
development and computational framework is provided which outline how to compute the
minimal generating set in this case. The method is based on combining existing software to
compute the minimal generating set for a “pointed cone” together with standard software
to compute the Reduced Row Echelon Form.
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1. Introduction

One approach to analyze cellular metabolic networks of biochemical reactions is by means
of the constraint-based stoichiometry network analysis. In this analysis, the quasi-steady
state of a network is represented by a matrix of coefficients S in which the element sij in
the i-th row and j-th column is the molar amount of metabolite i produced by a unit flux
of reaction j (a negative entry denotes consumption). The reactions can be reversible or
irreversible; where the latter are constrained to a single direction only.

All the reactions in the network are characterized by their flux rate values which corre-
spond to the speed of reaction execution. A set of reaction fluxes is collected into a metabolic

flux vector x, whose non-zero entries represent active reactions. In order to be feasible, the
flux rates of irreversible reactions must be non-negative. The metabolic flux vector quantita-
tively corresponds to and describes a concept of a metabolic pathway. The quasi-steady state
of the cellular metabolism imposes the constraint of mass-balance on the internal metabo-
lites: net consumption must match net production. This leads to the equality constraints
S · x = 0, i.e., the flux vector must lie in the right nullspace of the stoichiometry matrix.
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The solutions of the stoichiometry equation S · x = 0, which also satisfies the non-
negativity constraints for the flux of its irreversible reactions, describe all possible metabolic
states in which the metabolic network may be found. Geometrically this solution space
corresponds to the polyhedral cone (Schrijver, 1988; Wagner and Urbanczik, 2005), and it
may be fully generated by means of its extreme rays (Fukuda and Prodon, 1996). Extreme
rays are conically independent set of vectors and in the convex analysis are also known as a
minimal generating set. In the stoichiometry network analysis, alongside with the concept
of the minimal generating set, stand the extreme pathways and elementary flux modes. It
is important to say that the minimal generating set, extreme pathways and elementary flux

modes are computed using the standard Double Description Method for the enumeration of
extreme rays (i) when no reversible reactions are split, (ii) only internal reversible reactions
are split, and (iii) all of the reversible reactions are split, into two irreversible components,
respectively (Schuster and Hilgetag, 1994; Wagner and Urbanczik, 2005; Schilling et al., 2000;
Llaneras and Pico, 2010; Jevremovic et al., 2010). Unlike the minimal generating set, in the
original reaction space the extreme pathways and elementary flux modes are not necessarily
conically independent which depends on the existence and number of the reversible reactions.

In the absence of reversible reactions, the minimal generating set, extreme pathways and
elementary flux modes coincide, are uniquely defined, and correspond to the extreme rays

of the polyhedral cone. Regarding the directionality of the metabolic pathways which the
metabolic network accepts we distinguish two cases.

In the first case, if the metabolic network admits only irreversible pathways (i.e., every
pathway contains at least one irreversible reaction), then the minimal generating set is
unique, and the corresponding polyhedral cone is said to be pointed. On the other side, in
the second case, if the metabolic network admits reversible pathways, the minimal generating
set is no longer unique and the polyhedral cone is not pointed.

Regardless if the cone is pointed or not, the set of the elementary flux modes (or extreme
pathways) is a superset of any minimal generating set, and some of the elementary flux modes
(or extreme pathways) may lie in the interior of the cone. In addition, putatively exponential
hardness and high computational cost of the algorithm used to compute elementary flux
modes (Acuña et al., 2009, 2010) is another reason to shift the attention from extreme
pathways and elementary flux modes to the minimal generating set.

Answering many questions requires the use of extreme pathways (Schilling and Palsson,
2000; Papin et al., 2002; Wiback et al., 2002; Wiback and Palsson, 2002; Price et al., 2002)
and elementary flux modes (Stelling et al., 2002; Trinh et al., 2008; Trinh and Srienc, 2009;
Trinh et al., 2009; Pérès et al., 2011; Flynn et al., 2012), however there are several applica-
tions one can answer with minimal generating sets. This situation especially arises in the
case of genome-scale metabolic networks where the computation of elementary modes is pro-
hibitively expensive (Larhlimi, 2008). Some simple structural properties may be observed,
such as whether any reversible reaction appears only in one direction or only in irreversible
pathways, or whether some reaction appears in no pathway at all. Flux coupling analysis,
a procedure of determining dependencies between network reactions, can be accomplished
using the minimal generating set vectors (Larhlimi and Bockmayr, 2006). Control-effective
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analysis of individual reactions in the network was initially proposed on the basis of com-
puted elementary flux modes (Stelling et al., 2002). However, minimal generating sets can
be used to obtain an analogous control-effective metric, used in the regulatory network anal-
ysis and reaction importance assessment (Larhlimi, 2008). Minimal metabolic behaviors
are exposed by the minimal generating set (Larhlimi and Bockmayr, 2009), but a simple
method to compute it is still needed. In large genome-scale networks, where computation of
entire minimal generating sets may be impractical, efforts have been made to compute the
K-shortest minimal generating vectors (Rezola et al., 2011) (i.e., pathways involving as few
reactions as possible). This was accomplished by means of solving several linear optimiza-
tion problems and using existing methods for the computation of K-shortest elementary flux
modes (de Figueiredo et al., 2009).

The problem of computing the minimal generating set for the metabolic network which
admits reversible pathways is the topic of this manuscript. An earlier analysis of the
metabolic networks with reversible pathways by means of two subnetworks, one with no
reversible pathways and one with all reversible pathways, can be found in (Larhlimi and
Bockmayr, 2009). The computation of the unique minimal generating set for a pointed cone
can be accomplished using existing algorithms (von Kamp et al., 2006; Terzer and Stelling,
2008; Jevremovic et al., 2011) or using the general paradigm in (Jevremovic et al., 2010).
But this is considerably more difficult when the cone is not pointed (i.e., there are reversible
pathways). This situation can be recognized by computing the rank of the submatrix of S
consisting of the reversible reactions (Jevremovic et al., 2010).

The major contribution of this paper is to provide a simple procedure to compute the
minimal generating set for a stoichiometric network which has reversible pathways. The
method is based on combining two existing algorithms: a method to compute the minimal
generating set for a pointed cone, and a method to compute a nullspace of a matrix based
on the Reduced Row Echelon Form, a classical method in linear algebra. All this is carried
out without the necessity to compute all the elementary flux modes for any network. This
paper is organized as follows. Section 2 gives a theoretical treatment of the representation of
reversible and irreversible pathways and the decomposition of the original metabolic network
into two subnetworks. Section 3 outlines the algorithm for the computation of the minimal
generating set using two subnetworks. Section 4 uses a simple example to illustrate the
method and show how the method exposes some of the structure of the network.

2. Theory

Let S = (A,B,C) be an m × n stoichiometry matrix with the n columns (reactions)
ordered so that A consists of the irreversible reactions (of which there are ni) and B,C

consists of the reversible reactions (of which there are nr). We assume the reversible reactions
(B,C) form a matrix of rank kr and that B consists of kr columns which are independent,
while C consists of nr − kr columns. This implies that all the columns of C can be written
as linear combinations of the columns B: C = BR for some kr × (nr−kr) coefficient matrix
R. We remark that the columns of B can be found by a variety of methods such as the
Reduced Row Echelon Form (RREF) (Lay, 2012) where they appear as the “pivot” columns,
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while the columns C appear as the “non-pivot” columns. Hence we will refer to B as the
“pivot” columns. The standard RREF algorithm scans the matrix S left-to-right extracting
independent columns B, hence the choice of pivot columns varies depending on the order of
columns (reactions) in the original S, but once the latter is fixed, the former is also.

The matrix (B,C) has a nullspace of dimension nr−kr, and a suitable basis for this space

is NR =

(
−R
I

)
. Any vector in this nullspace is a valid path for the subnetwork (B,C) and

is a reversible path. By prepending zeros, we obtain

N̂R =




0

NR


 =




0
−R
I


 ,

which we will show is a minimal basis for the set of all reversible paths in the original network.
A column vector x is a valid path of the network represented by stoichiometry matrix S

if and only if Sx = 0 and the entries of x corresponding to irreversible reactions are non-
negative. If we split x = (xa;xb;xc) to conform with (A,B,C) (where “;” denote vertical
concatenation à la Matlab), then x is a valid path if and only if Axa +Bxb +Cxc = 0 and
xa ≥ 0 (elementwise).

We have the following Lemmas:
Lemma 1. Any reversible pathway x for the stoichiometry matrix S = (A,B,C) split as
above can be written in terms of the minimal generating set for the reversible subnetwork
(B,C), as follows:

x ≡



xa

xb

xc


 =




0

xb

xc


 = N̂Rα ≡




0

−R

I


α

for some coefficient vector α.
Since there are no sign constraints in the subnetwork represented by (B,C), the basis

NR is the minimal generating set for all possible reversible paths. In fact any basis for the
nullspace of (B,C) would be a minimal generating set, but we choose this specific one because
each column in this basis has a minimal set of non-zeros, i.e., each is also an elementary flux
mode. In this sense, we call this a “minimal basis” or “minimal generating set.” There is
still freedom to choose any set of kr independent columns of (B,C) (reversible reactions) to
act as the basis B.
Lemma 2. Any pathway x for the stoichiometry matrix S = (A,B,C) split as above can
be written as the sum of a path involving just reactions indexing columns in A,B and a
reversible path involving just reactions indexing columns in B,C:

x =



xa

xb

xc


 =



xa

x̃b

0


+ N̂Rxc

where x̃b = xb +Rxc.
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Proof.

x ≡




xa

xb

xc


 =




xa + 0

xb+Rxc − Rxc

0 + xc


 =



xa

x̃b

0


+




0
−R

I


xc.

As a valid path, x lies in the nullspace of S, and so does the term N̂Rxc, hence the remaining

term

(
xa

x̃b

0

)
must also lie in the nullspace of S and hence is a valid path. Only the component

xa is subject to sign constraints.
Theorem 3. Any pathway x for the stoichiometry matrix S = (A,B,C) split as above can

be written as the sum of a linear combination of paths in the minimal generating set M̂I for
the “pointed-cone” subnetwork represented by (A,B) together with a linear combination of

the minimal generating set N̂R for the network of reversible reactions represented by (B,C).
Proof. Let MI be a matrix whose columns form the minimal generating set for the subnet-
work (A,B). This network has no reversible pathways because the columns corresponding
to the reversible reactions are linearly independent, i.e., the space of valid paths for this
network is a pointed cone (Wagner and Urbanczik, 2005).

By Lemma 2, any path x through the entire network can be written as

x =



xa

x̃b

0


+ N̂Rxc.

Now

(
xa

x̃b

)
is a path through the subnetwork (A,B) and hence can be written in terms of

the minimal generating set for (A,B) as MIβ for some coefficient vector β. Hence we have

x = M̂Iβ + N̂Rα, with M̂I =

(
MI

0

)
,

where we have extended MI with a block of zeros so that (A,B) ·MI = (A,B,C) · M̂I .
Lemma 4. The generating set for the network represented by the stoichiometry matrix
(A,B,C) consisting of the union of the minimal generating set M̂I of matrices (A,B) and

the minimal generating set N̂R of matrices (B,C), constructed as in Theorem 3, is minimal.

Proof. By Theorem 3, any given pathway x = (xa;xb;xc) can be written as x = M̂Iβ+N̂Rα.

By Lemma 2 and its proof, the given pathway can be written as x =



xa

x̃b

0


 +




0
−R

I


xc,

which implies that the coefficients of the vectors in N̂R in the decomposition are equal to the
elements in xc, hence α = xc. Since N̂R consists of the identity matrix in its lower part, the
residual vector x − N̂Rxc lies in the pointed polyhedral cone corresponding to (A,B) and

therefore can be written in terms of M̂I in exactly one way: x − N̂Rxc = M̂Iβ. Hence no
member of the generating set M̂I ∪ N̂R can be written in terms of the other members of the
generating set. So the generating set must be minimal.
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3. Discussion

Theorem 3 implies that we can compute a minimal generating set for a stoichiometry
matrix S by the following procedure.

1. Collect all columns corresponding to irreversible reactions of S into matrix A.

2. Use the Reduced Row Echelon Form (RREF) (or similar method) on the matrix of
all reversible reactions to extract the matrices B and C, where B has full column
rank and C can be written as BR for some R, so that (B,C) consists of the columns
corresponding to all the reversible reactions.

3. Compute a basis NR as the right nullspace of matrix (B,C).

4. Compute the minimal generating set MI for the subnetwork represented by (A,B) (a
pointed cone).

5. Extending MI with a block of zeros to obtain M̂I , we obtain a minimal generating set
for all valid paths of S, namely the columns of the combined matrix (M̂I , N̂R).

This procedure allows one to compute the minimal generating set for an arbitrary network
by computing the minimal generating sets of two subnetworks, one of which is a pointed
cone and the other one having reversible pathways is a non-pointed cone. Since it is well
known that the minimal generating set of a network is almost always an order of magnitude
smaller than the set of elementary flux modes (Larhlimi and Bockmayr, 2009), this procedure
allows one to compute the minimal generating set for an arbitrary network at much less cost
compared to an algorithm based on a full set of elementary flux modes (Llaneras and Pico,
2010).

We remark that, by construction, the minimal generating set M̂I , of the subnetwork
consisting only of irreversible pathways, is essentially unique once the basis B for the space
of reversible reactions is chosen. They vary only in the combinations of reversible reactions.
The patterns of irreversible reactions in the pathways of M̂I correspond to the minimal
metabolic behaviors of (Larhlimi and Bockmayr, 2009).

However, there is quite a large freedom of choice for the minimal generating set N̂R

corresponding to the subnetwork with reversible pathways. Any basis for the nullspace of
(B,C) will do. By using the nullspace derived from the RREF, we can ensure that each

reversible pathway in N̂R is minimal (i.e., has a minimal set of non-zero entries).

4. Example

4.1. Toy metabolic network

We illustrate the method with a small example derived from (Larhlimi and Bockmayr,
2009). We have made reactions R6, R7 reversible in order to illustrate some structure exposed
by this method.

6



Stoichiometry Matrix S:

R1r R2 R3r R4r R5r R6r R7r R8 R9r R10r R11r R12r
1 −1

1 −1 −1
1 −1 −1

S =




1 1 −1 −1




1 −1 −1
1 −1

1 −1
B A B B B B C A B C B C

m1
m2
m3
m4
m5
m6
m7
partition

Here we show the partition into which each reaction ends up after extracting the reversible
part and applying the RREF. The method consists of three steps as follows.

1. Get minimal generating set for reversible pathways subnetwork.

• Extract all columns from S corresponding to reversible reactions into matrix (B,C).

• Compute basis of right Nullspace of (B,C) using the Reduced Row Echelon Form
(RREF). The rank of the matrix (B,C) is 7, so there will be 7 pivot columns. The
dimension of the nullspace is 3, so the minimal generating set will have 3 entries.

• The pivot reactions correspond to what RREF identified as the pivot columns. The
pivot columns form a basis for the entire column space of the reversible columns of S.

The columns have been ordered so that the pivot reversible reactions are: {R1r, R3r, R4r,
R5r, R6r, R9r, R11r}. The resulting reversible minimal generating set has 3 entries labeled
R in formula (1) below. We remark that this minimal generating set is not unique, as
discussed further below. In the following paragraphs, we show how the choice of pivot
reversible reactions is not completely arbitrary, but depends on the particular partitioning
among all the reversible reactions.
Notice in the R columns of (1) how R1r is isolated, and R4r, R6r, R7r form combination
disjoint from the remaining reactions. Specifically, the first R column shows that the sum
of R6r, R7r, minus R4r is zero. No R column involves R1r. Hence R1r cannot be written
as a linear combination of any other reaction, and any one of R4r, R6r, R7r can be written
as a linear combination of the other two, but none of these four reactions can be written as
combinations of the remaining reversible reactions. This also shows that R1r is not involved
in any reversible pathway.

Regarding the irreversible reactions, there is one irreversible pathway containing just R2
and one containing just R8, hence those two correspond to the minimal metabolic behaviors
in the sense of (Larhlimi and Bockmayr, 2009) 1. Since R1r only appears in the positive

1Recall this network has been modified from that of (Larhlimi and Bockmayr, 2009) for purposes of
illustration

7



direction in a pathway also with R2, one might consider R1 to be irreversible with respect
to this network and the two minimal metabolic behaviors to be {R1, R2} and {R8}.

The R columns of (1) is a generalized incidence matrix where two reactions are connected
by an edge if they appear in a common path. This shows the set of reversible reactions can be
partitioned into three disjoint connected subgraphs: {R1r}, {R4r, R6r, R7r}, {R3r, R5r,
R9r, R10r, R11r, R12r}, with no connections between the subgraphs. Any pointed cone
subset must have a certain number of members from each connected subgraph, where the
number of members is equal to the rank of the corresponding columns of the stoichiometry
matrix.

So any pointed cone subset in this example must include (in addition to all the irreversible
reactions) R1r, and any 2 out of {R4r, R6r, R7r}, plus some 4 out of {R3r, R5r, R9r, R10r,
R11r, R12r} but not any combination. Varying the choice of reversible reactions not only
yields a different pointed cone, but also a different minimal generating set for the reversible
subnetwork. However, once the minimal generating set for the reversible part is chosen, the
rest is all uniquely determined.

2. Get minimal generating set for irreversible pathways subnetwork.

• Combine irreversible reactions with the pivot reversible reactions to form a subnetwork
with no reversible pathway (called a Pointed Cone Subset). In this example there are
2 irreversible reactions and 7 pivot reactions to form a subnetwork of 9 reactions.

• Compute minimal generating set for resulting reduced stoichiometry matrix (A,B)
(using usual Nullspace algorithm).

The pointed cone subset has 9 reactions: {R2, R8}, {R1r}, {R4r, R6r}, {R3r, R5r,
R9r, R11r} (includes all irreversible reactions plus ”pivot” reversible reactions, grouped by
partitioning of the reactions induced from above.)

Applying the Nullspace algorithm yields 2 minimal generating vectors labeled I in formula
(1).

3. Combine the above two minimal generating sets.

All 5 paths in the two computed minimal generating set for this example are combined
to represent the minimal generating set of the original metabolic network, a shown in (1).
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I I R R R

1
1

1 1 −1 −1
−1 1 −1
−1 1 1
1 1

1
1

1
1

1
1

R1r
R2
R3r
R4r
R5r
R6r
R7r
R8
R9r
R10r
R11r
R12r

(1)

The label I denotes an irreversible minimal generating vector derived from the pointed cone
subnetwork (A,B), and R denotes a reversible minimal generating vector derived from the
reversible subnetwork (B,C).

This system has 21 EMs consisting of the 5 members of the minimal generating set (1)
plus the following 16 EMs:

R

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

1 2 1 1 1
1 −1 1 −1

−1 −1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1
1 1 1 1 1 1 1 1 1 1

−1 1 1 1 1 1 2
−1 1 1 1 1 1 2
1 1 1 1 1 1 2
1 1 1 1 1 1 2

R1r
R2
R3r
R4r
R5r
R6r
R7r
R8
R9r
R10r
R11r
R12r

(2)

The third column of (2) is an elementary mode for the pointed cone subset (A,B).
To see that (1) is indeed the minimal generating set, we express all the EMs in (2) as

linear combinations of the paths in (1):

1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1

−1 1 −1 1 −1 1
−1 1 1 1 1 1 2
1 1 1 1 1 1 2

(A,B)
(A,B)
(B,C)
(B,C)
(B,C)
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4.2. Red Blood Cell metabolism

We can apply the algorithm to find minimal generating set for the concrete example
of the red blood cell metabolic network (Wiback and Palsson, 2002). This is also just a
simple illustration of a simple biochemical question that can be answered with the minimal
generating set: namely that certain reversible reactions operate only in one direction. This
network has 32 internal reactions (17 reversible) and 19 external reactions (16 reversible),
giving a total of 51 reactions (33 reversible). The network has 6,180 elementary flux modes,
but the algorithm of this paper shows only 18 of these modes form the minimal generating
set (with 1 reversible). In this example A consists of the 18 columns corresponding to the 18
irreversible reactions, B consists of 32 columns, and C has one column. The one reversible
pathway is found to consist of reactions LD, TRA3r, TRA4r, TRA10r, TRA11r, TRA14r. A simple
examination of the minimal generating set suffices to show that the following reversible
reactions appear only in the positive direction: ALD, TPI, GAPDH, PGM, EN, LD, PGL, PRM,
PNPase, TRA4r, TRA13r, TRA16r, TRA17r, and the following only in the negative direction:
TRA7r, TRA12r, TRA14r.

Supplementary MATLAB script which facilitates the computation of minimal generating
set using the software for the computation of elementary flux modes is given at http://

elmocomp.sourceforge.net/mingen.zip. Software for the computation of elementary flux
modes has a command line option to perform the processing of constraints only corresponding
to irreversible reactions.

5. Conclusion

The minimal generating set represents a minimal subset of admissible elementary flux
modes which fully characterizes the polyhedral cone corresponding to the given metabolic
network. In this paper, a theoretical treatment of irreversible and reversible metabolic path-
ways is reviewed and a simple procedure to compute the minimal generating set for an
arbitrary biochemical network is given. The proposed method reduces the problem of com-
puting the minimal generating set for a network with reversible pathways to the simpler
problem of computing the minimal generating set for the network without reversible path-
ways. The method is based on splitting a metabolic network into two subnetworks, one
entirely reversible, and the other without reversible pathways.
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